|
1
|
Seccia TM, Caroccia B and Calò LA:
Hypertensive nephropathy. Moving from classic to emerging
pathogenetic mechanisms. J Hypertens. 35:205–212. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hart PD and Bakris GL: Hypertensive
nephropathy: Prevention and treatment recommendations. Expert Opin
Pharmacother. 11:2675–2686. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Damkjær M, Isaksson GL, Stubbe J, Jensen
BL, Assersen K and Bie P: Renal renin secretion as regulator of
body fluid homeostasis. Pflugers Arch. 465:153–165. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Huang QF, Hoshide S, Cheng HM, Park S,
Park CG, Chen CH, Kario K and Wang JG; Characteristics On the
Management of Hypertension in Asia-Morning Hypertension Discussion
Group(COME Asia MHDG), : Management of hypertension in patients
with chronic kidney disease in Asia. Curr Hypertens Rev.
12:181–185. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lu X and Crowley SD: Inflammation in
salt-sensitive hypertension and renal damage. Curr Hypertens Rep.
20:1032018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Guan Z, Makled MN and Inscho EW:
Purinoceptors, renal microvascular function and hypertension.
Physiol Res. 69:353–369. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Freedman BI and Cohen AH:
Hypertension-attributed nephropathy: What's in a name? Nat Rev
Nephrol. 12:27–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kandasamy Y, Watson D and Rudd D:
Biomarker of early glomerular injury in pre-eclampsia. Hypertens
Pregnancy. 34:391–399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Meier P: Atherosclerotic renal artery
stenosis: Update on management strategies. Curr Opin Cardiol.
26:463–471. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rodriguez-Iturbe B and Johnson RJ: The
role of renal microvascular disease and interstitial inflammation
in salt-sensitive hypertension. Hypertens Res. 33:975–980. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Textor SC and Lerman L: Renovascular
hypertension and ischemic nephropathy. Am J Hypertens.
23:1159–1169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Udani S, Lazich I and Bakris GL:
Epidemiology of hypertensive kidney disease. Nat Rev Nephrol.
7:11–21. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sun HJ: current opinion for hypertension
in renal fibrosis. Adv Exp Med Biol. 1165:37–47. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xie X, Atkins E, Lv J, Bennett A, Neal B,
Ninomiya T, Woodward M, MacMahon S, Turnbull F, Hillis GS, et al:
Effects of intensive blood pressure lowering on cardiovascular and
renal outcomes: Updated systematic review and meta-analysis.
Lancet. 387:435–443. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Romero CA and Carretero OA:
Tubule-vascular feedback in renal autoregulation. Am J Physiol
Renal Physiol. 316:F1218–F1226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Satou R, Shao W and Navar LG: Role of
stimulated intrarenal angiotensinogen in hypertension. Ther Adv
Cardiovasc Dis. 9:181–190. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lau WL, Huisa BN and Fisher M: the
cerebrovascular-chronic kidney disease connection: Perspectives and
mechanisms. Transl Stroke Res. 8:67–76. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ihm CG: Hypertension in chronic
glomerulonephritis. Electrolyte Blood Press. 13:41–45. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hughson MD, Puelles VG, Hoy WE,
Douglas-Denton RN, Mott SA and Bertram JF: Hypertension, glomerular
hypertrophy and nephrosclerosis: The effect of race. Nephrol Dial
Transplant. 29:1399–1409. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
D'Elia JA, Bayliss G, Gleason RE and
Weinrauch LA: Cardiovascular-renal complications and the possible
role of plasminogen activator inhibitor: A review. Clin Kidney J.
9:705–712. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Simeoni M, Armeni A, Summaria C,
Cerantonio A and Fuiano G: Current evidence on the use of anti-RAAS
agents in congenital or acquired solitary kidney. Ren Fail.
39:660–670. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Campese VM, Mitra N and Sandee D:
Hypertension in renal parenchymal disease: Why is it so resistant
to treatment? Kidney Int. 69:967–973. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heyman SN, Khamaisi M, Rosen S and
Rosenberger C: Renal parenchymal hypoxia, hypoxia response and the
progression of chronic kidney disease. Am J Nephrol. 28:998–1006.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lerman LO, Textor SC and Grande JP:
Mechanisms of tissue injury in renal artery stenosis: Ischemia and
beyond. Prog Cardiovasc Dis. 52:196–203. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zeng Y, Wang X, Xie F and Zheng Z:
Ischemia-induced glomerular parietal epithelial cells hyperplasia:
Commonly misdiagnosed cellular crescent in renal biopsy. Pathol Res
Pract. 213:982–986. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nicolosi PA, Tombetti E, Maugeri N,
Rovere-Querini P, Brunelli S and Manfredi AA: Vascular remodelling
and mesenchymal transition in systemic sclerosis. Stem Cells Int.
2016:46368592016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rodriguez-Iturbe B, Pons H and Johnson RJ:
Role of the immune system in hypertension. Physiol Rev.
97:1127–1164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Frame AA and Wainford RD: Mechanisms of
altered renal sodium handling in age-related hypertension. Am J
Physiol Renal Physiol. 315:F1–F6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang C, Booz GW, Yu Q, He X, Wang S and
Fan F: Conflicting roles of 20-HETE in hypertension and renal end
organ damage. Eur J Pharmacol. 833:190–200. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff
D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S and
Ocaranza MP: ACE2 and vasoactive peptides: Novel players in
cardiovascular/renal remodeling and hypertension. Ther Adv
Cardiovasc Dis. 9:217–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Laurent S and Boutouyrie P: The structural
factor of hypertension: Large and small artery alterations. Circ
Res. 116:1007–1021. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Miyagawa K and Emoto N: Current state of
endothelin receptor antagonism in hypertension and pulmonary
hypertension. Ther Adv Cardiovasc Dis. 8:202–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Povlsen AL, Grimm D, Wehland M, Infanger M
and Krüger M: The vasoactive mas receptor in essential
hypertension. J Clin Med. 9:2672020. View Article : Google Scholar
|
|
34
|
Tracy RE: Renal vasculature in essential
hypertension: A review of some contrarian evidence. Contrib
Nephrol. 169:327–336. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brown IAM, Diederich L, Good ME, DeLalio
LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH and Isakson BE:
Vascular smooth muscle remodeling in conductive and resistance
arteries in hypertension. Arterioscler Thromb Vasc Biol.
38:1969–1985. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li Q, Youn JY and Cai H: Mechanisms and
consequences of endothelial nitric oxide synthase dysfunction in
hypertension. J Hypertens. 33:1128–1136. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu M, Lu YP, Hasan AA and Hocher B: Plasma
ET-1 concentrations are elevated in patients with
hypertension-meta-analysis of clinical studies. Kidney Blood Press
Res. 42:304–313. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Versmissen J, Mirabito Colafella KM,
Koolen SLW and Danser AHJ: Vascular cardio-oncology: Vascular
endothelial growth factor inhibitors and hypertension. Cardiovasc
Res. 115:904–914. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu J, Agbor LN, Fang S, Mukohda M, Nair
AR, Nakagawa P, Sharma A, Morgan DA, Grobe JL, Rahmouni K, et al:
Failure to vasodilate in response to salt loading blunts renal
blood flow and causes salt-sensitive hypertension. Cardiovasc Res.
117:308–319. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hill GS: Hypertensive nephrosclerosis.
Curr Opin Nephrol Hypertens. 17:266–270. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang L, Yang L, Shergis J, Zhang L, Zhang
AL, Guo X, Qin X, Johnson D, Liu X, Lu C, et al: Chinese herbal
medicine for diabetic kidney disease: A systematic review and
meta-analysis of randomised placebo-controlled trials. BMJ Open.
9:e0256532019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ren W, Liao J, Chen J, Li Z and Huang L:
The effect of Chinese herbal medicine combined with western
medicine on vascular endothelial function for patients with
hypertension: Protocol for a systematic review and meta-analysis.
Medicine (Baltimore). 98:e181342019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang J, Qin T, Chen J, Li Y, Wang L, Huang
H and Li J: Hyperuricemia and risk of incident hypertension: A
systematic review and meta-analysis of observational studies. PLoS
One. 9:e1142592014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gao X, Peleli M, Zollbrecht C, Patzak A,
Persson AE and Carlström M: Adenosine A1 receptor-dependent and
independent pathways in modulating renal vascular responses to
angiotensin II. Acta Physiol (Oxf). 213:268–276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pojoga LH, Yao TM, Opsasnick LA, Siddiqui
WT, Reslan OM, Adler GK, Williams GH and Khalil RA: Cooperative
role of mineralocorticoid receptor and caveolin-1 in regulating the
vascular response to low nitric oxide-high angiotensin II-induced
cardiovascular injury. J Pharmacol Exp Ther. 355:32–47. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yu D, Shi M, Bao J, Yu X, Li Y and Liu W:
Genipin ameliorates hypertension-induced renal damage via the
angiotensin II-TLR/MyD88/MAPK pathway. Fitoterapia. 112:244–253.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang SF, Mao XJ, Jiang WM and Fang ZY:
Qian Yang Yu Yin Granule protects against hypertension-induced
renal injury by epigenetic mechanism linked to nicotinamide
N-methyltransferase (NNMT) expression. J Ethnopharmacol.
255:1127382020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Han L, Ma Y, Qin JG, Li LN, Gao YS, Zhang
XY, Guo Y, Song LM, Luo YN and Chi XY: The renal protective effect
of Jiangya tongluo formula, through regulation of adrenomedullin
and angiotensin II, in rats with hypertensive nephrosclerosis. Evid
Based Complement Alternat Med. 2015:4281062015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tian D, Ling S, Chen G, Li Y, Liu J, Ferid
M and Bian K: Hypertensive nephropathy treatment by
heart-protecting musk pill: A study of anti-inflammatory therapy
for target organ damage of hypertension. Int J Gen Med. 4:131–139.
2011.PubMed/NCBI
|
|
50
|
Chen YH, Lei SS, Li B, Luo R, He X, Wang
YZ, Zhou FC, Lv GY and Chen SH: Systematic understanding of the
mechanisms of flos chrysanthemi indici-mediated effects on
hypertension via computational target fishing. Comb Chem High
Throughput Screen. 23:92–110. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Limón RI, Peñas E, Martínez-Villaluenga C
and Frias J: Role of elicitation on the health-promoting properties
of kidney bean sprouts. LWT Food Sci Technol. 56:328–334. 2014.
View Article : Google Scholar
|
|
52
|
Chen H, Wang MC, Chen YY, Chen L, Wang YN,
Vaziri ND, Miao H and Zhao YY: Alisol B 23-acetate attenuates CKD
progression by regulating the renin-angiotensin system and
gut-kidney axis. Ther Adv Chronic Dis. 11:20406223209200252020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen L, Chen DQ, Wang M, Liu D, Chen H,
Dou F, Vaziri ND and Zhao YY: Role of RAS/Wnt/β-catenin axis
activation in the pathogenesis of podocyte injury and
tubulo-interstitial nephropathy. Chem Biol Interact. 273:56–72.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang M, Chen DQ, Wang MC, Chen H, Chen L,
Liu D, Zhao H and Zhao YY: Poricoic acid ZA, a novel RAS inhibitor,
attenuates tubulo-interstitial fibrosis and podocyte injury by
inhibiting TGF-β/Smad signaling pathway. Phytomedicine. 36:243–253.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang M, Chen DQ, Chen L, Liu D, Zhao H,
Zhang ZH, Vaziri ND, Guo Y, Zhao YY and Cao G: Novel RAS inhibitors
poricoic acid ZG and poricoic acid ZH attenuate renal fibrosis via
a Wnt/β-catenin pathway and targeted phosphorylation of Smad3
signaling. J Agric Food Chem. 66:1828–1842. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang M, Chen DQ, Chen L, Cao G, Zhao H,
Liu D, Vaziri ND, Guo Y and Zhao YY: Novel inhibitors of the
cellular renin-angiotensin system components, poricoic acids,
target Smad3 phosphorylation and Wnt/β-catenin pathway against
renal fibrosis. Br J Pharmacol. 175:2689–2708. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen H, Yang T, Wang MC, Chen DQ, Yang Y
and Zhao YY: Novel RAS inhibitor 25-O-methylalisol F attenuates
epithelial-to-mesenchymal transition and tubulo-interstitial
fibrosis by selectively inhibiting TGF-β-mediated Smad3
phosphorylation. Phytomedicine. 42:207–218. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang CC, Gu WL, Wu XM, Li YM, Chen CX and
Huang XY: Active components from Radix scrophulariae
inhibits the ventricular remodeling induced by hypertension in
rats. Springerplus. 5:3582016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lian FZ, Cheng P, Ruan CS, Ling XX, Wang
XY, Pan M, Chen ML, Shen AZ and Gao S: Xin-Ji-Er-Kang ameliorates
kidney injury following myocardial infarction by inhibiting
oxidative stress via Nrf2/HO-1 pathway in rats. Biomed
Pharmacother. 117:1091242019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang T, Chen YY, Liu JR, Zhao H, Vaziri
ND, Guo Y and Zhao YY: Natural products against renin-angiotensin
system for antifibrosis therapy. Eur J Med Chem. 179:623–633. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Deng YF, Aluko RE, Jin Q, Zhang Y and Yuan
LJ: Inhibitory activities of baicalin against renin and
angiotensin-converting enzyme. Pharm Biol. 50:401–406. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lv GY, Zhang YP, Gao JL, Yu JJ, Lei J,
Zhang ZR, Li B, Zhan RJ and Chen SH: Combined antihypertensive
effect of luteolin and buddleoside enriched extracts in
spontaneously hypertensive rats. J Ethnopharmacol. 150:507–513.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhao YY, Li HT, Feng YL, Bai X and Lin RC:
Urinary metabonomic study of the surface layer of Poria
cocos as an effective treatment for chronic renal injury in
rats. J Ethnopharmacol. 148:403–410. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zheng X, Wang S, Zou X, Jing Y, Yang R, Li
S and Wang F: Ginsenoside Rb1 improves cardiac function and
remodeling in heart failure. Exp Anim. 66:217–228. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kaiser S, Carvalho ÂR, Pittol V, Dietrich
F, Manica F, Machado MM, de Oliveira LF, Oliveira Battastini AM and
Ortega GG: Genotoxicity and cytotoxicity of oxindole alkaloids from
Uncaria tomentosa (cat's claw): Chemotype relevance. J
Ethnopharmacol. 189:90–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang RH, Liu ZK, Yang DS, Zhang XJ, Sun
HD and Xiao WL: Phytochemistry and pharmacology of the genus
leonurus: The herb to benefit the mothers and more. Phytochemistry.
147:167–183. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rossi GP, Seccia TM, Barton M, Danser AHJ,
de Leeuw PW, Dhaun N, Rizzoni D, Rossignol P, Ruilope LM, van den
Meiracker AH, et al: Endothelial factors in the pathogenesis and
treatment of chronic kidney disease part I: General mechanisms: A
joint consensus statement from the European society of hypertension
working group on endothelin and endothelial factors and the
Japanese society of hypertension. J Hypertens. 36:451–461. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Brusilovskaya K, Königshofer P, Schwabl P
and Reiberger T: Vascular targets for the treatment of portal
hypertension. Semin Liver Dis. 39:483–501. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Westfall TC, Macarthur H, Byku M, Yang CL
and Murray J: Interactions of neuropeptide y, catecholamines, and
angiotensin at the vascular neuroeffector junction. Adv Pharmacol.
68:115–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhu X, Zhou Z, Zhang Q, Cai W, Zhou Y, Sun
H and Qiu L: Vaccarin administration ameliorates hypertension and
cardiovascular remodeling in renovascular hypertensive rats. J Cell
Biochem. 119:926–937. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jiang P, Ma D, Wang X, Wang Y, Bi Y, Yang
J, Wang X and Li X: Astragaloside IV prevents obesity-associated
hypertension by improving pro-inflammatory reaction and leptin
resistance. Mol Cells. 41:244–255. 2018.PubMed/NCBI
|
|
72
|
Wang YC, Ma DF, Jiang P, Zhang YM, Zhou
GF, Yang JL, Li ZY and Li X: Guizhi decoction () inhibits
cholinergic transdifferentiation by regulating imbalance of NGF and
LIF in salt-sensitive hypertensive heart failure rats. Chin J
Integr Med. 26:188–196. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xiong W, He FF, You RY, Xiong J, Wang YM,
Zhang C, Meng XF and Su H: Acupuncture application in chronic
kidney disease and its potential mechanisms. Am J Chin Med.
46:1169–1185. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Paterno JC, Bergamaschi CT, Campos RR,
Higa EM, Soares MF, Schor N, Freire AO and Teixeira VP:
Electroacupuncture and moxibustion decrease renal sympathetic nerve
activity and retard progression of renal disease in rats. Kidney
Blood Press Res. 35:355–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang JW, Ye Y, Wang XR, Li F, Xiao LY, Shi
GX and Liu CZ: Acupuncture attenuates renal sympathetic activity
and blood pressure via beta-adrenergic receptors in spontaneously
hypertensive rats. Neural Plast. 2017:86964022017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mennuni S, Rubattu S, Pierelli G, Tocci G,
Fofi C and Volpe M: Hypertension and kidneys: Unraveling complex
molecular mechanisms underlying hypertensive renal damage. J Hum
Hypertens. 28:74–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Crowley SD: The cooperative roles of
inflammation and oxidative stress in the pathogenesis of
hypertension. Antioxid Redox Signal. 20:102–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang J, An SJ, Fu JQ, Liu P, Shao TM, Li
M, Li X, Jiao Z and Chai XQ: Mixed aqueous extract of Salvia
miltiorrhiza reduces blood pressure through inhibition of
vascular remodelling and oxidative stress in spontaneously
hypertensive rats. Cell Physiol Biochem. 40:347–360. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li Y, Huang C, Fu W, Zhang H, Lao Y, Zhou
H, Tan H and Xu H: Screening of the active fractions from the
Coreopsis tinctoria nutt. Flower on diabetic endothelial
protection and determination of the underlying mechanism. J
Ethnopharmacol. 253:1126452020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Teles F, da Silva TM, da Cruz Júnior FP,
Honorato VH, de Oliveira Costa H, Barbosa AP, de Oliveira SG,
Porfírio Z, Libório AB, Borges RL and Fanelli C: Brazilian red
propolis attenuates hypertension and renal damage in 5/6 renal
ablation model. PLoS One. 10:e01165352015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Guo H, Kuang Z, Zhang J, Zhao X, Pu P and
Yan J: The preventive effect of Apocynum venetum polyphenols
on D-galactose-induced oxidative stress in mice. Exp Ther Med.
19:557–568. 2020.PubMed/NCBI
|
|
82
|
Moodley K, Naidoo Y and Mackraj I: Effects
of Tulbaghia violacea Harv. (Alliaceae) rhizome methanolic
extract on kidney function and morphology in Dahl salt-sensitive
rats. J Ethnopharmacol. 155:1194–1203. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hamza SM and Dyck JR: Systemic and renal
oxidative stress in the pathogenesis of hypertension: Modulation of
long-term control of arterial blood pressure by resveratrol. Front
Physiol. 5:2922014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhu J, Zhang Y and Yang C: Protective
effect of 3-n-butylphthalide against hypertensive nephropathy in
spontaneously hypertensive rats. Mol Med Rep. 11:1448–1454. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lin F, Huang X, Xing F, Xu L, Zhang W,
Chen Z, Ke X, Song Y and Zeng Z: Semen brassicae reduces thoracic
aortic remodeling, inflammation, and oxidative damage in
spontaneously hypertensive rats. Biomed Pharmacother.
129:1104002020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gai Z, Wang Z, Zhang L, Ma J and Zhu Q:
Paeonol protects against hypertension in spontaneously hypertensive
rats by restoring vascular endothelium. Biosci Biotechnol Biochem.
83:1992–1999. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lu H, Yao H, Zou R, Chen X and Xu H:
Galangin suppresses renal inflammation via the inhibition of NF-κB,
PI3K/AKT and NLRP3 in uric acid treated NRK-52E tubular epithelial
cells. Biomed Res Int. 2019:30183572019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dong H, Ming S, Fang J, Li Y and Liu L:
Icariin ameliorates angiotensin II-induced cerebrovascular
remodeling by inhibiting Nox2-containing NADPH oxidase activation.
Hum Cell. 32:22–30. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yan D, Yue B, Qian M, Zhao L, Zhang Z,
Qian H, Yan S, Qian Y and Fang Z: JYYS granule mitigates renal
injury in clinic and in spontaneously hypertensive rats by
inhibiting NF-κB signaling-mediated microinflammation. Evid Based
Complement Alternat Med. 2018:84729632018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Luo WM, Kong J, Gong Y, Liu XQ, Yang RX
and Zhao YX: Tongxinluo protects against hypertensive kidney injury
in spontaneously-hypertensive rats by inhibiting oxidative stress
and activating forkhead box o1 signaling. PLoS One.
10:e01451302015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jiang J, Huang D, Li Y, Gan Z, Li H, Li X,
Bian K and Ke Y: Heart protection by herb formula BanXia BaiZhu
TianMa decoction in spontaneously hypertensive rats. Evid Based
Complement Alternat Med. 2019:56129292019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ding K, Wang Y, Jiang W, Zhang Y, Yin H
and Fang Z: Qian Yang Yu Yin Granule-containing serum inhibits
angiotensin II-induced proliferation, reactive oxygen species
production, and inflammation in human mesangial cells via an NADPH
oxidase 4-dependent pathway. BMC Complement Altern Med. 15:812015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lu L, Sun X, Chen C, Qin Y and Guo X:
Shexiang baoxin pill, derived from the traditional Chinese
medicine, provides protective roles against cardiovascular
diseases. Front Pharmacol. 9:11612018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang XY, Huang GY, Lian FZ, Pan M, Ruan
CS, Ling XX, Chen ML, Shen AZ and Gao S: Protective effect of
Xin-Ji-Er-Kang on cardiovascular remodeling in high-salt induced
hypertensive mice: Role ofoxidative stress and endothelial
dysfunction. Biomed Pharmacother. 115:1089372019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Guo K, Lan CZ, Yu TT, Huang LL, Wang XH,
Pan C and Gao S: Effects of Xin-Ji-Er-Kang formula on 2K1C-induced
hypertension and cardiovascular remodeling in rats. J
Ethnopharmacol. 155:1227–1235. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yu TT, Guo K, Chen HC, Lan CZ, Wang J,
Huang LL, Wang XH, Zhang Z and Gao S: Effects of traditional
Chinese medicine Xin-Ji-Er-Kang formula on 2K1C hypertensive rats:
Role of oxidative stress and endothelial dysfunction. BMC
Complement Altern Med. 13:1732013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu W, Lin S, Cai Q, Zhang L, Shen A, Chen
Y and Peng J: Qingxuan Jiangya decoction mitigates renal
interstitial fibrosis in spontaneously hypertensive rats by
regulating transforming growth factor-β1/Smad signaling pathway.
Evid Based Complement Alternat Med. 2017:15763282017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Qin T, Wu L, Hua Q, Song Z, Pan Y and Liu
T: Prediction of the mechanisms of action of Shenkang in chronic
kidney disease: A network pharmacology study and experimental
validation. J Ethnopharmacol. 246:1121282020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tian XL and Li Y: Endothelial cell
senescence and age-related vascular diseases. J Genet Genomics.
41:485–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Regina C, Panatta E, Candi E, Melino G,
Amelio I, Balistreri CR, Annicchiarico-Petruzzelli M, Di Daniele N
and Ruvolo G: Vascular ageing and endothelial cell senescence:
Molecular mechanisms of physiology and diseases. Mech Ageing Dev.
159:14–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lankhorst S, Kappers MH, van Esch JH,
Danser AH and van den Meiracker AH: Hypertension during vascular
endothelial growth factor inhibition: Focus on nitric oxide,
endothelin-1, and oxidative stress. Antioxid Redox Signal.
20:135–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yang X, Shao H, Chen Y, Ding N, Yang A,
Tian J and Jiang Y, Li G and Jiang Y: In renal hypertension,
Cirsium japonicum strengthens cardiac function via the
intermedin/nitric oxide pathway. Biomed Pharmacother. 101:787–791.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yoshitomi H, Zhou J, Nishigaki T, Li W,
Liu T, Wu L and Gao M: Morinda citrifolia (Noni) fruit juice
promotes vascular endothelium function in hypertension via
glucagon-like peptide-1 receptor-CaMKKβ-AMPK-eNOS pathway.
Phytother Res. 34:2341–2350. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Razali N, Dewa A, Asmawi MZ, Mohamed N and
Manshor NM: Mechanisms underlying the vascular relaxation
activities of Zingiber officinale var. rubrum in thoracic
aorta of spontaneously hypertensive rats. J Integr Med. 18:46–58.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Akinyemi AJ, Onyebueke N, Faboya OA,
Onikanni SA, Fadaka A and Olayide I: Curcumin inhibits adenosine
deaminase and arginase activities in cadmium-induced renal toxicity
in rat kidney. J Food Drug Anal. 25:438–446. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang DM, Li YC, Xu D, Ding XQ and Kong
LD: Protection of curcumin against fructose-induced hyperuricaemia
and renal endothelial dysfunction involves NO-mediated JAK-STAT
signalling in rats. Food Chem. 134:2184–2193. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tew WY, Tan CS, Asmawi MZ and Yam MF:
Underlying mechanism of vasorelaxant effect exerted by
3,5,7,2′,4′-pentahydroxyflavone in rats aortic ring. Eur J
Pharmacol. 880:1731232020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang J, Wang R, Cheng X, Qu H, Qi J, Li D,
Xing Y, Bai Y and Zheng X: The vascular dilatation induced by
Hydroxysafflor yellow A (HSYA) on rat mesenteric artery through
TRPV4-dependent calcium influx in endothelial cells. J
Ethnopharmacol. 256:1127902020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xu J, Zhang C, Shi X, Li J, Liu M, Jiang W
and Fang Z: Efficacy and safety of sodium tanshinone IIA sulfonate
injection on hypertensive nephropathy: A systematic review and
meta-analysis. Front Pharmacol. 10:15422019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li P, Peng Y, Ma Q, Li Z and Zhang X:
Study on the formation of antihypertensive twin drugs by caffeic
acid and ferulic acid with telmisartan. Drug Des Devel Ther.
14:977–992. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
He F, Chu JF, Chen HW, Lin W, Lin S, Chen
YQ, Peng J and Chen KJ: Qingxuan Jiangya decoction () prevents
blood pressure elevation and ameliorates vascular structural
remodeling via modulating TGF-β 1/Smad pathway in spontaneously
hypertensive rats. Chin J Integr Med. 26:180–187. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ye F, He J, Wu X, Xie J, Chen H, Tang X,
Lai Z, Huang R and Huang J: The regulatory mechanisms of Yulangsan
MHBFC reversing cardiac remodeling in rats based on eNOS-NO
signaling pathway. Biomed Pharmacother. 117:1091412019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li W, Jiang YH, Wang Y, Zhao M, Hou GJ, Hu
HZ and Zhou L: Protective effects of combination of radix astragali
and radix salviae miltiorrhizae on kidney of spontaneously
hypertensive rats and renal intrinsic cells. Chin J Integr Med.
26:46–53. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ma C, Zhai C, Xu T, Lu F, Zhang S, Li C,
Wang Q, Cheng F and Wang X: A systems pharmacology-based study of
the molecular mechanisms of San Cao decoction for treating
hypertension. Evid Based Complement Alternat Med. 2019:31714202019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tanaka M and Itoh H: Hypertension as a
metabolic disorder and the novel role of the gut. Curr Hypertens
Rep. 21:632019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hall JE, do Carmo JM, da Silva AA, Wang Z
and Hall ME: Obesity, kidney dysfunction and hypertension:
Mechanistic links. Nat Rev Nephrol. 15:367–385. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bell DS: Treatment of diabetic
hypertension. Diabetes Obes Metab. 11:433–444. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Busija DW, Miller AW, Katakam P and Erdös
B: Insulin resistance and associated dysfunction of resistance
vessels and arterial hypertension. Minerva Med. 96:223–232.
2005.PubMed/NCBI
|
|
119
|
Eringa EC, Bakker W and van Hinsbergh VW:
Paracrine regulation of vascular tone, inflammation and insulin
sensitivity by perivascular adipose tissue. Vascul Pharmacol.
56:204–209. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Gamboa-Gómez C, Pérez-Ramírez IF,
González-Gallardo A, Gallegos-Corona MA, Ibarra-Alvarado C and
Reynoso-Camacho R: Effect of Citrus paradisi and Ocimum
sanctum infusions on blood pressure regulation and its
association with renal alterations in obese rats. J Food Biochem.
40:345–357. 2016. View Article : Google Scholar
|
|
121
|
Ren Y, Wang D, Lu F, Zou X, Xu L, Wang K,
Huang W, Su H, Zhang C, Gao Y and Dong H: Coptidis rhizoma
inhibits NLRP3 inflammasome activation and alleviates renal damage
in early obesity-related glomerulopathy. Phytomedicine. 49:52–65.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Liu BL, Chen YP, Cheng H, Wang YY, Rui HL,
Yang M, Dong HR, Han DN and Dong J: The protective effects of
curcumin on obesity-related glomerulopathy are associated with
inhibition of Wnt/β-catenin signaling activation in podocytes. Evid
Based Complement Alternat Med. 2015:8274722015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ma L, Huang L, Pei H, Liu Z, Xie C, Lei L,
Chen X, Ye H, Peng A and Chen L: Pharmacological effects of the
water fraction of key components in the traditional Chinese
prescription Mai Tong Fang on 3T3-L1 adipocytes and ob/ob diabetic
mice. Molecules. 19:14687–14698. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Basile J and Toth P: Angiotensin receptor
blockers: Role in hypertension management, cardiovascular risk
reduction, and nephropathy. South Med J. 102 (10 Suppl):S1–S12.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Pirkle JL and Freedman BI: Hypertension
and chronic kidney disease: Controversies in pathogenesis and
treatment. Minerva Urol Nefrol. 65:37–50. 2013.PubMed/NCBI
|
|
126
|
Yang C, Wang H, Zhao X, Matsushita K,
Coresh J, Zhang L and Zhao MH: CKD in China: Evolving spectrum and
public health implications. Am J Kidney Dis. 76:258–264. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Leong XF, Ng CY and Jaarin K: Animal
models in cardiovascular research: Hypertension and
atherosclerosis. Biomed Res Int. 2015:5287572015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Meili-Butz S, Bühler K, John D, Buser P,
Vale WW, Peterson KL, Brink M and Dieterle T: Acute effects of
urocortin 2 on cardiac function and propensity for arrhythmias in
an animal model of hypertension-induced left ventricular
hypertrophy and heart failure. Eur J Heart Fail. 12:797–804. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu ML, Song HX, Tian XX, Liu YX, Liu D,
Hou ZW, Li JY, Yan CH and Han YL: Recombinant cellular repressor of
E1A-stimulated genes protects against renal fibrosis in Dahl
salt-sensitive rats. Am J Nephrol. 51:401–410. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lu Q, Ma Z, Ding Y, Bedarida T, Chen L,
Xie Z, Song P and Zou MH: Circulating miR-103a-3p contributes to
angiotensin II-induced renal inflammation and fibrosis via a
SNRK/NF-κB/p65 regulatory axis. Nat Commun. 10:21452019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Han WQ, Xu L, Tang XF, Chen WD, Wu YJ and
Gao PJ: Membrane rafts-redox signalling pathway contributes to
renal fibrosis via modulation of the renal tubular
epithelial-mesenchymal transition. J Physiol. 596:3603–3616. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Su Y, Deng X, Ma R, Dong Z, Wang F and Shi
J: The Exposure of phosphatidylserine influences procoagulant
activity in retinal vein occlusion by microparticles, blood cells,
and endothelium. Oxid Med Cell Longev. 2018:36584762018. View Article : Google Scholar : PubMed/NCBI
|