Open Access

N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice

  • Authors:
    • Xin Fang
    • Lihua Liu
    • Shaoqiong Zhou
    • Mengen Zhu
    • Bin Wang
  • View Affiliations

  • Published online on: January 13, 2021     https://doi.org/10.3892/mmr.2021.11840
  • Article Number: 201
  • Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In diabetic animal models, high plasma/tissue levels of methylglyoxal (MG) are implicated in atherosclerosis. N‑acetylcysteine (NAC) is a cysteine prodrug that replenishes intracellular glutathione (GSH) levels, which can increase the elimination of MG in diabetes mellitus (DM). The present study investigated the anti‑atherosclerotic role of NAC in DM and aimed to determine whether the mechanism involved GSH‑dependent MG elimination in the aorta. Apolipoprotein‑E knockdown (ApoE‑/‑) mice injected with streptozotocin for 5 days exhibited enhanced atherosclerotic plaque size in the aortic root; notably, a high‑lipid diet aggravated this alteration. NAC treatment in the drinking water for 12 weeks decreased the size of the atherosclerotic lesion, which was associated with a reduction in MG‑dicarbonyl stress and oxidative stress, as indicated by decreased serum malondialdehyde levels, and increased superoxide dismutase‑1 and glutathione peroxidase‑1 levels in the diabetic aorta. Endothelial damage was also corrected by NAC, as indicated by an increase in the expression levels of phosphorylated (p‑)Akt and p‑endothelial nitric oxide synthase (eNOS) in the aorta, as well as nitric oxide (NO) in the serum. In addition, MG‑treated human umbilical vein endothelial cells (HUVECs) exhibited increased reactive oxygen species and decreased antioxidant enzyme expression levels. NAC treatment corrected the alteration in HUVECs induced by MG, whereas the protective role of NAC was blocked via inhibition of GSH. These findings indicated that the diabetic aorta was more susceptible to atherosclerotic lesions compared with non‑diabetic ApoE‑/‑ mice. Furthermore, NAC may offer protection against atherosclerotic development in DM by altering aortic and systemic responses via correcting GSH‑dependent MG elimination, leading to decreased oxidative stress and restoration of the p‑Akt/p‑eNOS pathway in the aorta.

Related Articles

Journal Cover

March-2021
Volume 23 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Fang X, Liu L, Zhou S, Zhu M and Wang B: N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice. Mol Med Rep 23: 201, 2021
APA
Fang, X., Liu, L., Zhou, S., Zhu, M., & Wang, B. (2021). N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice. Molecular Medicine Reports, 23, 201. https://doi.org/10.3892/mmr.2021.11840
MLA
Fang, X., Liu, L., Zhou, S., Zhu, M., Wang, B."N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice". Molecular Medicine Reports 23.3 (2021): 201.
Chicago
Fang, X., Liu, L., Zhou, S., Zhu, M., Wang, B."N‑acetylcysteine inhibits atherosclerosis by correcting glutathione‑dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice". Molecular Medicine Reports 23, no. 3 (2021): 201. https://doi.org/10.3892/mmr.2021.11840