|
1
|
Taylor GI, Corlett RJ, Dhar SC and Ashton
MW: The anatomical (angiosome) and clinical territories of
cutaneous perforating arteries: Development of the concept and
designing safe flaps. Plast Reconstr Surg. 127:1447–1459. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Saint-Cyr M, Wong C, Schaverien M,
Mojallal A and Rohrich RJ: The perforasome theory: Vascular anatomy
and clinical implications. Plast Reconstr Surg. 124:1529–1544.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Callegari PR, Taylor GI, Caddy CM and
Minabe T: An anatomic review of the delay phenomenon: I.
Experimental studies. Plast Reconstr Surg. 89:397–407; discussion
417-398. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sanati-Mehrizy P, Massenburg BB, Rozehnal
JM, Ingargiola MJ, Hernandez Rosa J and Taub PJ: Risk factors
leading to free flap failure: Analysis from the national surgical
quality improvement program database. J Craniofac Surg.
27:1956–1964. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bekara F, Herlin C, Mojallal A, Sinna R,
Ayestaray B, Letois F, Chavoin JP, Garrido I, Grolleau JL and
Chaput B: A systematic review and meta-analysis of
perforator-pedicled propeller flaps in lower extremity defects:
Identification of risk factors for complications. Plast Reconstr
Surg. 137:314–331. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wong AK, Joanna Nguyen T, Peric M, Shahabi
A, Vidar EN, Hwang BH, Niknam Leilabadi S, Chan LS and Urata MM:
Analysis of risk factors associated with microvascular free flap
failure using a multi-institutional database. Microsurgery.
35:6–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
de Blacam C, Colakoglu S, Ogunleye AA,
Nguyen JT, Ibrahim AM, Lin SJ, Kim PS and Lee BT: Risk factors
associated with complications in lower-extremity reconstruction
with the distally based sural flap: A systematic review and pooled
analysis. J Plast Reconstr Aesthet Surg. 67:607–616. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Las DE, de Jong T, Zuidam JM, Verweij NM,
Hovius SE and Mureau MA: Identification of independent risk factors
for flap failure: A retrospective analysis of 1530 free flaps for
breast, head and neck and extremity reconstruction. J Plast
Reconstr Aesthet Surg. 69:894–906. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li B, Chang SM, Du SC, Zhuang L and Hu SJ:
Distally based sural adipofascial turnover flap for coverage of
complicated wound in the foot and ankle region. Ann Plast Surg.
84:580–587. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lee ZH, Abdou SA, Ramly EP, Daar DA,
Stranix JT, Anzai L, Saadeh PB, Levine JP and Thanik VD: Larger
free flap size is associated with increased complications in lower
extremity trauma reconstruction. Microsurgery. 40:473–478. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stranix JT, Lee ZH, Anzai L, Jacoby A,
Avraham T, Saadeh PB, Levine JP and Thanik VD: Optimizing venous
outflow in reconstruction of Gustilo IIIB lower extremity traumas
with soft tissue free flap coverage: Are two veins better than one?
Microsurgery. 38:745–751. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gupta A, Lakhiani C, Lim BH, Aho JM,
Goodwin A, Tregaskiss A, Lee M, Scheker L and Saint-Cyr M: Free
tissue transfer to the traumatized upper extremity: Risk factors
for postoperative complications in 282 cases. J Plast Reconstr
Aesthet Surg. 68:1184–1190. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Reece EM, Bonelli MA, Livingston T,
Mulligan PS, Rockwood J, Wilson JR, Zoldos J and Champagne L:
Factors in free fasciocutaneous flap complications: A logistic
regression analysis. Plast Reconstr Surg. 136:54e–58e. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Innocenti M, Menichini G, Baldrighi C,
Delcroix L, Vignini L and Tos P: Are there risk factors for
complications of perforator-based propeller flaps for
lower-extremity reconstruction? Clin Orthop Relat Res.
472:2276–2286. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dolan RT, Butler JS, Murphy SM and Cronin
KJ: Health-related quality of life, surgical and aesthetic outcomes
following microvascular free flap reconstructions: An 8-year
institutional review. Ann R Coll Surg Engl. 94:43–51. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ellabban MA, Fattah IOA, Kader GA, Eldeen
OS, Mehana AE, Khodeer DM, Hosny H, Elbasiouny MS and Masadeh S:
The effects of sildenafil and/or nitroglycerin on random-pattern
skin flaps after nicotine application in rats. Sci Rep.
10:32122020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lee W, Oh W, Oh SM and Yang EJ:
Comparative effectiveness of different interventions of
perivascular hyaluronidase. Plast Reconstr Surg. 145:957–964. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Giatsidis G, Cheng L, Haddad A, Ji K,
Succar J, Lancerotto L, Lujan-Hernandez J, Fiorina P, Matsumine H
and Orgill DP: Noninvasive induction of angiogenesis in tissues by
external suction: Sequential optimization for use in reconstructive
surgery. Angiogenesis. 21:61–78. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Giatsidis G, Cheng L, Facchin F, Haddad A,
Lujan-Hernandez J, Lancerotto L, Nabzdyk CG, Matsumine H and Orgill
DP: Moderate-intensity intermittent external volume expansion
optimizes the soft-tissue response in a murine model. Plast
Reconstr Surg. 139:882–890. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Doğan F and Özyazgan İ: Flap
preconditioning by electrical stimulation as an alternative to
surgical delay: Experimental study. Ann Plast Surg. 75:560–564.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Menevşe GT, TeomanTellioglu A, Altuntas N,
Cömert A and Tekdemir I: Polidocanol injection for chemical delay
and its effect on the survival of rat dorsal skin flaps. J Plast
Reconstr Aesthet Surg. 67:851–856. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tobalem M, Wettstein R, Pittet-Cuénod B,
Vigato E, Machens HG, Lohmeyer JA, Rezaeian F and Harder Y: Local
shockwave-induced capillary recruitment improves survival of
musculocutaneous flaps. J Surg Res. 184:1196–1204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kubulus D, Amon M, Roesken F, Rücker M,
Bauer I and Menger MD: Experimental cooling-induced preconditioning
attenuates skin flap failure. Br J Surg. 92:1432–1438. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Morris SF and Taylor GI: The time sequence
of the delay phenomenon: When is a surgical delay effective? An
experimental study. Plast Reconstr Surg. 95:526–533. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Akimoto M, Takeda A, Matsushita O, Inoue
J, Sakamoto K, Hattori M, Kounoike N and Uchinuma E: Effects of
CB-VEGF-A injection in rat flap models for improved survival. Plast
Reconstr Surg. 131:717–725. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lindquist S and Craig EA: The heat-shock
proteins. Annu Rev Genet. 22:631–677. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Miller DJ and Fort PE: Heat shock proteins
regulatory role in neurodevelopment. Front Neurosci. 12:8212018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lin D, Wu H, Zhou Z, Tao Z, Jia T and Gao
W: Ginkgolide B improves multiterritory perforator flap survival by
inhibiting endoplasmic reticulum stress and oxidative stress. J
Invest Surg. 1–7. Dec 23–2019.(Epub ahead of print). View Article : Google Scholar
|
|
29
|
Kumar D, Jena GR, Ram M, Lingaraju MC,
Singh V, Prasad R, Kumawat S, Kant V, Gupta P, Tandan SK and Kumar
D: Hemin attenuated oxidative stress and inflammation to improve
wound healing in diabetic rats. Naunyn Schmiedebergs Arch
Pharmacol. 392:1435–1445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kankam HKN, Mehta S and Jain A: Thermal
preconditioning for surgery: A systematic review. J Plast Reconstr
Aesthet Surg. 73:1645–1664. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park C, Lee H, Noh JS, Jin CY, Kim GY,
Hyun JW, Leem SH and Choi YH: Hemistepsin A protects human
keratinocytes against hydrogen peroxide-induced oxidative stress
through activation of the Nrf2/HO-1 signaling pathway. Arch Biochem
Biophys. 691:1085122020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jackson JW, Rivera-Marquez GM, Beebe K,
Tran AD, Trepel JB, Gestwicki JE, Blagg BSJ, Ohkubo S and Neckers
LM: Pharmacologic dissection of the overlapping impact of heat
shock protein family members on platelet function. J Thromb
Haemost. 18:1197–1209. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Matsunobu T, Satoh Y, Ogawa K and Shiotani
A: Heme oxygenase-1 expression in the guinea pig cochlea induced by
intense noise stimulation. Acta Otolaryngol Suppl. 18–23. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harder Y, Amon M, Schramm R, Georgi M,
Banic A, Erni D and Menger MD: Heat shock preconditioning reduces
ischemic tissue necrosis by heat shock protein (HSP)-32-mediated
improvement of the microcirculation rather than induction of
ischemic tolerance. Ann Surg. 242:869–878; discussion 878-869.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tian W, Bonkovsky HL, Shibahara S and
Cohen DM: Urea and hypertonicity increase expression of heme
oxygenase-1 in murine renal medullary cells. Am J Physiol Renal
Physiol. 281:F983–F991. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rücker M, Schäfer T, Roesken F, Spitzer
WJ, Bauer M and Menger MD: Local heat-shock priming-induced
improvement in microvascular perfusion in osteomyocutaneous flaps
is mediated by heat-shock protein 32. Br J Surg. 88:450–457. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chang YC, Lai CC, Lin LF, Ni WF and Tsai
CH: The up-regulation of heme oxygenase-1 expression in human
gingival fibroblasts stimulated with nicotine. J Periodontal Res.
40:252–257. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Contaldo C, Harder Y, Plock J, Banic A,
Jakob SM and Erni D: The influence of local and systemic
preconditioning on oxygenation, metabolism and survival in
critically ischaemic skin flaps in pigs. J Plast Reconstr Aesthet
Surg. 60:1182–1192. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Schürmann C, Seitz O, Klein C, Sader R,
Pfeilschifter J, Mühl H, Goren I and Frank S: Tight spatial and
temporal control in dynamic basal to distal migration of epithelial
inflammatory responses and infiltration of cytoprotective
macrophages determine healing skin flap transplants in mice. Ann
Surg. 249:519–534. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS,
Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, et al: Microsatellite
polymorphism in promoter of heme oxygenase-1 gene is associated
with susceptibility to coronary artery disease in type 2 diabetic
patients. Hum Genet. 111:1–8. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schillinger M, Exner M, Mlekusch W, Ahmadi
R, Rumpold H, Mannhalter C, Wagner O and Minar E: Heme oxygenase-1
genotype is a vascular anti-inflammatory factor following balloon
angioplasty. J Endovasc Ther. 9:385–394. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Whitington PF, Moscioni AD and Gartner LM:
The effect of tin (IV)-protoporphyrin-IX on bilirubin production
and excretion in the rat. Pediatr Res. 21:487–491. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vreman HJ, Ekstrand BC and Stevenson DK:
Selection of metalloporphyrin heme oxygenase inhibitors based on
potency and photoreactivity. Pediatr Res. 33:195–200. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Elbirt KK and Bonkovsky HL: Heme
oxygenase: Recent advances in understanding its regulation and
role. Proc Assoc Am Physicians. 111:438–447. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Adach W, Błaszczyk M and Olas B: Carbon
monoxide and its donors-chemical and biological properties. Chem
Biol Interact. 318:1089732020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sorrenti V: Editorial of special issue
‘protective and detrimental role of heme oxygenase-1’. Int J Mol
Sci. 20:47442019. View Article : Google Scholar
|
|
47
|
Sha JY, Zhou YD, Yang JY, Leng J, Li JH,
Hu JN, Liu W, Jiang S, Wang YP, Chen C and Li W: Maltol
(3-Hydroxy-2-methyl-4-pyrone) slows d-galactose-induced brain aging
process by damping the Nrf2/HO-1-mediated oxidative stress in mice.
J Agric Food Chem. 67:10342–10351. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schallner N, Romão CC, Biermann J, Lagrèze
WA, Otterbein LE, Buerkle H, Loop T and Goebel U: Carbon monoxide
abrogates ischemic insult to neuronal cells via the soluble
guanylate cyclase-cGMP pathway. PLoS One. 8:e606722013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ndisang JF, Wu L, Zhao W and Wang R:
Induction of heme oxygenase-1 and stimulation of cGMP production by
hemin in aortic tissues from hypertensive rats. Blood.
101:3893–3900. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Motterlini R and Otterbein LE: The
therapeutic potential of carbon monoxide. Nat Rev Drug Discov.
9:728–743. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Balla G, Jacob HS, Balla J, Rosenberg M,
Nath K, Apple F, Eaton JW and Vercellotti GM: Ferritin: A
cytoprotective antioxidant strategem of endothelium. J Biol Chem.
267:18148–18153. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vinchi F, De Franceschi L, Ghigo A, Townes
T, Cimino J, Silengo L, Hirsch E, Altruda F and Tolosano E:
Hemopexin therapy improves cardiovascular function by preventing
heme-induced endothelial toxicity in mouse models of hemolytic
diseases. Circulation. 127:1317–1329. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fang R and Aust AE: Induction of ferritin
synthesis in human lung epithelial cells treated with crocidolite
asbestos. Arch Biochem Biophys. 340:369–375. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pamplona A, Ferreira A, Balla J, Jeney V,
Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP,
Cunha-Rodrigues M, et al: Heme oxygenase-1 and carbon monoxide
suppress the pathogenesis of experimental cerebral malaria. Nat
Med. 13:703–710. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Freitas A, Alves-Filho JC, Secco DD, Neto
AF, Ferreira SH, Barja-Fidalgo C and Cunha FQ: Heme
oxygenase/carbon monoxide-biliverdin pathway down regulates
neutrophil rolling, adhesion and migration in acute inflammation.
Br J Pharmacol. 149:345–354. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cepinskas G, Katada K, Bihari A and Potter
RF: Carbon monoxide liberated from carbon monoxide-releasing
molecule CORM-2 attenuates inflammation in the liver of septic
mice. Am J Physiol Gastrointest Liver Physiol. 294:G184–G191. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mizuguchi S, Stephen J, Bihari R, Markovic
N, Suehiro S, Capretta A, Potter RF and Cepinskas G: CORM-3-derived
CO modulates polymorphonuclear leukocyte migration across the
vascular endothelium by reducing levels of cell surface-bound
elastase. Am J Physiol Heart Circ Physiol. 297:H920–H929. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tsoyi K, Lee TY, Lee YS, Kim HJ, Seo HG,
Lee JH and Chang KC: Heme-oxygenase-1 induction and carbon
monoxide-releasing molecule inhibit lipopolysaccharide
(LPS)-induced high-mobility group box 1 release in vitro and
improve survival of mice in LPS- and cecal ligation and
puncture-induced sepsis model in vivo. Mol Pharmacol. 76:173–182.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lancel S, Hassoun SM, Favory R, Decoster
B, Motterlini R and Neviere R: Carbon monoxide rescues mice from
lethal sepsis by supporting mitochondrial energetic metabolism and
activating mitochondrial biogenesis. J Pharmacol Exp Ther.
329:641–648. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chung SW, Liu X, Macias AA, Baron RM and
Perrella MA: Heme oxygenase-1-derived carbon monoxide enhances the
host defense response to microbial sepsis in mice. J Clin Invest.
118:239–247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Desmard M, Davidge KS, Bouvet O, Morin D,
Roux D, Foresti R, Ricard JD, Denamur E, Poole RK, Montravers P, et
al: A carbon monoxide-releasing molecule (CORM-3) exerts
bactericidal activity against pseudomonas aeruginosa and
improves survival in an animal model of bacteraemia. FASEB J.
23:1023–1031. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Morse D, Pischke SE, Zhou Z, Davis RJ,
Flavell RA, Loop T, Otterbein SL, Otterbein LE and Choi AM:
Suppression of inflammatory cytokine production by carbon monoxide
involves the JNK pathway and AP-1. J Biol Chem. 278:36993–36998.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Otterbein LE, Bach FH, Alam J, Soares M,
Tao Lu H, Wysk M, Davis RJ, Flavell RA and Choi AM: Carbon monoxide
has anti-inflammatory effects involving the mitogen-activated
protein kinase pathway. Nat Med. 6:422–428. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen B, Guo L, Fan C, Bolisetty S, Joseph
R, Wright MM, Agarwal A and George JF: Carbon monoxide rescues heme
oxygenase-1-deficient mice from arterial thrombosis in allogeneic
aortic transplantation. Am J Pathol. 175:422–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Brüne B and Ullrich V: Inhibition of
platelet aggregation by carbon monoxide is mediated by activation
of guanylate cyclase. Mol Pharmacol. 32:497–504. 1987.PubMed/NCBI
|
|
66
|
Wang R: Resurgence of carbon monoxide: An
endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol.
76:1–15. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Varadi J, Lekli I, Juhasz B, Bacskay I,
Szabo G, Gesztelyi R, Szendrei L, Varga E, Bak I, Foresti R, et al:
Beneficial effects of carbon monoxide-releasing molecules on
post-ischemic myocardial recovery. Life Sci. 80:1619–1626. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li
QH, Dawn B, Motterlini R and Bolli R: Administration of a
CO-releasing molecule at the time of reperfusion reduces infarct
size in vivo. Am J Physiol Heart Circ Physiol. 286:H1649–H1653.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Józkowicz A, Huk I, Nigisch A, Weigel G,
Dietrich W, Motterlini R and Dulak J: Heme oxygenase and angiogenic
activity of endothelial cells: Stimulation by carbon monoxide and
inhibition by tin protoporphyrin-IX. Antioxid Redox Signal.
5:155–162. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Soares MP, Usheva A, Brouard S, Berberat
PO, Gunther L, Tobiasch E and Bach FH: Modulation of endothelial
cell apoptosis by heme oxygenase-1-derived carbon monoxide.
Antioxid Redox Signal. 4:321–329. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Clark JE, Naughton P, Shurey S, Green CJ,
Johnson TR, Mann BE, Foresti R and Motterlini R: Cardioprotective
actions by a water-soluble carbon monoxide-releasing molecule. Circ
Res. 93:e2–e8. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sato K, Balla J, Otterbein L, Smith RN,
Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G,
et al: Carbon monoxide generated by heme oxygenase-1 suppresses the
rejection of mouse-to-rat cardiac transplants. J Immunol.
166:4185–4194. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sandouka A, Fuller BJ, Mann BE, Green CJ,
Foresti R and Motterlini R: Treatment with CO-RMs during cold
storage improves renal function at reperfusion. Kidney Int.
69:239–247. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jansen T and Daiber A: Direct antioxidant
properties of bilirubin and biliverdin. Is there a role for
biliverdin reductase? Front Pharmacol. 3:302012.
|
|
75
|
Maines MD, Miralem T, Lerner-Marmarosh N,
Shen J and Gibbs PE: Human biliverdin reductase, a previously
unknown activator of protein kinase C betaII. J Biol Chem.
282:8110–8122. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gibbs PE, Tudor C and Maines MD:
Biliverdin reductase: More than a namesake-the reductase, its
peptide fragments, and biliverdin regulate activity of the three
classes of protein kinase C. Front Pharmacol. 3:312012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lerner-Marmarosh N, Shen J, Torno MD,
Kravets A, Hu Z and Maines MD: Human biliverdin reductase: A member
of the insulin receptor substrate family with
serine/threonine/tyrosine kinase activity. Proc Natl Acad Sci USA.
102:7109–7114. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jansen T, Hortmann M, Oelze M, Opitz B,
Steven S, Schell R, Knorr M, Karbach S, Schuhmacher S, Wenzel P, et
al: Conversion of biliverdin to bilirubin by biliverdin reductase
contributes to endothelial cell protection by heme
oxygenase-1-evidence for direct and indirect antioxidant actions of
bilirubin. J Mol Cell Cardiol. 49:186–195. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pae HO, Son Y, Kim NH, Jeong HJ, Chang KC
and Chung HT: Role of heme oxygenase in preserving vascular
bioactive NO. Nitric Oxide. 23:251–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Eppihimer MJ and Granger DN:
Ischemia/reperfusion-induced leukocyte-endothelial interactions in
postcapillary venules. Shock. 8:16–25. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kunkel EJ, Jung U, Bullard DC, Norman KE,
Wolitzky BA, Vestweber D, Beaudet AL and Ley K: Absence of
trauma-induced leukocyte rolling in mice deficient in both
P-selectin and intercellular adhesion molecule 1. J Exp Med.
183:57–65. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Menger MD and Vollmar B: Adhesion
molecules as determinants of disease: From molecular biology to
surgical research. Br J Surg. 83:588–601. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Menger MD, Pelikan S, Steiner D and
Messmer K: Microvascular ischemia-reperfusion injury in striated
muscle: Significance of ‘reflow paradox’. Am J Physiol.
263:H1901–H1906. 1992.PubMed/NCBI
|
|
84
|
Rücker M, Schäfer T, Roesken F, Spitzer
WJ, Bauer M and Menger MD: Reduction of inflammatory response in
composite flap transfer by local stress conditioning-induced
heat-shock protein 32. Surgery. 129:292–301. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Taleb S, Moghaddas P, Rahimi Balaei M,
Taleb S, Rahimpour S, Abbasi A, Ejtemaei-Mehr S and Dehpour AR:
Metformin improves skin flap survival through nitric oxide system.
J Surg Res. 192:686–691. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Han HH, Lim YM, Park SW, Lee SJ, Rhie JW
and Lee JH: Improved skin flap survival in venous
ischemia-reperfusion injury with the use of adipose-derived stem
cells. Microsurgery. 35:645–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Forrester SJ, Kikuchi DS, Hernandes MS, Xu
Q and Griendling KK: Reactive oxygen species in metabolic and
inflammatory signaling. Circ Res. 122:877–902. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lin CC, Hsiao LD, Cho RL and Yang CM:
Carbon monoxide releasing molecule-2-upregulated ROS-dependent heme
oxygenase-1 axis suppresses lipopolysaccharide-induced airway
inflammation. Int J Mol Sci. 20:31572019. View Article : Google Scholar
|
|
89
|
Shi Y, Liang XC, Zhang H, Sun Q, Wu QL and
Qu L: Combination of quercetin, cinnamaldehyde and hirudin protects
rat dorsal root ganglion neurons against high glucose-induced
injury through Nrf-2/HO-1 activation and NF-κB inhibition. Chin J
Integr Med. 23:663–671. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Brouard S, Otterbein LE, Anrather J,
Tobiasch E, Bach FH, Choi AM and Soares MP: Carbon monoxide
generated by heme oxygenase 1 suppresses endothelial cell
apoptosis. J Exp Med. 192:1015–1026. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Edmunds MC, Czopek A, Wigmore SJ and Kluth
DC: Paradoxical effects of heme arginate on survival of
myocutaneous flaps. Am J Physiol Regul Integr Comp Physiol.
306:R10–R22. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Harder Y, Amon M, Schramm R, Rücker M,
Scheuer C, Pittet B, Erni D and Menger MD: Ischemia-induced
up-regulation of heme oxygenase-1 protects from apoptotic cell
death and tissue necrosis. J Surg Res. 150:293–303. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Harder Y, Contaldo C, Klenk J, Banic A,
Jakob SM and Erni D: Improved skin flap survival after local heat
preconditioning in pigs. J Surg Res. 119:100–105. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Harder Y, Amon M, Georgi M, Scheuer C,
Schramm R, Rücker M, Pittet B, Erni D and Menger MD: Aging is
associated with an increased susceptibility to ischaemic necrosis
due to microvascular perfusion failure but not a reduction in
ischaemic tolerance. Clin Sci (Lond). 112:429–440. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kubulus D, Roesken F, Amon M, Rücker M,
Bauer M, Bauer I and Menger MD: Mechanism of the delay phenomenon:
Tissue protection is mediated by heme oxygenase-1. Am J Physiol
Heart Circ Physiol. 287:H2332–H2340. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sun Y, Li QF, Zhang Y, Hu R and Jiang H:
Isoflurane preconditioning increases survival of rat skin
random-pattern flaps by induction of HIF-1α expression. Cell
Physiol Biochem. 31:579–591. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chiang SK, Chen SE and Chang LC: A dual
role of heme oxygenase-1 in cancer cells. Int J Mol Sci. 20:392018.
View Article : Google Scholar
|
|
98
|
Nitti M, Piras S, Brondolo L, Marinari UM,
Pronzato MA and Furfaro AL: Heme oxygenase 1 in the nervous system:
Does it favor neuronal cell survival or induce neurodegeneration?
Int J Mol Sci. 19:22602018. View Article : Google Scholar
|
|
99
|
Hopper CP, Meinel L, Steiger C and
Otterbein LE: Where is the clinical breakthrough of heme
oxygenase-1/carbon monoxide therapeutics? Curr Pharm Des.
24:2264–2282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Steiger C, Hermann C and Meinel L:
Localized delivery of carbon monoxide. Eur J Pharm Biopharm.
118:3–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bereczki D Jr, Balla J and Bereczki D:
Heme oxygenase-1: Clinical relevance in ischemic stroke. Curr Pharm
Des. 24:2229–2235. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Szabo IL, Kenyeres A, Szegedi A and
Szollosi AG: Heme oxygenase and the skin in health and disease.
Curr Pharm Des. 24:2303–2310. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Haines DD and Tosaki A: Role of heme
oxygenases in cardiovascular syndromes and co-morbidities. Curr
Pharm Des. 24:2322–2325. 2018. View Article : Google Scholar : PubMed/NCBI
|