|
1
|
Brose N, Brunger A, Cafiso D, Chapman ER,
Diao J, Hughson FM, Jackson MB, Jahn R, Lindau M, Ma C, et al:
Synaptic vesicle fusion: today and beyond. Nat Struct Mol Biol.
26:663–668. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Snead D and Eliezer D: Intrinsically
disordered proteins in synaptic vesicle trafficking and release. J
Biol Chem. 294:3325–3342. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ruete MC, Zarelli VEP, Masone D, de Paola
M, Bustos DM and Tomes CN: A connection between reversible tyrosine
phosphorylation and SNARE complex disassembly activity of
N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic
mutant N-ethylmaleimide-sensitive factor-Y83E. Mol Hum Reprod.
25:344–358. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bombardier JP and Munson M: Three steps
forward, two steps back: Mechanistic insights into the assembly and
disassembly of the SNARE complex. Curr Opin Chem Biol. 29:66–71.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kavanagh DM, Smyth AM, Martin KJ, Dun A,
Brown ER, Gordon S, Smillie KJ, Chamberlain LH, Wilson RS, Yang L,
et al: A molecular toggle after exocytosis sequesters the
presynaptic syntaxin1a molecules involved in prior vesicle fusion.
Nat Commun. 5:57742014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jorgačevski J and Zorec R: Munc18-1,
exocytotic fusion pore regulation and local membrane anisotropy.
Commun Integr Biol. 5:74–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Han GA, Malintan NT, Saw NM, Li L, Han L,
Meunier FA, Collins BM and Sugita S: Munc18-1 domain-1 controls
vesicle docking and secretion by interacting with syntaxin-1 and
chaperoning it to the plasma membrane. Mol Biol Cell. 22:4134–4149.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Graham ME, Prescott GR, Johnson JR, Jones
M, Walmesley A, Haynes LP, Morgan A, Burgoyne RD and Barclay JW:
Structure-function study of mammalian Munc18-1 and C.
elegans UNC-18 implicates domain 3b in the regulation of
exocytosis. PLoS One. 6:e179992011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rizo J and Südhof TC: The membrane fusion
enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty
as charged? Annu Rev Cell Dev Biol. 28:279–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pons-Vizcarra M, Kurps J, Tawfik B,
Sørensen JB, van Weering JRT and Verhage M: MUNC18-1 regulates the
submembrane F-actin network, independently of syntaxin1 targeting,
via hydrophobicity in β-sheet 10. J Cell Sci.
132:jcs2346742019.https://doi.org/10.1242/jcs.234674 View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hamdan FF, Piton A, Gauthier J, Lortie A,
Dubeau F, Dobrzeniecka S, Spiegelman D, Noreau A, Pellerin S, Côté
M, et al: De novo STXBP1 mutations in mental retardation and
nonsyndromic epilepsy. Ann Neurol. 65:748–753. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Deciphering Developmental Disorders Study:
Prevalence and architecture of de novo mutations in developmental
disorders. Nature. 542:433–438. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Weckhuysen S, Holmgren P, Hendrickx R,
Jansen AC, Hasaerts D, Dielman C, de Bellescize J, Boutry-Kryza N,
Lesca G, Von Spiczak S, et al: Reduction of seizure frequency after
epilepsy surgery in a patient with STXBP1 encephalopathy and
clinical description of six novel mutation carriers. Epilepsia.
54:e74–e80. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kovacevic J, Maroteaux G, Schut D, Loos M,
Dubey M, Pitsch J, Remmelink E, Koopmans B, Crowley J, Cornelisse
LN, et al: Protein instability, haploinsufficiency, and cortical
hyper-excitability underlie STXBP1 encephalopathy. Brain.
141:1350–1374. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eisemann TJ, Allen F, Lau K, Shimamura GR,
Jeffrey PD and Hughson FM: The Sec1/Munc18 protein Vps45 holds the
Qa-SNARE Tlg2 in an open conformation. eLife. 9:e607242020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee S, Shin J, Jung Y, Son H, Shin J,
Jeong C, Kweon DH and Shin YK: Munc18-1 induces conformational
changes of syntaxin-1 in multiple intermediates for SNARE assembly.
Sci Rep. 10:116232020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Romaniello R, Saettini F, Panzeri E,
Arrigoni F, Bassi MT and Borgatti R: A de-novo STXBP1 gene mutation
in a patient showing the Rett syndrome phenotype. Neuroreport.
26:254–257. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gil-Pisa I, Munarriz-Cuezva E,
Ramos-Miguel A, Urigüen L, Meana JJ and García-Sevilla JA:
Regulation of munc18-1 and syntaxin-1A interactive partners in
schizophrenia prefrontal cortex: Down-regulation of munc18-1a
isoform and 75 kDa SNARE complex after antipsychotic treatment. Int
J Neuropsychopharmacol. 15:573–588. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ramos-Miguel A, Beasley CL, Dwork AJ, Mann
JJ, Rosoklija G, Barr AM and Honer WG: Increased SNARE
Protein-Protein Interactions in Orbitofrontal and Anterior
Cingulate Cortices in Schizophrenia. Biological Psychiatry.
78:361–373. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhou P, Pang ZP, Yang X, Zhang Y,
Rosenmund C, Bacaj T and Südhof TC: Syntaxin-1 N-peptide and
Habc-domain perform distinct essential functions in synaptic
vesicle fusion. EMBO J. 32:159–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jiang X, Zhang Z, Cheng K, Wu Q, Jiang L,
Pielak GJ, Liu M and Li C: Membrane-mediated disorder-to-order
transition of SNAP25 flexible linker facilitates its interaction
with syntaxin-1 and SNARE-complex assembly. FASEB J. 33:7985–7994.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sitarska E, Xu J, Park S, Liu X, Quade B,
Stepien K, Sugita K, Brautigam CA, Sugita S and Rizo J:
Autoinhibition of Munc18-1 modulates synaptobrevin binding and
helps to enable Munc13-dependent regulation of membrane fusion.
eLife. 6:e242782017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S,
Orock A, Joo KM, Lőrincz A and Deák F: Dysregulation of the
SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic
neurotransmission: A novel interventional target to protect the
aging brain. Geroscience. 41:109–123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Peng Y, Lee J, Rowland K, Wen Y, Hua H,
Carlson N, Lavania S, Parrish JZ and Kim MD: Regulation of dendrite
growth and maintenance by exocytosis. J Cell Sci. 128:4279–4292.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
De Pittà M, Brunel N and Volterra A:
Astrocytes: Orchestrating synaptic plasticity? Neuroscience.
323:43–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lammertse HCA, van Berkel AA, Iacomino M,
Toonen RF, Striano P, Gambardella A, Verhage M and Zara F:
Homozygous STXBP1 variant causes encephalopathy and
gain-of-function in synaptic transmission. Brain. 143:441–451.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Meijer M, Cijsouw T, Toonen RF and Verhage
M: Synaptic effects of Munc18-1 alternative splicing in excitatory
hippocampal neurons. PLoS One. 10:e01389502015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Orock A, Logan S and Deak F: Munc18-1
haploinsufficiency impairs learning and memory by reduced synaptic
vesicular release in a model of Ohtahara syndrome. Mol Cell
Neurosci. 88:33–42. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang CC, Weyrer C, Paturu M, Fioravante D
and Regehr WG: Calcium-dependent protein kinase C is not required
for post-tetanic potentiation at the hippocampal CA3 to CA1
synapse. J Neurosci. 36:6393–6402. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Galván EJ, Cosgrove KE, Mauna JC, Card JP,
Thiels E, Meriney SD and Barrionuevo G: Critical involvement of
postsynaptic protein kinase activation in long-term potentiation at
hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci.
30:2844–2855. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Barclay JW, Craig TJ, Fisher RJ, Ciufo LF,
Evans GJ, Morgan A and Burgoyne RD: Phosphorylation of Munc18 by
protein kinase C regulates the kinetics of exocytosis. J Biol Chem.
278:10538–10545. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wierda KD, Toonen RF, de Wit H, Brussaard
AB and Verhage M: Interdependence of PKC-dependent and
PKC-independent pathways for presynaptic plasticity. Neuron.
54:275–290. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cijsouw T, Weber JP, Broeke JH, Broek JA,
Schut D, Kroon T, Saarloos I, Verhage M and Toonen RF: Munc18-1
redistributes in nerve terminals in an activity- and PKC-dependent
manner. J Cell Biol. 204:759–775. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
de Jong AP, Meijer M, Saarloos I,
Cornelisse LN, Toonen RF, Sørensen JB and Verhage M:
Phosphorylation of synaptotagmin-1 controls a post-priming step in
PKC-dependent presynaptic plasticity. Proc Natl Acad Sci USA.
113:5095–5100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Genc O, Kochubey O, Toonen RF, Verhage M
and Schneggenburger R: Munc18-1 is a dynamically regulated PKC
target during short-term enhancement of transmitter release. eLife.
3:e017152014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hamada N, Iwamoto I, Tabata H and Nagata
KI: MUNC18-1 gene abnormalities are involved in neurodevelopmental
disorders through defective cortical architecture during brain
development. Acta Neuropathol Commun. 5:922017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lang H, Ai Z, You Z, Wan Y, Guo W, Xiao J
and Jin X: Characterization of miR-218/322-Stxbp1 pathway in the
process of insulin secretion. J Mol Endocrinol. 54:65–73. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Oh E, Kalwat MA, Kim MJ, Verhage M and
Thurmond DC: Munc18-1 regulates first-phase insulin release by
promoting granule docking to multiple syntaxin isoforms. J Biol
Chem. 287:25821–25833. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cao L, Wang F, Yang QG, Jiang W, Wang C,
Chen YP and Chen GH: Reduced thyroid hormones with increased
hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment
during aging. Behav Brain Res. 229:131–137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cao L, Jiang W, Wang F, Yang QG, Wang C,
Chen YP and Chen GH: The reduced serum free triiodothyronine and
increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in
middle-aged CD-1 mice with mild spatial cognitive impairment. Brain
Res. 1540:9–20. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zevenbergen C, Groeneweg S, Swagemakers
SMA, de Jong A, Medici-Van den Herik E, Rispens M, Klootwijk W,
Medici M, de Rijke YB, Meima ME, et al: Functional analysis of
genetic variation in the SECIS element of thyroid hormone
activating type 2 deiodinase. J Clin Endocrinol Metab.
104:1369–1377. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Grone BP, Marchese M, Hamling KR, Kumar
MG, Krasniak CS, Sicca F, Santorelli FM, Patel M and Baraban SC:
Epilepsy, behavioral abnormalities, and physiological comorbidities
in syntaxin-binding protein 1 (STXBP1) mutant Zebrafish. PLoS One.
11:e01511482016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ortega-Moreno L, Giráldez BG, Verdú A,
García-Campos O, Sánchez-Martín G, Serratosa JM and Guerrero-López
R: Novel mutation in STXBP1 gene in a patient with non-lesional
Ohtahara syndrome. Neurologia. 31:523–527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dachtler J, Ivorra JL, Rowland TE, Lever
C, Rodgers RJ and Clapcote SJ: Heterozygous deletion of α-neurexin
I or α-neurexin II results in behaviors relevant to autism and
schizophrenia. Behav Neurosci. 129:765–776. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dachtler J, Glasper J, Cohen RN, Ivorra
JL, Swiffen DJ, Jackson AJ, Harte MK, Rodgers RJ and Clapcote SJ:
Deletion of α-neurexin II results in autism-related behaviors in
mice. Transl Psychiatry. 4:e4842014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Behan AT, Byrne C, Dunn MJ, Cagney G and
Cotter DR: Proteomic analysis of membrane microdomain-associated
proteins in the dorsolateral prefrontal cortex in schizophrenia and
bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1
protein expression. Mol Psychiatry. 14:601–613. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lanoue V, Chai YJ, Brouillet JZ,
Weckhuysen S, Palmer EE, Collins BM and Meunier FA: STXBP1
encephalopathy: Connecting neurodevelopmental disorders with
α-synucleinopathies? Neurology. 93:114–123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Linker RA, Brechlin P, Jesse S, Steinacker
P, Lee DH, Asif AR, Jahn O, Tumani H, Gold R and Otto M: Proteome
profiling in murine models of multiple sclerosis: Identification of
stage specific markers and culprits for tissue damage. PLoS One.
4:e76242009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Murphy S, Zweyer M, Henry M, Meleady P,
Mundegar RR, Swandulla D and Ohlendieck K: Label-free mass
spectrometric analysis reveals complex changes in the brain
proteome from the mdx-4cv mouse model of Duchenne muscular
dystrophy. Clin Proteomics. 12:272015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sleat DE, Tannous A, Sohar I, Wiseman JA,
Zheng H, Qian M, Zhao C, Xin W, Barone R, Sims KB, et al: Proteomic
analysis of brain and cerebrospinal fluid from the three major
forms of neuronal ceroid lipofuscinosis reveals potential
biomarkers. J Proteome Res. 16:3787–3804. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Scheffer IE, Berkovic S, Capovilla G,
Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW,
Moshé SL, et al: ILAE classification of the epilepsies: Position
paper of the ILAE Commission for Classification and Terminology.
Epilepsia. 58:512–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hunter MB, Yoong M, Sumpter RE, Verity K,
Shetty J, McLellan A, Jones J, Quigley A, Tallur KK and Chin RFM:
Neurobehavioral problems in children with early-onset epilepsy: A
population-based study. Epilepsy Behav. 93:87–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mercimek-Mahmutoglu S, Patel J, Cordeiro
D, Hewson S, Callen D, Donner EJ, Hahn CD, Kannu P, Kobayashi J,
Minassian BA, et al: Diagnostic yield of genetic testing in
epileptic encephalopathy in childhood. Epilepsia. 56:707–716. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu S, Wang L, Cai XT, Zhou H, Yu D and
Wang Z: Therapeutic benefits of ACTH and levetiracetam in STXBP1
encephalopathy with a de novo mutation: A case report and
literature review. Medicine (Baltimore). 97:e06632018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li T, Cheng M, Wang J, Hong S, Li M, Liao
S, Xie L and Jiang L: De novo mutations of STXBP1 in Chinese
children with early onset epileptic encephalopathy. Genes Brain
Behav. 17:e124922018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stamberger H, Weckhuysen S and De Jonghe
P: STXBP1 as a therapeutic target for epileptic encephalopathy.
Expert Opin Ther Targets. 21:1027–1036. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dilena R, Striano P, Traverso M, Viri M,
Cristofori G, Tadini L, Barbieri S, Romeo A and Zara F: Dramatic
effect of levetiracetam in early-onset epileptic encephalopathy due
to STXBP1 mutation. Brain Dev. 38:128–131. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Saitsu H, Kato M, Mizuguchi T, Hamada K,
Osaka H, Tohyama J, Uruno K, Kumada S, Nishiyama K, Nishimura A, et
al: De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause
early infantile epileptic encephalopathy. Nat Genet. 40:782–788.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee S, Kim SH, Kim B, Lee ST, Choi JR, Kim
HD, Lee JS and Kang HC: Genetic diagnosis and clinical
characteristics by etiological classification in early-onset
epileptic encephalopathy with burst suppression pattern. Epilepsy
Res. 163:1063232020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mitta N, Menon RN, McTague A,
Radhakrishnan A, Sundaram S, Cherian A, Madhavilatha GK, Mannan AU,
Nampoothiri S and Thomas SV: Genotype-phenotype correlates of
infantile-onset developmental & epileptic encephalopathy
syndromes in South India: A single centre experience. Epilepsy Res.
166:1063982020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Di Meglio C, Lesca G, Villeneuve N,
Lacoste C, Abidi A, Cacciagli P, Altuzarra C, Roubertie A, Afenjar
A, Renaldo-Robin F, et al: Epileptic patients with de novo STXBP1
mutations: Key clinical features based on 24 cases. Epilepsia.
56:1931–1940. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Otsuka M, Oguni H, Liang JS, Ikeda H, Imai
K, Hirasawa K, Imai K, Tachikawa E, Shimojima K, Osawa M, et al:
STXBP1 mutations cause not only Ohtahara syndrome but also West
syndrome--result of Japanese cohort study. Epilepsia. 51:2449–2452.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Boutry-Kryza N, Labalme A, Ville D, de
Bellescize J, Touraine R, Prieur F, Dimassi S, Poulat AL, Till M,
Rossi M, et al: Molecular characterization of a cohort of 73
patients with infantile spasms syndrome. Eur J Med Genet. 58:51–58.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Steel D, Symonds JD, Zuberi SM and
Brunklaus A: Dravet syndrome and its mimics: Beyond SCN1A.
Epilepsia. 58:1807–1816. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mastrangelo M: Lennox-Gastaut Syndrome: A
state of the art review. Neuropediatrics. 48:143–151. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yuge K, Iwama K, Yonee C, Matsufuji M,
Sano N, Saikusa T, Yae Y, Yamashita Y, Mizuguchi T, Matsumoto N, et
al: A novel STXBP1 mutation causes typical Rett syndrome in a
Japanese girl. Brain Dev. 40:493–497. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li J, Lin X, Wang M, Hu Y, Xue K, Gu S, Lv
L, Huang S and Xie W: Potential role of genomic imprinted genes and
brain developmental related genes in autism. BMC Med Genomics.
13:542020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stamberger H, Nikanorova M, Willemsen MH,
Accorsi P, Angriman M, Baier H, Benkel-Herrenbrueck I, Benoit V,
Budetta M, Caliebe A, et al: STXBP1 encephalopathy: A
neurodevelopmental disorder including epilepsy. Neurology.
86:954–962. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang YH, Yuen RK, Jin X, Wang M, Chen N,
Wu X, Ju J, Mei J, Shi Y, He M, et al: Detection of clinically
relevant genetic variants in autism spectrum disorder by
whole-genome sequencing. Am J Hum Genet. 93:249–263. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dudanova I, Tabuchi K, Rohlmann A, Südhof
TC and Missler M: Deletion of α-neurexins does not cause a major
impairment of axonal pathfinding or synapse formation. J Comp
Neurol. 502:261–274. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Toonen RF, Wierda K, Sons MS, de Wit H,
Cornelisse LN, Brussaard A, Plomp JJ and Verhage M: Munc18-1
expression levels control synapse recovery by regulating readily
releasable pool size. Proc Natl Acad Sci USA. 103:18332–18337.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
7Chamma I, Sainlos M and Thoumine O:
Biophysical mechanisms underlying the membrane trafficking of
synaptic adhesion molecules. Neuropharmacology. 169:1075552020.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Miyamoto H, Shimohata A, Abe M, Abe T,
Mazaki E, Amano K, Suzuki T, Tatsukawa T, Itohara S, Sakimura K, et
al: Potentiation of excitatory synaptic transmission ameliorates
aggression in mice with Stxbp1 haploinsufficiency. Hum Mol Genet.
26:4961–4974. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Valton V, Romaniuk L, Douglas Steele J,
Lawrie S and Seriès P: Comprehensive review: Computational
modelling of schizophrenia. Neurosci Biobehav Rev. 83:631–646.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Urigüen L, Gil-Pisa I, Munarriz-Cuezva E,
Berrocoso E, Pascau J, Soto-Montenegro ML, Gutiérrez-Adán A,
Pintado B, Madrigal JL, Castro E, et al: Behavioral, neurochemical
and morphological changes induced by the overexpression of
munc18-1a in brain of mice: Relevance to schizophrenia. Transl
Psychiatry. 3:e2212013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim ST, Moon W, Chae Y, Kim YJ, Lee H and
Park HJ: The effect of electroaucpuncture for
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced proteomic
changes in the mouse striatum. J Physiol Sci. 60:27–34. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Burré J, Sharma M and Südhof TC: Cell
biology and pathophysiology of α-synuclein. Cold Spring Harb
Perspect Med. 8:a0240912018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lanoue V, Chai YJ, Brouillet JZ,
Weckhuysen S, Palmer EE, Collins BM and Meunier FA: STXBP1
encephalopathy: Connecting neurodevelopmental disorders with
alpha-synucleinopathies? Neurology. 93:114–123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang CC, Chiu TY, Lee TY, Hsieh HJ, Lin
CC and Kao LS: Soluble α-synuclein facilitates priming and fusion
by releasing Ca2+ from the thapsigargin-sensitive
Ca2+ pool in PC12 cells. J Cell Sci.
131:jcs2130172018.https://doi.org/10.1242/jcs.213017 View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chai YJ, Sierecki E, Tomatis VM, Gormal
RS, Giles N, Morrow IC, Xia D, Götz J, Parton RG, Collins BM, et
al: Munc18-1 is a molecular chaperone for α-synuclein, controlling
its self-replicating aggregation. J Cell Biol. 214:705–718. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Braidy N, Essa MM, Poljak A, Selvaraju S,
Al-Adawi S, Manivasagm T, Thenmozhi AJ, Ooi L, Sachdev P and
Guillemin GJ: Consumption of pomegranates improves synaptic
function in a transgenic mice model of Alzheimer's disease.
Oncotarget. 7:64589–64604. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ramos-Miguel A, Hercher C, Beasley CL,
Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA
and Honer WG: Loss of Munc18-1 long splice variant in GABAergic
terminals is associated with cognitive decline and increased risk
of dementia in a community sample. Mol Neurodegener. 10:652015.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liu X, Hao W, Qin Y, Decker Y, Wang X,
Burkart M, Schötz K, Menger MD, Fassbender K and Liu Y: Long-term
treatment with Ginkgo biloba extract EGb 761 improves
symptoms and pathology in a transgenic mouse model of Alzheimer's
disease. Brain Behav Immun. 46:121–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Donovan LE, Higginbotham L, Dammer EB,
Gearing M, Rees HD, Xia Q, Duong DM, Seyfried NT, Lah JJ and Levey
AI: Analysis of a membrane-enriched proteome from postmortem human
brain tissue in Alzheimer's disease. Proteomics Clin Appl.
6:201–211. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Miyamoto N, Maki T, Shindo A, Liang AC,
Maeda M, Egawa N, Itoh K, Lo EK, Lok J, Ihara M, et al: Astrocytes
promote oligodendrogenesis after white matter damage via
brain-derived neurotrophic factor. J Neurosci. 35:14002–14008.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Deiva K: Pediatric onset multiple
sclerosis. Rev Neurol (Paris). 176:30–36. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Werner P, Pitt D and Raine CS: Glutamate
excitotoxicity--a mechanism for axonal damage and oligodendrocyte
death in Multiple Sclerosis? J Neural Transm Suppl. 60:375–385.
2000.
|
|
88
|
Doorenweerd N, Dumas EM, Ghariq E, Schmid
S, Straathof CS, Roest AA, Wokke BH, van Zwet EW, Webb AG,
Hendriksen JG, et al: Decreased cerebral perfusion in Duchenne
muscular dystrophy patients. Neuromuscul Disord. 27:29–37. 2017.
View Article : Google Scholar : PubMed/NCBI
|