Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2021 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Neuromodulation of bone: Role of different peptides and their interactions (Review)

  • Authors:
    • Xiaoyu Wang
    • Jia Xu
    • Qinglin Kang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 32
    |
    Published online on: November 5, 2020
       https://doi.org/10.3892/mmr.2020.11670
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo‑chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve‑dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ and Cerri PS: Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015:4217462015. View Article : Google Scholar : PubMed/NCBI

2 

Mertens C, Decker C, Engel M, Sander A, Hoffmann J and Freier K: Early bone resorption of free microvascular reanastomized bone grafts for mandibular reconstruction-a comparison of iliac crest and fibula grafts. J Craniomaxillofac Surg. 42:e217–e223. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Fan JJ, Mu TW, Qin JJ, Bi L and Pei GX: Different effects of implanting sensory nerve or blood vessel on the vascularization, neurotization, and osteogenesis of tissue-engineered bone in vivo. Biomed Res Int. 2014:4125702014. View Article : Google Scholar : PubMed/NCBI

4 

Wang L, Wei JH, Yang X, Yang ZH, Sun MY, Cheng XB, Xu LQ, Lei DL and Zhang CP: Preventing early-stage graft bone resorption by simultaneous innervation: Innervated iliac bone flap for mandibular reconstruction. Plast Reconstr Surg. 139:e1152–e1161. 2017. View Article : Google Scholar

5 

Brady RD, Grills BL, Church JE, Walsh NC, McDonald AC, Agoston DV, Sun M, O'Brien TJ, Shultz SR and McDonald SJ: Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep. 6:344912016. View Article : Google Scholar : PubMed/NCBI

6 

Martin CD, Jimenez-Andrade JM, Ghilardi JR and Mantyh PW: Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: Implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 427:148–152. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Matsuo K, Ji S, Miya A, Yoda M, Hamada Y, Tanaka T, Takao-Kawabata R, Kawaai K, Kuroda Y and Shibata S: Innervation of the tibial epiphysis through the intercondylar foramen. Bone. 120:297–304. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskötter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, et al: Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol. 38:22–35. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Horsnell H and Baldock PA: Osteoblastic actions of the neuropeptide Y system to regulate bone and energy homeostasis. Curr Osteop Rep. 14:26–31. 2016. View Article : Google Scholar

10 

Zheng XF, Zhao ED, He JY, Zhang YH, Jiang SD and Jiang LS: Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. Prog Biophys Mol Biol. 122:112–121. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Wang T, Guo Y, Yuan Y, Xin N, Zhang Q, Guo Q and Gong P: Deficiency of α Calcitonin-gene-related peptide impairs peri-implant angiogenesis and osseointegration via suppressive vasodilative activity. Biochem Biophys Res Commun. 498:139–145. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Fu S, Mei G, Wang Z, Zou ZL, Liu S, Pei GX, Bi L and Jin D: Neuropeptide substance P improves osteoblastic and angiogenic differentiation capacity of bone marrow stem cells in vitro. Biomed Res Int. 2014:5960232014. View Article : Google Scholar : PubMed/NCBI

13 

Benschop RJ, Collins EC, Darling RJ, Allan BW, Leung D, Conner EM, Nelson J, Gaynor B, Xu J, Wang XF, et al: Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthritis Cartilage. 22:578–585. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Duan JX, Zhou Y, Zhou AY, Guan XX, Liu T, Yang HH, Xie H and Chen P: Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Mol Immunol. 91:105–113. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Lim JE, Chung E and Son Y: A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci Rep. 7:94172017. View Article : Google Scholar : PubMed/NCBI

16 

Jiao K, Niu LN, Li QH, Ren GT, Zhao CM, Liu YD, Tay FR and Wang MQ: β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep. 5:125932015. View Article : Google Scholar : PubMed/NCBI

17 

Chen R, Hao Z, Chen X, Fu Q and Ma Y: Neuropeptide Y enhances proliferation and chondrogenic differentiation of ATDC5 cells. Neuropeptides. 80:1020222020. View Article : Google Scholar : PubMed/NCBI

18 

Yu W, Zhu C, Xu W, Jiang L and Jiang S: Neuropeptide Y1 receptor regulates glucocorticoid-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. Int J Mol Sci. 17:21502016. View Article : Google Scholar

19 

Kondo H, Takeuchi S and Togari A: β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab. 304:E507–E515. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, et al: Sema3A regulates bone-mass accrual through sensory innervations. Nature. 497:490–493. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Okubo M, Kimura T, Fujita Y, Mochizuki S, Niki Y, Enomoto H, Suda Y, Toyama Y and Okada Y: Semaphorin 3A is expressed in human osteoarthritic cartilage and antagonizes vascular endothelial growth factor 165-promoted chondrocyte migration: An implication for chondrocyte cloning. Arthritis Rheum. 63:3000–3009. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJ, Zhang L, Enriquez RF, Wong IP, et al: Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One. 4:e84152009. View Article : Google Scholar : PubMed/NCBI

23 

Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, Eisman JA, Gardiner EM and Herzog H: Hypothalamic regulation of cortical bone mass: Opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 21:1600–1607. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Wong IP, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, Herzog H and Baldock PA: Neuropeptide Y is a critical modulator of leptin's regulation of cortical bone. J Bone Miner Res. 28:886–898. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Johnston AP, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, Jones K, Paul S, Kaplan DR and Miller FD: Dedifferentiated schwann cell precursors Secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell. 19:433–448. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Jones RE, Salhotra A, Robertson KS, Ransom RC, Foster DS, Shah HN, Quarto N, Wan DC and Longaker MT: Skeletal stem cell-schwann cell circuitry in mandibular repair. Cell Rep. 28:2757–2766.e5. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Cai XX, Luo E and Yuan Q: Interaction between Schwann cells and osteoblasts in vitro. Int J Oral Sci. 2:74–81. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR and Mantyh PW: The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 178:196–207. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Wu ZX, Barker JS, Batchelor TP and Dey RD: Interleukin (IL)-1 regulates ozone-enhanced tracheal smooth muscle responsiveness by increasing substance P (SP) production in intrinsic airway neurons of ferret. Respir Physiol Neurobiol. 164:300–311. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Li FX, Xu F, Lin X, Wu F, Zhong JY, Wang Y, Guo B, Zheng MH, Shan SK and Yuan LQ: The role of substance P in the regulation of bone and cartilage metabolic activity. Front Endocrinol (Lausanne). 11:772020. View Article : Google Scholar : PubMed/NCBI

31 

Opolka A, Straub RH, Pasoldt A, Grifka J and Grässel S: Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum. 64:729–739. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Oliva F, Tarantino U and Maffulli N: Immunohistochemical localization of calcitonin gene-related peptide and substance P in the rat knee cartilage at birth. Physiol Res. 54:549–556. 2005.PubMed/NCBI

33 

Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR and Kingery WS: Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone. 45:309–320. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Mei G, Zou Z, Fu S, Xia L, Zhou J, Zhang Y, Tuo Y, Wang Z and Jin D: Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. Int J Mol Sci. 15:6224–6240. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Tuzmen C and Campbell PG: Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation. Connect Tissue Res. 59 (Supp1):S81–S90. 2018. View Article : Google Scholar

36 

Matsui S, Yamane T, Kobayashi-Hattori K and Oishi Y: Calcitonin gene-related peptide regulates mitogen-activated protein kinase pathway to decrease transforming growth factor β1-induced hepatic plasminogen activator inhibitor-1 mRNA expression in HepG2 cells. Biosci Biotechnol Biochem. 78:787–790. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Goto T, Nakao K, Gunjigake KK, Kido MA, Kobayashi S and Tanaka T: Substance P stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides. 41:25–31. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, Jiang MH, Kim JC and Son Y: A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. 15:425–435. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Um J, Jung N, Chin S, Cho Y, Choi S and Park KS: Substance P enhances EPC mobilization for accelerated wound healing. Wound Repair Regen. 24:402–410. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Dubon MJ and Park KS: The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells. Int J Mol Med. 37:1105–1111. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Sohn SJ: Substance P upregulates osteoclastogenesis by activating nuclear factor kappa B in osteoclast precursors. Acta Otolaryngol. 125:130–133. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Fukuda A, Goto T, Kuroishi KN, Gunjigake KK, Kataoka S, Kobayashi S and Yamaguchi K: Hemokinin-1 competitively inhibits substance P-induced stimulation of osteoclast formation and function. Neuropeptides. 47:251–259. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Sang X, Wang Z, Shi P, Li Y and Cheng L: CGRP accelerates the pathogenesis of neurological heterotopic ossification following spinal cord injury. Artif Cells Nanomed Biotechnol. 47:2569–2574. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR and Kingery WS: Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 46:1369–1379. 2010. View Article : Google Scholar : PubMed/NCBI

45 

He H, Chai J, Zhang S, Ding L, Yan P, Du W and Yang Z: CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep. 13:3977–3984. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Zhang Q, Guo Y, Yu H, Tang Y, Yuan Y, Jiang Y, Chen H, Gong P and Xiang L: Receptor activity-modifying protein 1 regulates the phenotypic expression of BMSCs via the Hippo/Yap pathway. J Cell Physiol. 234:13969–13976. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Mishima T, Ito Y, Hosono K, Tamura Y, Uchida Y, Hirata M, Suzsuki T, Amano H, Kato S, Kurihara Y, et al: Calcitonin gene-related peptide facilitates revascularization during hindlimb ischemia in mice. Am J Physiol Heart Circ Physiol. 300:H431–H439. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Zhang S, Li J, Jiang H, Gao Y, Cheng P, Cao T, Li D, Wang J, Song Y, Liu B, et al: Dorsal root ganglion maintains stemness of bone marrow mesenchymal stem cells by enhancing autophagy through the AMPK/mTOR pathway in a coculture system. Stem Cells Int. 2018:84789532018. View Article : Google Scholar : PubMed/NCBI

49 

Zhou Z, Hu CP, Wang CJ, Li TT, Peng J and Li YJ: Calcitonin gene-related peptide inhibits angiotensin II-induced endothelial progenitor cells senescence through up-regulation of klotho expression. Atherosclerosis. 213:92–101. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Blackwell KA, Raisz LG and Pilbeam CC: Prostaglandins in bone: Bad cop, good cop? Trends Endocrinol Metab. 21:294–301. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Guo C, Yuan L, Wang JG, Wang F, Yang XK, Zhang FH, Song JL, Ma XY, Cheng Q and Song GH: Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation. 37:621–631. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Zhou Y, Zhang H, Zhang G, He Y, Zhang P, Sun Z, Gao Y and Tan Y: Calcitonin generelated peptide reduces Porphyromonas gingivalis LPSinduced TNFα release and apoptosis in osteoblasts. Mol Med Rep. 17:3246–3254. 2018.PubMed/NCBI

53 

Loi F, Córdova LA, Zhang R, Pajarinen J, Lin TH, Goodman SB and Yao Z: The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 7:152016. View Article : Google Scholar : PubMed/NCBI

54 

Hong HS and Son Y: Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response. Biochem Biophys Res Commun. 453:179–184. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Liu X, Liu H, Xiong Y, Yang L, Wang C, Zhang R and Zhu X: Postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. Biomed Pharmacother. 104:742–750. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Webster JM, Fenton CG, Langen R and Hardy RS: Exploring the interface between inflammatory and therapeutic glucocorticoid induced bone and muscle loss. Int J Mol Sci. 20:57682019. View Article : Google Scholar

57 

Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, Jain A, Gao B, Chai Y, Yang M, et al: Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 10:1812019. View Article : Google Scholar : PubMed/NCBI

58 

Grässel SG: The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther. 16:4852014. View Article : Google Scholar : PubMed/NCBI

59 

Jikko A, Murakami H, Yan W, Nakashima K, Ohya Y, Satakeda H, Noshiro M, Kawamoto T, Nakamura S, Okada Y, et al: Effects of cyclic adenosine 3′,5′-monophosphate on chondrocyte terminal differentiation and cartilage-matrix calcification. Endocrinology. 137:122–128. 1996. View Article : Google Scholar : PubMed/NCBI

60 

Buma P, Verschuren C, Versleyen D, Van der Kraan P and Oestreicher AB: Calcitonin gene-related peptide, substance P and GAP-43/B-50 immunoreactivity in the normal and arthrotic knee joint of the mouse. Histochemistry. 98:327–339. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Salo PT, Hogervorst T, Seerattan RA, Rucker D and Bray RC: Selective joint denervation promotes knee osteoarthritis in the aging rat. J Orthop Res. 20:1256–1264. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Eitner A, Pester J, Nietzsche S, Hofmann GO and Schaible HG: The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage. 21:1383–1391. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Howard MR, Millward-Sadler SJ, Vasilliou AS, Salter DM and Quinn JP: Mechanical stimulation induces preprotachykinin gene expression in osteoarthritic chondrocytes which is correlated with modulation of the transcription factor neuron restrictive silence factor. Neuropeptides. 42:681–686. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Muschter D, Fleischhauer L, Taheri S, Schilling AF, Clausen-Schaumann H and Grässel S: Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model. Bone. 133:1151812020. View Article : Google Scholar : PubMed/NCBI

65 

Kim SJ, Kim JE, Kim SH, Kim SJ, Jeon SJ, Kim SH and Jung Y: Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model. Biomaterials. 74:119–130. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Nishiura T and Abe K: Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol. 52:778–785. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Zhu Y, Ma Y and Elefteriou F: Cortical bone is an extraneuronal site of norepinephrine uptake in adult mice. Bone Rep. 9:188–198. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Mitchell J, Lai LP, Peralta F, Xu Y and Sugamori K: β2-adrenergic receptors inhibit the expression of collagen type II in growth plate chondrocytes by stimulating the AP-1 factor Jun-B. Am J Physiol Endocrinol Metab. 300:E633–E639. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Liang H, Zeng Y, Feng Y, Wu H, Gong P and Yao Q: Selective β2-adrenoreceptor signaling regulates osteoclastogenesis via modulating RANKL production and neuropeptides expression in osteocytic MLO-Y4 cells. J Cell Biochem. Nov 1–2018.doi: 10.1002/jcb.27998. Online ahead of print.

70 

Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, et al: Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res. 26:591–603. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Grässel S and Muschter D: Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology. Int J Mol Sci. 18:9312017. View Article : Google Scholar

72 

Hamrick MW and Ferrari SL: Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 19:905–912. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R and Ferrari SL: Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 27:1252–1262. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, Joyner MJ, Rosen CJ, Monroe DG and Farr JN: Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 128:4832–4842. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Arai M, Sato T, Takeuchi S, Goto S and Togari A: Dose effects of butoxamine, a selective β2-adrenoceptor antagonist, on bone metabolism in spontaneously hypertensive rat. Eur J Pharmacol. 701:7–13. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, Amin S, Melton LJ III, Joyner MJ and Khosla S: Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab. 97:4219–4227. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Ma Y, Krueger JJ, Redmon SN, Uppuganti S, Nyman JS, Hahn MK and Elefteriou F: Extracellular norepinephrine clearance by the norepinephrine transporter is required for skeletal homeostasis. J Biol Chem. 288:30105–30113. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovács KJ, Yirmiya R and Bab I: Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci USA. 109:15455–15460. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Du Z, Wang L, Zhao Y, Cao J, Wang T, Liu P, Zhang Y, Yang X, Cheng X, Liu B and Lei D: Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3. PLoS One. 9:e1059762014. View Article : Google Scholar : PubMed/NCBI

80 

Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN and Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 466:829–834. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Wu B, Wang L, Yang X, Mao M, Ye C, Liu P, Yang Z, Yang X, Lei D and Zhang C: Norepinephrine inhibits mesenchymal stem cell chemotaxis migration by increasing stromal cell-derived factor-1 secretion by vascular endothelial cells via NE/abrd3/JNK pathway. Exp Cell Res. 349:214–220. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Matic I, Matthews BG, Kizivat T, Igwe JC, Marijanovic I, Ruohonen ST, Savontaus E, Adams DJ and Kalajzic I: Bone-specific overexpression of NPY modulates osteogenesis. J Musculoskelet Neuronal Interact. 12:209–218. 2012.PubMed/NCBI

83 

Parker RM and Herzog H: Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur J Neurosci. 11:1431–1448. 1999. View Article : Google Scholar : PubMed/NCBI

84 

Lee NJ, Doyle KL, Sainsbury A, Enriquez RF, Hort YJ, Riepler SJ, Baldock PA and Herzog H: Critical role for Y1 receptors in mesenchymal progenitor cell differentiation and osteoblast activity. J Bone Miner Res. 25:1736–1747. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Driessler F and Baldock PA: Hypothalamic regulation of bone. J Mol Endocrinol. 45:175–181. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Sousa DM, Baldock PA, Enriquez RF, Zhang L, Sainsbury A, Lamghari M and Herzog H: Neuropeptide Y Y1 receptor antagonism increases bone mass in mice. Bone. 51:8–16. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJ, Enriquez RF, McDonald MM, Zhang L, During MJ, et al: Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem. 282:19092–19102. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A, Baldock PA and Herzog H: Osteoblast specific Y1 receptor deletion enhances bone mass. Bone. 48:461–467. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Lundberg P, Allison SJ, Lee NJ, Baldock PA, Brouard N, Rost S, Enriquez RF, Sainsbury A, Lamghari M, Simmons P, et al: Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression. J Biol Chem. 282:19082–19091. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, et al: Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring). 19:2137–2148. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Khor EC, Yulyaningsih E, Driessler F, Kovaĉić N, Wee NKY, Kulkarni RN, Lee NJ, Enriquez RF, Xu J, Zhang L, et al: The y6 receptor suppresses bone resorption and stimulates bone formation in mice via a suprachiasmatic nucleus relay. Bone. 84:139–147. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Jiang ZQ, Zhou YL, Chen X, Li LY, Liang SY, Lin S and Shu MQ: Different effects of neuropeptide Y on proliferation of vascular smooth muscle cells via regulation of Geminin. Mol Cell Biochem. 433:205–211. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Alasvand M, Rashidi B, Javanmard SH, Akhavan MM and Khazaei M: Effect of blocking of neuropeptide Y Y2 receptor on tumor angiogenesis and progression in normal and diet-induced obese C57BL/6 mice. Glob J Health Sci. 7:69–78. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Fetissov SO, Xu ZQ, Byrne LC, Hassani H, Ernfors P and Hökfelt T: Neuropeptide y targets in the hypothalamus: Nitric oxide synthesizing neurones express Y1 receptor. J Neuroendocrinol. 15:754–760. 2003. View Article : Google Scholar : PubMed/NCBI

95 

Lai LP and Mitchell J: Beta2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X. J Cell Biochem. 104:545–553. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Martin LJ, Piltonen MH, Gauthier J, Convertino M, Acland EL, Dokholyan NV, Mogil JS, Diatchenko L and Maixner W: Differences in the antinociceptive effects and binding properties of propranolol and bupranolol enantiomers. J Pain. 16:1321–1333. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Light KC, Bragdon EE, Grewen KM, Brownley KA, Girdler SS and Maixner W: Adrenergic dysregulation and pain with and without acute beta-blockade in women with fibromyalgia and temporomandibular disorder. J Pain. 10:542–552. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Valdes AM, Abhishek A, Muir K, Zhang W, Maciewicz RA and Doherty M: Association of beta-blocker use with less prevalent joint pain and lower opioid requirement in people with osteoarthritis. Arthritis Care Res (Hoboken). 69:1076–1081. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Kang X, Qian Z, Liu J, Feng D, Li H, Zhang Z, Jin X, Ma Z, Xu M, Li F, et al: Neuropeptide Y acts directly on cartilage homeostasis and exacerbates progression of osteoarthritis through NPY2R. J Bone Miner Res. 35:1375–1384. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Wang L, Zhang L, Pan H, Peng S, Lv M and Lu WW: Levels of neuropeptide Y in synovial fluid relate to pain in patients with knee osteoarthritis. BMC Musculoskelet Disord. 15:3192014. View Article : Google Scholar : PubMed/NCBI

101 

Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, et al: Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 13:803–811. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Worzfeld T and Offermanns S: Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov. 13:603–621. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Gomez C, Burt-Pichat B, Mallein-Gerin F, Merle B, Delmas PD, Skerry TM, Vico L, Malaval L and Chenu C: Expression of Semaphorin-3A and its receptors in endochondral ossification: Potential role in skeletal development and innervation. Dev Dyn. 234:393–403. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Li Y, Yang L, He S and Hu J: The effect of semaphorin 3A on fracture healing in osteoporotic rats. J Orthop Sci. 20:1114–1121. 2015.PubMed/NCBI

105 

Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A and Takayanagi H: Osteoprotection by semaphorin 3A. Nature. 485:69–74. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Kular J, Tickner J, Chim SM and Xu J: An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 45:863–873. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Sun J, Wei X, Wang Z, Liu Y, Lu J, Lu Y, Cui M, Zhang X and Li F: Inflammatory milieu cultivated Sema3A signaling promotes chondrocyte apoptosis in knee osteoarthritis. J Cell Biochem. 119:2891–2899. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Dénes A, Boldogkoi Z, Uhereczky G, Hornyák A, Rusvai M, Palkovits M and Kovács KJ: Central autonomic control of the bone marrow: Multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience. 134:947–963. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Sharan K and Yadav VK: Hypothalamic control of bone metabolism. Best Pract Res Clin Endocrinol Metab. 28:713–723. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Spiegelman BM and Flier JS: Obesity and the regulation of energy balance. Cell. 104:531–543. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Camerino C, Zayzafoon M, Rymaszewski M, Heiny J, Rios M and Hauschka PV: Central depletion of brain-derived neurotrophic factor in mice results in high bone mass and metabolic phenotype. Endocrinology. 153:5394–5405. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, et al: Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 434:514–520. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, et al: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 138:976–989. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ and Trayhurn P: Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol. 8:733–735. 1996. View Article : Google Scholar : PubMed/NCBI

115 

Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D and Baile CA: Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res. 20:994–1001. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Lamghari M, Tavares L, Camboa N and Barbosa MA: Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J Cell Biochem. 98:1123–1129. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S and Iwaniec UT: Peripheral leptin regulates bone formation. J Bone Miner Res. 28:22–34. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Hamrick MW, Pennington C, Newton D, Xie D and Isales C: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 34:376–383. 2004. View Article : Google Scholar : PubMed/NCBI

119 

Ealey KN, Fonseca D, Archer MC and Ward WE: Bone abnormalities in adolescent leptin-deficient mice. Regul Pept. 136:9–13. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Yu B, Jiang K, Chen B, Wang H, Li X and Liu Z: Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates. BMC Musculoskelet Disord. 18:2352017. View Article : Google Scholar : PubMed/NCBI

121 

Yan M, Zhang J, Yang H and Sun Y: The role of leptin in osteoarthritis. Medicine (Baltimore). 97:e02572018. View Article : Google Scholar : PubMed/NCBI

122 

Sandell LJ: Obesity and osteoarthritis: Is leptin the link? Arthritis Rheum. 60:2858–2860. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Yaykasli KO, Hatipoglu OF, Yaykasli E, Yildirim K, Kaya E, Ozsahin M, Uslu M and Gunduz E: Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-ĸB signaling pathways in human chondrocytes. Cell Biol Int. 39:104–112. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Su YP, Chen CN, Huang KC, Chang HI, Lee KC, Lo CM and Chang SF: Leptin induces MMP1/13 and ADAMTS 4 expressions through bone morphogenetic protein-2 autocrine effect in human chondrocytes. J Cell Biochem. 119:3716–3724. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Chang SF, Hsieh RZ, Huang KC, Chang CA, Chiu FY, Kuo HC, Chen CN and Su YP: Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen II expression in leptin-stimulated human chondrocytes. PLoS One. 10:e01442522015. View Article : Google Scholar : PubMed/NCBI

126 

Zhao X, Dong Y, Zhang J, Li D, Hu G, Yao J, Li Y, Huang P, Zhang M, Zhang J, et al: Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells. Cell Death Dis. 7:e21882016. View Article : Google Scholar : PubMed/NCBI

127 

Liu Q, Lei L, Yu T, Jiang T and Kang Y: Effect of brain-derived neurotrophic factor on the neurogenesis and osteogenesis in bone engineering. Tissue Eng Part A. 24:1283–1292. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Foudah D, Redondo J, Caldara C, Carini F, Tredici G and Miloso M: Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol Biol Lett. 18:163–186. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S and Sommer L: Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun. 9:2362018. View Article : Google Scholar : PubMed/NCBI

130 

Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J and Chen Y: BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep. 15:1362–1367. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Kilian O, Hartmann S, Dongowski N, Karnati S, Baumgart-Vogt E, Härtel FV, Noll T, Schnettler R and Lips KS: BDNF and its TrkB receptor in human fracture healing. Ann Anat. 196:286–295. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, et al: Neurotrophin-3 induces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats. J Bone Miner Res. 31:1258–1274. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Fransès RE, Mapp PI and Wilson D: Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford). 49:1852–1861. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Takeda K, Shiba H, Mizuno N, Hasegawa N, Mouri Y, Hirachi A, Yoshino H, Kawaguchi H and Kurihara H: Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng. 11:1618–1629. 2005. View Article : Google Scholar : PubMed/NCBI

135 

Zhang J, Wang L, Cao H, Chen N, Yan B, Ao X, Zhao H, Chu J, Huang M and Zhang Z: Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J Cell Mol Med. 23:2595–2609. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Shen L, Zeng W, Wu YX, Hou CL, Chen W, Yang MC, Li L, Zhang YF and Zhu CH: Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells. Cell Transplant. 22:1011–1021. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Caporali A and Emanueli C: Cardiovascular actions of neurotrophins. Physiol Rev. 89:279–308. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Itoyama T, Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Ono T, Fujino S and Maeda H: Possible function of GDNF and Schwann cells in wound healing of periodontal tissue. J Periodontal Res. Jun 20–2020.doi: 10.1111/jre.12774. (Online Ahead of Print). View Article : Google Scholar : PubMed/NCBI

139 

Yajima S, Lammers CH, Lee SH, Hara Y, Mizuno K and Mouradian MM: Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J Neurosci. 17:8657–8666. 1997. View Article : Google Scholar : PubMed/NCBI

140 

Chen Z, Li W, Wang H, Wan C, Luo D, Deng S, Chen H and Chen S: Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes. Cell Tissue Res. 363:385–398. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Subramaniam M, Pitel KS, Withers SG, Drissi H and Hawse JR: TIEG1 enhances Osterix expression and mediates its induction by TGFβ and BMP2 in osteoblasts. Biochem Biophys Res Commun. 470:528–533. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Gale Z, Cooper PR and Scheven BA: Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells. Cytokine. 57:276–281. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Xu J and Kang Q: Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 23: 32, 2021.
APA
Wang, X., Xu, J., & Kang, Q. (2021). Neuromodulation of bone: Role of different peptides and their interactions (Review). Molecular Medicine Reports, 23, 32. https://doi.org/10.3892/mmr.2020.11670
MLA
Wang, X., Xu, J., Kang, Q."Neuromodulation of bone: Role of different peptides and their interactions (Review)". Molecular Medicine Reports 23.1 (2021): 32.
Chicago
Wang, X., Xu, J., Kang, Q."Neuromodulation of bone: Role of different peptides and their interactions (Review)". Molecular Medicine Reports 23, no. 1 (2021): 32. https://doi.org/10.3892/mmr.2020.11670
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Xu J and Kang Q: Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 23: 32, 2021.
APA
Wang, X., Xu, J., & Kang, Q. (2021). Neuromodulation of bone: Role of different peptides and their interactions (Review). Molecular Medicine Reports, 23, 32. https://doi.org/10.3892/mmr.2020.11670
MLA
Wang, X., Xu, J., Kang, Q."Neuromodulation of bone: Role of different peptides and their interactions (Review)". Molecular Medicine Reports 23.1 (2021): 32.
Chicago
Wang, X., Xu, J., Kang, Q."Neuromodulation of bone: Role of different peptides and their interactions (Review)". Molecular Medicine Reports 23, no. 1 (2021): 32. https://doi.org/10.3892/mmr.2020.11670
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team