Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2021 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor

  • Authors:
    • Yun Zhang
    • Guo-Xin Zhang
    • Li-Shuang Che
    • Shu-Han Shi
    • Yue-Ting Li
  • View Affiliations / Copyright

    Affiliations: Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China, Department of Geriatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 189
    |
    Published online on: January 6, 2021
       https://doi.org/10.3892/mmr.2021.11828
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Renal interstitial fibrosis is one of the common causes, and a major pathological basis for the development of various types of chronic progressive renal to end‑stage renal diseases. Therefore, it is important to clarify the underlying mechanisms of disease progression in order to develop effective strategies for the treatment and prevention of these pathologies. The aim of the present study was to investigate the association between microRNA (miR)‑212 expression and the development of renal interstitial fibrosis, as well as analyzing the role of miR‑212 in the disease. The expression of miR‑212 was significantly increased in the peripheral blood of patients with renal interstitial fibrosis and in the kidney tissues of unilateral ureteral obstruction (UUO) mice. Angiotensin (Ang) II, TGF‑β1 and hypoxia were found to increase the expression of miR‑212 and α smooth muscle actin (α‑SMA) in NRK49F cells. Ang II stimulation induced the expression of miR‑212 and α‑SMA in NRK49F cells, while transfection of miR‑212 mimics further upregulated the expression of α‑SMA. miR‑212 was also revealed to target hypoxia‑inducible factor 1α inhibitor (HIF1AN) and to upregulate the expression of hypoxia‑inducible factor 1α, α‑SMA, connective tissue growth factor, collagen α‑1(I) chain and collagen α‑1(III) chain, whereas HIF1AN overexpression reversed the regulatory effects of miR‑212. In UUO mice, miR‑212 overexpression promoted the progression of renal interstitial fibrosis, whereas inhibiting miR‑212 resulted in the opposite effect. These results indicated that high expression of miR‑212 was closely associated with the occurrence of renal interstitial fibrosis, and that miR‑212 may promote its development by targeting HIF1AN.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Perico N and Remuzzi G: Chronic kidney disease: A research and public health priority. Nephrol Dial Transplant. 27 (Suppl 3):iii19–iii26. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Lin Z, Gong Q, Zhou Z, Zhang W, Liao S, Liu Y, Yan X, Pan X, Lin S and Li X: Increased plasma CXCL16 levels in patients with chronic kidney diseases. Eur J Clin Invest. 41:836–845. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Grgic I, Duffield JS and Humphreys BD: The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 27:183–193. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Hayer MK, Price AM, Liu B, Baig S, Ferro CJ, Townend JN, Steeds RP and Edwards NC: Diffuse myocardial interstitial fibrosis and dysfunction in early chronic kidney disease. Am J Cardiol. 121:656–660. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Zhou TB, Qin YH, Lei FY, Huang WF and Drummen GPC: Prohibitin attenuates oxidative stress and extracellular matrix accumulation in renal interstitial fibrosis disease. PLoS One. 8:e771872013. View Article : Google Scholar : PubMed/NCBI

6 

Ghosh AK, Rai R, Flevaris P and Vaughan DE: Epigenetics in reactive and reparative cardiac fibrogenesis: The promise of epigenetic therapy. J Cell Physiol. 232:1941–1956. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Sun YB, Qu X, Caruana G and Li J: The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 92:102–107. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Jurkovicova D, Sedlakova B, Lacinova L, Kopacek J, Sulova Z, Sedlak J and Krizanova O: Hypoxia differently modulates gene expression of inositol 1,4,5-trisphosphate receptors in mouse kidney and HEK 293 cell line. Ann N Y Acad Sci. 1148:421–427. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Yang G, Cheng QL, Li CL, Jia YL, Yue W, Pei XT, Liu Y, Zhao JH, Du J and Ao QG: High glucose reduced the repair function of kidney stem cells conditional medium to the hypoxia-injured renal tubular epithelium cells. Beijing Da Xue Xue Bao Yi Xue Ban. 49:125–130. 2017.(In Chinese). PubMed/NCBI

10 

Bienholz A, Reis J, Sanli P, de Groot H, Petrat F, Guberina H, Wilde B, Witzke O, Saner FH, Kribben A, et al: Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol. 18:1302017. View Article : Google Scholar : PubMed/NCBI

11 

Cheng Z, Liu L, Wang Z, Cai Y, Xu Q and Chen P: Hypoxia activates src and promotes endocytosis which decreases MMP-2 activity and aggravates renal interstitial fibrosis. Int J Mol Sci. 19:5812018. View Article : Google Scholar

12 

Karakashev SV and Reginato MJ: Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Oncotarget. 6:1967–1980. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Xie J, Li DW, Chen XW, Wang F and Dong P: Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells. Oncol Lett. 6:232–238. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Qu K, Yan Z, Wu Y, Chen Y, Qu P, Xu X, Yuan P, Huang X, Xing J, Zhang H, et al: Transarterial chemoembolization aggravated peritumoral fibrosis via hypoxia-inducible factor-1α dependent pathway in hepatocellular carcinoma. J Gastroenterol Hepatol. 30:925–932. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, et al: Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol. 295:F1023–F1029. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Cao D, Hu L, Lei D, Fang X, Zhang Z, Wang T, Lin M, Huang J, Yang H, Zhou X and Zhong L: MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro. Biochem Biophys Res Commun. 457:1–6. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Yuan J, Xiao G, Peng G, Liu D, Wang Z, Liao Y, Liu Q, Wu M and Yuan X: MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun. 457:171–176. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Zhao N, Yu H, Yu H, Sun M, Zhang Y, Xu M and Gao W: MiRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction. Sci China Life Sci. 56:431–439. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Patil A, Sweeney WE, Pan CG and Avner ED: Unique interstitial miRNA signature drives fibrosis in a murine model of autosomal dominant polycystic kidney disease. World J Nephrol. 7:108–116. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S and Igarashi P: miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci USA. 110:10765–10770. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS and Liu BC: MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 305:F1220–F1227. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Castoldi G, Gioia C, Giollo F, Carletti R, Bombardi C, Antoniotti M, Roma F, Zerbini G and Stella A: Different regulation of miR-29a-3p in glomeruli and tubules in an experimental model of angiotensin II-dependent hypertension: Potential role in renal fibrosis. Clin Exp Pharmacol Physiol. 43:335–342. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Makni K, Jarraya F, Khabir A, Hentati B, Hmida MB, Makni H, Boudawara T, Jlidi R, Hachicha J and Ayadi H: Renal alpha-smooth muscle actin: A new prognostic factor for lupus nephritis. Nephrology (Carlton). 14:499–505. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Racca MA, Novoa PA, Rodríguez I, Vedova ABD, Pellizas CG, Demarchi M and Donadio AC: Renal dysfunction and intragraft proMMP9 activity in renal transplant recipients with interstitial fibrosis and tubular atrophy. Transpl Int. 28:71–78. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Chow BSM, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES, Widdop RE, Summers RJ, Bathgate RAD, Hewitson TD and Samuel CS: Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 86:75–85. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y and Liang M: MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics. 44:259–267. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Ben-Dov IZ, Muthukumar T, Morozov P, Mueller FB, Tuschl T and Suthanthiran M: MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 94:1086–1094. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Liu XJ, Hong Q, Wang Z, Yu YY, Zou X and Xu LH: MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: A potential role in renal fibrosis. Mol Cell Biochem. 411:181–189. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME and Kantharidis P: miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 60:280–287. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Liu Y, Taylor NE, Lu L, Usa K, Cowley AW Jr, Ferreri NR, Yeo NC and Liang M: Renal medullary microRNAs in Dahl salt-sensitive rats: MiR-29b regulates several collagens and related genes. Hypertension. 55:974–982. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Zhou H, Hasni SA, Perez P, Tandon M, Jang SI, Zheng C, Kopp JB, Austin H III, Balow JE, Alevizos I and Illei GG: miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol. 24:1073–1087. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Fang Y, Yu X, Liu Y, Kriegel AJ, Heng Y, Xu X, Liang M and Ding X: miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. Am J Physiol Renal Physiol. 304:F1274–F1282. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Mezzano SA, Aros CA, Droguett A, Burgos ME, Ardiles LG, Flores CA, Carpio D, Vío CP, Ruiz-Ortega M and Egido J: Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int Suppl. S39–S45. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Tunçdemir M, Demirkesen O, Oztürk M, Atukeren P, Gümüştaş MK and Turan T: Antiapoptotic effect of angiotensin-II type-1 receptor blockade in renal tubular cells of hyperoxaluric rats. Urol Res. 38:71–80. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Zhou L, Xue H, Yuan P, Ni J, Yu C, Huang Y and Lu LM: Angiotensin AT1 receptor activation mediates high glucose-induced epithelial-mesenchymal transition in renal proximal tubular cells. Clin Exp Pharmacol Physiol. 37:e152–e157. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Zeisberg M and Kalluri R: Physiology of the renal interstitium. Clin J Am Soc Nephrol. 10:1831–1840. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Mimura I, Tanaka T and Nangaku M: Novel therapeutic strategy with hypoxia-inducible factors via reversible epigenetic regulation mechanisms in progressive tubulointerstitial fibrosis. Semin Nephrol. 33:375–382. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Du R, Xia L, Ning X, Liu L, Sun W, Huang C, Wang H and Sun S: Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol Biol Cell. 25:2650–2659. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Zhang B, Liang X, Shi W, Ye Z, He C, Hu X and Liu S: Role of impaired peritubular capillary and hypoxia in progressive interstitial fibrosis after 56 subtotal nephrectomy of rats. Nephrology (Carlton). 10:351–357. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Baek KJ, Cho JY, Rosenthal P, Alexander LEC, Nizet V and Broide DH: Hypoxia potentiates allergen induction of HIF-1α, chemokines, airway inflammation, TGF-β1, and airway remodeling in a mouse model. Clin Immunol. 147:27–37. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Baumann B, Hayashida T, Liang X and Schnaper HW: Hypoxia-inducible factor-1α promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3. Kidney Int. 90:797–808. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Kushida N, Nomura S, Mimura I, Fujita T, Yamamoto S, Nangaku M and Aburatani H: Hypoxia-inducible factor-1α activates the transforming growth factor-β/SMAD3 pathway in kidney tubular epithelial cells. Am J Nephrol. 44:276–285. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Tang L, Yi R, Yang B, Li H, Chen H and Liu Z: Valsartan inhibited HIF-1α pathway and attenuated renal interstitial fibrosis in streptozotocin-diabetic rats. Diabetes Res Clin Pract. 97:125–131. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Ma C, Wei J, Zhan F, Wang R, Fu K, Wan X and Li Z: Urinary hypoxia-inducible factor-1alpha levels are associated with histologic chronicity changes and renal function in patients with lupus nephritis. Yonsei Med J. 53:587–592. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Matoba K, Kawanami D, Nagai Y, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T and Utsunomiya K: Rho-Kinase blockade attenuates podocyte apoptosis by inhibiting the notch signaling pathway in diabetic nephropathy. Int J Mol Sci. 18:17952017. View Article : Google Scholar

47 

Zhu Y, Tan J, Xie H, Wang J, Meng X and Wang R: HIF-1α regulates EMT via the Snail and β-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med. 20:688–697. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Higgins DF, Kimura K, Iwano M and Haase VH: Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle. 7:1128–1132. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Anorga S, Overstreet JM, Falke LL, Tang J, Goldschmeding RG, Higgins PJ and Samarakoon R: Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. FASEB J. 32:2644–2657. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Zhu B, Ma AQ, Yang L and Dang XM: Atorvastatin attenuates bleomycin-induced pulmonary fibrosis via suppressing iNOS expression and the CTGF (CCN2)/ERK signaling pathway. Int J Mol Sci. 14:24476–24491. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Montford JR and Furgeson SB: A new CTGF target in renal fibrosis. Kidney Int. 92:784–786. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Sun B, Xing CY, He WC, Wang NN, Yu XB, Zhao XF, Qian J, Yang JW, Liu J and Wang XY: Expression of connective tissue growth factor in renal interstitial fibrosis after ureteral obstruction and effects of rapamycin thereupon: Experiment with rats. Zhonghua Yi Xue Za Zhi. 87:562–566. 2007.(In Chinese). PubMed/NCBI

53 

Montgomery TA, Xu L, Mason S, Chinnadurai A, Lee CG, Elias JA and Cantley LG: Breast regression protein-39/chitinase 3-like 1 promotes renal fibrosis after kidney injury via activation of myofibroblasts. J Am Soc Nephrol. 28:3218–3226. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Wang Q, Peng Z, Xiao S, Geng S, Yuan J and Li Z: RNAi-mediated inhibition of COL1A1 and COL3A1 in human skin fibroblasts. Exp Dermatol. 16:611–617. 2010. View Article : Google Scholar

55 

Schauer SN, Sontakke SD, Watson ED, Esteves CL and Donadeu FX: Involvement of miRNAs in equine follicle development. Reproduction. 146:273–282. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Lin JF, Zeng H and Zhao JQ: MiR-212-5p regulates the proliferation and apoptosis of AML cells through targeting FZD5. Eur Rev Med Pharmacol Sci. 22:8415–8422. 2018.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Zhang G, Che L, Shi S and Li Y: miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Mol Med Rep 23: 189, 2021.
APA
Zhang, Y., Zhang, G., Che, L., Shi, S., & Li, Y. (2021). miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Molecular Medicine Reports, 23, 189. https://doi.org/10.3892/mmr.2021.11828
MLA
Zhang, Y., Zhang, G., Che, L., Shi, S., Li, Y."miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor". Molecular Medicine Reports 23.3 (2021): 189.
Chicago
Zhang, Y., Zhang, G., Che, L., Shi, S., Li, Y."miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor". Molecular Medicine Reports 23, no. 3 (2021): 189. https://doi.org/10.3892/mmr.2021.11828
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Zhang G, Che L, Shi S and Li Y: miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Mol Med Rep 23: 189, 2021.
APA
Zhang, Y., Zhang, G., Che, L., Shi, S., & Li, Y. (2021). miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Molecular Medicine Reports, 23, 189. https://doi.org/10.3892/mmr.2021.11828
MLA
Zhang, Y., Zhang, G., Che, L., Shi, S., Li, Y."miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor". Molecular Medicine Reports 23.3 (2021): 189.
Chicago
Zhang, Y., Zhang, G., Che, L., Shi, S., Li, Y."miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor". Molecular Medicine Reports 23, no. 3 (2021): 189. https://doi.org/10.3892/mmr.2021.11828
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team