|
1
|
Parslow TG, Blair DL, Murphy WJ and
Granner DK: Structure of the 5′ ends of immunoglobulin genes: A
novel conserved sequence. Proc Natl Acad Sci USA. 81:2650–2654.
1984. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Herr W, Sturm RA, Clerc RG, Corcoran LM,
Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun
G, et al: The POU domain: A large conserved region in the mammalian
pit-1, oct-1, 2, and Caenorhabditis elegans unc-86 gene products.
Genes Dev. 2:1513–1516. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu L, Li Y, Wang Y, Zhao P, Wei S, Li Z,
Chang H and He H: Biochemical characterization and functional
analysis of the POU transcription factor POU-M2 of Bombyx mori. Int
J Biol Macromol. 86:701–708. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang X and Engstrom Y: Regulation of
immune and tissue homeostasis by Drosophila POU factors. Insect
Biochem Mol Biol. 109:24–30. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Malik V, Zimmer D and Jauch R: Diversity
among POU transcription factors in chromatin recognition and cell
fate reprogramming. Cell Mol Life Sci. 75:1587–1612. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fionda C, Di Bona D, Kosta A, Stabile H,
Santoni A and Cippitelli M: The POU-domain transcription factor
Oct-6/POU3F1 as a regulator of cellular response to genotoxic
stress. Cancers (Basel). 11:8102019. View Article : Google Scholar
|
|
7
|
Barral A, Rollan I, Sanchez-Iranzo H,
Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C,
Sanchez-Cabo F, Göttgens B, et al: Nanog regulates Pou3f1
expression at the exit from pluripotency during gastrulation. Biol
Open. 8:bio0463672019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Song L, Sun N, Peng G, Chen J, Han JD and
Jing N: Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during
mouse pluripotent stem cell neural fate commitment. Genom Data.
5:375–377. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li G, Jiapaer Z, Weng R, Hui Y, Jia W, Xi
J, Wang G, Zhu S, Zhang X, Feng D, et al: Dysregulation of the
SIRT1/OCT6 axis contributes to environmental stress-induced neural
induction defects. Stem Cell Reports. 8:1270–1286. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Snijders Blok L, Kleefstra T, Venselaar H,
Maas S, Kroes HY, Lachmeijer AM, van Gassen KL, Firth HV, Tomkins
S, Bodek S, et al: De novo variants disturbing the transactivation
capacity of POU3F3 cause a characteristic neurodevelopmental
disorder. Am J Hum Genet. 105:403–412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cosse-Etchepare C, Gervi I, Buisson I,
Formery L, Schubert M, Riou JF, Umbhauer M and Le Bouffant R: Pou3f
transcription factor expression during embryonic development
highlights distinct pou3f3 and pou3f4 localization in the Xenopus
laevis kidney. Int J Dev Biol. 62:325–333. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kumar S, Rathkolb B, Kemter E, Sabrautzki
S, Michel D, Adler T, Becker L, Beckers J, Busch DH, Garrett L, et
al: Generation and standardized, systemic phenotypic analysis of
Pou3f3L423P mutant mice. PLoS One. 11:e01504722016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rieger A, Kemter E, Kumar S, Popper B,
Aigner B, Wolf E, Wanke R and Blutke A: Missense mutation of POU
domain class 3 transcription factor 3 in Pou3f3L423P mice causes
reduced nephron number and impaired development of the thick
ascending limb of the loop of henle. PLoS One. 11:e01589772016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai
R, Cheng L, Gunaratne P, Gibbs RA, Min S, et al: The transcription
factor POU3F2 regulates a gene coexpression network in brain tissue
from patients with psychiatric disorders. Sci Transl Med.
10:eaat81782018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lin YJ, Hsin IL, Sun HS, Lin S, Lai YL,
Chen HY, Chen TY, Chen YP, Shen YT and Wu HM: NTF3 is a novel
target gene of the transcription factor POU3F2 and is required for
neuronal differentiation. Mol Neurobiol. 55:8403–8413. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hashizume K, Yamanaka M and Ueda S: POU3F2
participates in cognitive function and adult hippocampal
neurogenesis via mammalian-characteristic amino acid repeats. Genes
Brain Behav. 17:118–125. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen HY, Lee YH, Chen HY, Yeh CA, Chueh PJ
and Lin YM: Capsaicin inhibited aggressive phenotypes through
downregulation of tumor-associated NADH Oxidase (tNOX) by POU
domain transcription factor POU3F2. Molecules. 21:7332016.
View Article : Google Scholar
|
|
18
|
Ding S, Jin Y, Hao Q, Kang Y and Ma R:
LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is
connected with worse survival rate of hepatocellular carcinoma
patients and promotes tumor cell growth and metastasis. Cancer Cell
Int. 20:62020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Serrano-Saiz E, Leyva-Diaz E, De La Cruz E
and Hobert O: BRN3-type POU homeobox genes maintain the identity of
mature postmitotic neurons in nematodes and mice. Curr Biol.
28:2813–2823.e2. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hara Y, Rovescalli AC, Kim Y and Nirenberg
M: Structure and evolution of four POU domain genes expressed in
mouse brain. Proc Natl Acad Sci USA. 89:3280–3284. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Heydemann A, Nguyen LC and Crenshaw EB
III: Regulatory regions from the Brn4 promoter direct LACZ
expression to the developing forebrain and neural tube. Brain Res
Dev Brain Res. 128:83–90. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Phippard D, Heydemann A, Lechner M, Lu L,
Lee D, Kyin T and Crenshaw EB III: Changes in the subcellular
localization of the Brn4 gene product precede mesenchymal
remodeling of the otic capsule. Hear Res. 120:77–85. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heller RS, Stoffers DA, Liu A, Schedl A,
Crenshaw EB III, Madsen OD and Serup P: The role of Brn4/Pou3f4 and
Pax6 in forming the pancreatic glucagon cell identity. Dev Biol.
268:123–134. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hussain MA, Lee J, Miller CP and Habener
JF: POU domain transcription factor brain 4 confers pancreatic
alpha-cell-specific expression of the proglucagon gene through
interaction with a novel proximal promoter G1 element. Mol Cell
Biol. 17:7186–7194. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lim R and Brichta AM: Anatomical and
physiological development of the human inner ear. Hear Res.
338:9–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kanzaki S: Gene delivery into the inner
ear and its clinical implications for hearing and balance.
Molecules. 23:25072018. View Article : Google Scholar
|
|
27
|
Roccio M and Edge AS: Inner ear organoids:
New tools to understand neurosensory cell development, degeneration
and regeneration. Development. 146:dev1771882019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Brooks PM, Rose KP, MacRae ML, Rangoussis
KM, Gurjar M, Hertzano R and Coate TM: Pou3f4-expressing otic
mesenchyme cells promote spiral ganglion neuron survival in the
postnatal mouse cochlea. J Comp Neurol. 528:1967–1985. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kidokoro Y, Karasawa K, Minowa O, Sugitani
Y, Noda T, Ikeda K and Kamiya K: Deficiency of transcription factor
Brn4 disrupts cochlear gap junction plaques in a model of DFN3
non-syndromic deafness. PLoS One. 9:e1082162014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Phippard D, Lu L, Lee D, Saunders JC and
Crenshaw EB III: Targeted mutagenesis of the POU-domain gene
Brn4/Pou3f4 causes developmental defects in the inner ear. J
Neurosci. 19:5980–5989. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
de Kok YJ, van der Maarel SM,
Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, Pembrey ME,
Ropers HH and Cremers FP: Association between X-linked mixed
deafness and mutations in the POU domain gene POU3F4. Science.
267:685–688. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ocak E, Duman D and Tekin M: Genetic
causes of inner ear anomalies: A review from the Turkish study
group for inner ear anomalies. Balkan Med J. 36:206–211. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
DeSmidt AA, Zou B, Grati M, Yan D, Mittal
R, Yao Q, Richmond MT, Denyer S, Liu XZ and Lu Z: Zebrafish model
for nonsyndromic X-linked sensorineural deafness, DFNX1. Anat Rec
(Hoboken). 303:544–555. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yizhar-Barnea O, Valensisi C, Jayavelu ND,
Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y,
Bhonker Y, et al: DNA methylation dynamics during embryonic
development and postnatal maturation of the mouse auditory sensory
epithelium. Sci Rep. 8:173482018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gong WX, Gong RZ and Zhao B: HRCT and MRI
findings in X-linked non-syndromic deafness patients with a POU3F4
mutation. Int J Pediatr Otorhinolaryngol. 78:1756–1762. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Corvino V, Apisa P, Malesci R, Laria C,
Auletta G and Franzé A: X-linked sensorineural hearing loss: A
literature review. Curr Genomics. 19:327–338. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Barashkov NA, Klarov LA, Teryutin FM,
Solovyev AV, Pshennikova VG, Konnikova EE, Romanov GP, Tobokhov AV,
Morozov IV, Bondar AA, et al: A novel pathogenic variant
c.975G>A (p.Trp325*) in the POU3F4 gene in Yakut family (Eastern
Siberia, Russia) with the X-linked deafness-2 (DFNX2). Int J
Pediatr Otorhinolaryngol. 104:94–97. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Giannantonio S, Agolini E, Scorpecci A,
Anzivino R, Bellacchio E, Cocciadiferro D, Novelli A, Digilio MC
and Marsella P: Genetic identification and molecular modeling
characterization of a novel POU3F4 variant in two Italian deaf
brothers. Int J Pediatr Otorhinolaryngol. 129:1097902020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ozyilmaz B, Mercan GC, Kirbiyik O, Özdemir
TR, Özkara S, Kaya ÖÖ, Kutbay YB, Erdoğan KM, Güvenç MS and Koç A:
First-line molecular genetic evaluation of autosomal recessive
non-syndromic hearing loss. Turk Arch Otorhinolaryngol. 57:140–148.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jang JH, Oh J, Han JH, Park HR, Kim BJ,
Lee S, Kim MY, Lee S, Oh DY, Choung YH and Choi BY: Identification
of a novel frameshift variant of POU3F4 and genetic counseling of
Korean incomplete partition type III subjects based on detailed
genotypes. Genet Test Mol Biomarkers. 23:423–427. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Han JJ, Nguyen PD, Oh DY, Han JH, Kim AR,
Kim MY, Park HR, Tran LH, Dung NH, Koo JW, et al: Elucidation of
the unique mutation spectrum of severe hearing loss in a Vietnamese
pediatric population. Sci Rep. 9:16042019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Su Y, Gao X, Huang SS, Mao JN, Huang BQ,
Zhao JD, Kang DY, Zhang X and Dai P: Clinical and molecular
characterization of POU3F4 mutations in multiple DFNX2 Chinese
families. BMC Med Genet. 19:1572018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Du W, Han MK, Wang DY, Han B, Zong L, Lan
L, Yang J, Shen Q, Xie LY, Yu L, et al: A POU3F4 mutation causes
nonsyndromic hearing loss in a Chinese X-linked recessive family.
Chin Med J (Engl). 130:88–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu D, Huang W, Xu Z, Li S, Zhang J, Chen
X, Tang Y, Qiu J, Wang Z, Duan X and Zhang L: Clinical and genetic
study of 12 Chinese Han families with nonsyndromic deafness. Mol
Genet Genomic Med. 8:e11772020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Aristidou C, Theodosiou A, Bak M, Mehrjouy
MM, Constantinou E, Alexandrou A, Papaevripidou I,
Christophidou-Anastasiadou V, Skordis N, Kitsiou-Tzeli S, et al:
Position effect, cryptic complexity, and direct gene disruption as
disease mechanisms in de novo apparently balanced translocation
cases. PLoS One. 13:e02052982018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Anderson EA, Ozutemiz C, Miller BS, Moss
TJ and Nascene DR: Hypothalamic hamartomas and inner ear
diverticula with X-linked stapes gusher syndrome-new associations?
Pediatr Radiol. 50:142–145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Siddiqui A, D'Amico A, Colafati GS, Cicala
D, Talenti G, Rajput K, Pinelli L and D'Arco F: Hypothalamic
malformations in patients with X-linked deafness and incomplete
partition type 3. Neuroradiology. 61:949–952. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Henry BM, Skinningsrud B, Saganiak K,
Pękala PA, Walocha JA and Tomaszewski KA: Development of the human
pancreas and its vasculature-An integrated review covering
anatomical, embryological, histological, and molecular aspects. Ann
Anat. 221:115–124. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou Q and Melton DA: Pancreas
regeneration. Nature. 557:351–358. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gromada J, Franklin I and Wollheim CB:
Alpha-cells of the endocrine pancreas: 35 years of research but the
enigma remains. Endocr Rev. 28:84–116. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Takeda Y, Fujita Y, Sakai K, Abe T,
Nakamura T, Yanagimachi T, Sakagami H, Honjo J, Abiko A, Makino Y
and Haneda M: Expression of transcription factors in
MEN1-associated pancreatic neuroendocrine tumors. Endocrinol
Diabetes Metab Case Rep. 2017:17–0088. 2017.PubMed/NCBI
|
|
52
|
Li F, Su Y, Cheng Y, Jiang X, Peng Y, Li
Y, Lu J, Gu Y, Zhang C, Cao Y, et al: Conditional deletion of Men1
in the pancreatic β-cell leads to glucagon-expressing tumor
development. Endocrinology. 156:48–57. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bramswig NC and Kaestner KH:
Transcriptional regulation of α-cell differentiation. Diabetes Obes
Metab. 13 (Suppl 1):S13–S20. 2011. View Article : Google Scholar
|
|
54
|
Tan SY, Mei Wong JL, Sim YJ, Wong SS,
Mohamed Elhassan SA, Tan SH, Ling Lim GP, Rong Tay NW, Annan NC,
Bhattamisra SK and Candasamy M: Type 1 and 2 diabetes mellitus: A
review on current treatment approach and gene therapy as potential
intervention. Diabetes Metab Syndr. 13:364–372. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zamfirov K and Philippe J: Musculoskeletal
complications in diabetes mellitus. Rev Med Suisse. 13:917–921.
2017.(in French). PubMed/NCBI
|
|
56
|
Phadnis SM, Joglekar MV, Dalvi MP,
Muthyala S, Nair PD, Ghaskadbi SM, Bhonde RR and Hardikar AA: Human
bone marrow-derived mesenchymal cells differentiate and mature into
endocrine pancreatic lineage in vivo. Cytotherapy. 13:279–293.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sueda R, Imayoshi I, Harima Y and Kageyama
R: High Hes1 expression and resultant Ascl1 suppression regulate
quiescent vs. active neural stem cells in the adult mouse brain.
Genes Dev. 33:511–523. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shimazaki T, Arsenijevic Y, Ryan AK,
Rosenfeld MG and Weiss S: A role for the POU-III transcription
factor Brn-4 in the regulation of striatal neuron precursor
differentiation. EMBO J. 18:444–456. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tan X, Zhang L, Qin J, Tian M, Zhu H, Dong
C, Zhao H and Jin G: Transplantation of neural stem cells
co-transfected with Nurr1 and Brn4 for treatment of Parkinsonian
rats. Int J Dev Neurosci. 31:82–87. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tan X, Zhang L, Zhu H, Qin J, Tian M, Dong
C, Li H and Jin G: Brn4 and TH synergistically promote the
differentiation of neural stem cells into dopaminergic neurons.
Neurosci Lett. 571:23–28. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang X, Jin G, Wang L, Hu W, Tian M, Qin
J and Huang H: Brn-4 is upregulated in the deafferented hippocampus
and promotes neuronal differentiation of neural progenitors in
vitro. Hippocampus. 19:176–186. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shi J, Jin G, Zhu H, Tian M, Zhang X, Qin
J and Tan X: The role of Brn-4 in the regulation of neural stem
cell differentiation into neurons. Neurosci Res. 67:8–17. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang X, Zhang L, Cheng X, Guo Y, Sun X,
Chen G, Li H, Li P, Lu X, Tian M, et al: IGF-1 promotes Brn-4
expression and neuronal differentiation of neural stem cells via
the PI3K/Akt pathway. PLoS One. 9:e1138012014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ninkovic J, Steiner-Mezzadri A, Jawerka M,
Akinci U, Masserdotti G, Petricca S, Fischer J, von Holst A,
Beckers J, Lie CD, et al: The BAF complex interacts with Pax6 in
adult neural progenitors to establish a neurogenic cross-regulatory
transcriptional network. Cell Stem Cell. 13:403–418. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Guo J, Cheng X, Zhang L, Wang L, Mao Y,
Tian G, Xu W, Wu Y, Ma Z, Qin J, et al: Exploration of the
Brn4-regulated genes enhancing adult hippocampal neurogenesis by
RNA sequencing. J Neurosci Res. 95:2071–2079. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang L, Zhang X, Zhang Y, Xu N, Wang J,
Zhu Y and Xia C: Brn4 promotes the differentiation of radial glial
cells into neurons by inhibiting CtBP2. Life Sci. 254:1168662020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dhivya V and Balachandar V: Cell
replacement therapy is the remedial solution for treating
Parkinson's disease. Stem Cell Investig. 4:592017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tan XF, Qin JB, Jin GH, Tian ML, Li HM,
Zhu HX, Zhang XH, Shi JH and Huang Z: Effects of Brn-4 on the
neuronal differentiation of neural stem cells derived from rat
midbrain. Cell Biol Int. 34:877–882. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS,
Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem
cell lines derived from human blastocysts. Science. 282:1145–1147.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jerabek S, Ng CK, Wu G, Arauzo-Bravo MJ,
Kim KP, Esch D, Malik V, Chen Y, Velychko S, MacCarthy CM, et al:
Changing POU dimerization preferences converts Oct6 into a
pluripotency inducer. EMBO Rep. 18:319–333. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ma K, Deng X, Xia X, Fan Z, Qi X, Wang Y,
Li Y, Ma Y, Chen Q, Peng H, et al: Direct conversion of mouse
astrocytes into neural progenitor cells and specific lineages of
neurons. Transl Neurodegener. 7:292018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ma Y, Wang K, Pan J, Fan Z, Tian C, Deng
X, Ma K, Xia X, Huang Y and Zheng JC: Induced neural progenitor
cells abundantly secrete extracellular vesicles and promote the
proliferation of neural progenitors via extracellular
signal-regulated kinase pathways. Neurobiol Dis. 124:322–334. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
He M, Zhang H, Li Y, Tian C, Tang B, Huang
Y and Zheng J: Direct and selective lineage conversion of human
fibroblasts to dopaminergic precursors. Neurosci Lett. 699:16–23.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Black JB, Adler AF, Wang HG, D'Ippolito
AM, Hutchinson HA, Reddy TE, Pitt GS, Leong KW and Gersbach CA:
Targeted epigenetic remodeling of endogenous Loci by
CRISPR/Cas9-based transcriptional activators directly converts
fibroblasts to neuronal cells. Cell Stem Cell. 19:406–414. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chuang W, Sharma A, Shukla P, Li G, Mall
M, Rajarajan K, Abilez OJ, Hamaguchi R, Wu JC, Wernig M and Wu SM:
Partial reprogramming of pluripotent stem cell-derived
cardiomyocytes into neurons. Sci Rep. 7:448402017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo C, Lee QY, Wapinski O, Castanon R,
Nery JR, Mall M, Kareta MS, Cullen SM, Goodell MA, Chang HY, et al:
Global DNA methylation remodeling during direct reprogramming of
fibroblasts to neurons. Elife. 8:e401972019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Treutlein B, Lee QY, Camp JG, Mall M, Koh
W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M and Quake SR:
Dissecting direct reprogramming from fibroblast to neuron using
single-cell RNA-seq. Nature. 534:391–395. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhu X, Zhou W, Jin H and Li T: Brn2 alone
is sufficient to convert astrocytes into neural progenitors and
neurons. Stem Cells Dev. 27:736–744. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim SM, Kim JW, Kwak TH, Park SW, Kim KP,
Park H, Lim KT, Kang K, Kim J, Yang JH, et al: Generation of
integration-free induced neural stem cells from mouse fibroblasts.
J Biol Chem. 291:14199–14212. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kwak TH, Hali S, Kim S, Kim J, La H, Kim
KP, Hong KH, Shin CY, Kim NH and Han DW: Robust and reproducible
generation of induced neural stem cells from human somatic cells by
defined factors. Int J Stem Cells. 13:80–92. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Han DW, Tapia N, Hermann A, Hemmer K,
Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, et
al: Direct reprogramming of fibroblasts into neural stem cells by
defined factors. Cell Stem Cell. 10:465–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chang YK, Srivastava Y, Hu C, Joyce A,
Yang X, Zuo Z, Havranek JJ, Stormo GD and Jauch R: Quantitative
profiling of selective Sox/POU pairing on hundreds of sequences in
parallel by Coop-seq. Nucleic Acids Res. 45:832–845. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bar-Nur O, Verheul C, Sommer AG, Brumbaugh
J, Schwarz BA, Lipchina I, Huebner AJ, Mostoslavsky G and
Hochedlinger K: Lineage conversion induced by pluripotency factors
involves transient passage through an iPSC stage. Nat Biotechnol.
33:761–768. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Velychko S, Kang K, Kim SM, Kwak TH, Kim
KP, Park C, Hong K, Chung C, Hyun JK, MacCarthy CM, et al: Fusion
of reprogramming factors alters the trajectory of somatic lineage
conversion. Cell Rep. 27:30–39.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zou Q, Yan Q, Zhong J, Wang K, Sun H, Yi X
and Lai L: Direct conversion of human fibroblasts into neuronal
restricted progenitors. J Biol Chem. 289:5250–5260. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Potts MB, Siu JJ, Price JD, Salinas RD,
Cho MJ, Ramos AD, Hahn J, Margeta M, Oldham MC and Lim DA: Analysis
of Mll1 deficiency identifies neurogenic transcriptional modules
and Brn4 as a factor for direct astrocyte-to-neuron reprogramming.
Neurosurgery. 75:472–482. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yu Q, Chen J, Deng W, Cao X, Wang Y, Zhou
J, Xu W, Du P, Wang Q, Yu J and Xu X: Direct reprogramming of mouse
fibroblasts into neural cells via Porphyra yezoensis polysaccharide
based high efficient gene co-delivery. J Nanobiotechnology.
15:822017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Huffman JL and Harmer B: End of Life Care.
StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL:
2020
|
|
91
|
Faguet GB: Quality end-of-life cancer
care: An overdue imperative. Crit Rev Oncol Hematol. 108:69–72.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bhagirath D, Yang TL, Tabatabai ZL, Majid
S, Dahiya R, Tanaka Y and Saini S: BRN4 is a novel driver of
neuroendocrine differentiation in castration-resistant prostate
cancer and is selectively released in extracellular vesicles with
BRN2. Clin Cancer Res. 25:6532–6545. 2019. View Article : Google Scholar : PubMed/NCBI
|