|
1
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from
patients with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Andersen KG, Rambaut A, Lipkin WI, Holmes
EC and Garry RF: The proximal origin of SARS-CoV-2. Nat Med.
26:450–452. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H,
Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus
origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics
of coronavirus disease 2019 in ChinaN. Engl J Med. 382:1708–1720.
2020. View Article : Google Scholar
|
|
5
|
Belouzard S, Millet JK, Licitra BN and
Whittaker GR: Mechanisms of coronavirus cell entry mediated by the
viral spike protein. Viruses. 4:1011–1033. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cui J, Li F and Shi ZL: Origin and
evolution of pathogenic coronaviruses. Nat Rev Microbiol.
17:181–192. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kahn JS and McIntosh K: History and recent
advances in coronavirus discovery. Pediatr Infect Dis J. 24 (Suppl
11):S223–S227. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
de Wit E, van Doremalen N, Falzarano D and
Munster VJ: SARS and MERS: Recent insights into emerging
coronaviruses. Nat Rev Microbiol. 14:523–534. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yin Y and Wunderink RG: MERS, SARS and
other coronaviruses as causes of pneumonia. Respirology.
23:130–137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tan WJ, Zhao X, Ma XJ, Wang WL, Niu PH, Xu
W, Gao GF and Wu GH: A novel coronavirus genome identified in a
cluster of pneumonia cases-Wuhan, China 2019–2020. China CDC
Weekly. 2:61–62. 2020. View Article : Google Scholar
|
|
11
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gralinski LE and Menachery VD: Return of
the coronavirus: 2019-nCoV. Viruses. 12:1352020. View Article : Google Scholar
|
|
13
|
Perlman S and Netland J: Coronaviruses
post-SARS: Update on replication and pathogenesis. Nat Rev
Microbiol. 7:439–450. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan
S and Yuen KY: Genomic characterization of the 2019 novel
human-pathogenic coronavirus isolated from a patient with atypical
pneumonia after visiting Wuhan. Emerg Microbes Infect. 9:221–236.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Harrison SC: Viral membrane fusion. Nat
Struct Mol Biol. 15:690–698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M,
Li Y, Zhu L, Wang N, Lv Z, et al: Development of an inactivated
vaccine candidate for SARS-CoV-2. Science. 369:77–81. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wan Y, Shang J, Graham R, Baric RS and Li
F: Receptor recognition by the novel coronavirus from wuhan: An
analysis based on decade-long structural studies of SARS
coronavirus. J Virol. 94:e001272020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ali A and Vijayan R: Dynamics of the
ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique
mechanisms. Sci Rep. 10:142142020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li F: Structure, function, and evolution
of coronavirus spike proteins. Annu Rev Virol. 3:237–261. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gordon DE, Jang GM, Bouhaddou M, Xu J,
Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et
al: A SARS-CoV-2 protein interaction map reveals targets for drug
repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yount B, Roberts RS, Sims AC, Deming D,
Frieman MB, Sparks J, Denison MR, Davis N and Baric RS: Severe
acute respiratory syndrome coronavirus group-specific open reading
frames encode nonessential functions for replication in cell
cultures and mice. J Virol. 79:14909–14922. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kopecky-Bromberg SA, Martínez-Sobrido L,
Frieman M, Baric RA and Palese P: Severe acute respiratory syndrome
coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid
proteins function as interferon antagonists. J Virol. 81:548–557.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu
P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and
divergence of the novel coronavirus (2019-nCoV) originating in
China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ceraolo C and Giorgi F: Genomic variance
of the 2019-nCoV coronavirus. J Med Virol. 92:522–528. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Corman VM, Landt O, Kaiser M, Molenkamp R,
Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML,
et al: Detection of 2019 novel coronavirus (2019-nCoV) by real-time
RT-PCR. Euro Surveill. 25:20000452020. View Article : Google Scholar
|
|
26
|
Yu F, Du L, Ojcius DM, Pan C and Jiang S:
Measures for diagnosing and treating infections by a novel
coronavirus responsible for a pneumonia outbreak originating in
Wuhan, China. Microbes Infect. 22:74–79. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schoeman D and Fielding B: Coronavirus
envelope protein: Current knowledge. Virol J. 16:692019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Morse JS, Lalonde T, Xu S and Liu W:
Learning from the past: Possible urgent prevention and treatment
options for severe acute respiratory infections caused by
2019-nCoV. Chembiochem. 21:730–738. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rockx B, Kuiken T, Herfst S, Bestebroer T,
Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den
Brand J, Okba NMA, et al: Comparative pathogenesis of COVID-19,
MERS, and SARS in a nonhuman primate model. Science. 368:1012–1015.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Petrosillo N, Viceconte G, Ergonul O,
Ippolito G and Petersen E: COVID-19, SARS and MERS: Are they
closely related? Clin Microbiol Infect. 26:729–734. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Petersen E, Koopmans M, Go U, Hamer DH,
Petrosillo N, Castelli F, Storgaard M, Al Khalili S and Simonsen L:
Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet
Infect Dis. 20:e238–e244. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Memish ZA, Zumla AI, Al-Hakeem RF,
Al-Rabeeah AA and Stephens GM: Family cluster of Middle East
respiratory syndrome coronavirus infections. N Engl J Med.
368:2487–2494. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Arabi YM, Balkhy HH, Hayden FG, Bouchama
A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR,
et al: Middle East respiratory syndrome. N Engl J Med. 376:584–594.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Memish ZA, Al-Tawfiq JA, Makhdoom HQ,
Assiri A, Alhakeem RF, Albarrak A, Alsubaie S, Al-Rabeeah AA,
Hajomar WH, Hussain R, et al: Respiratory tract samples, viral
load, and genome fraction yield in patients with Middle East
respiratory syndrome. J Infect Dis. 210:1590–1594. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park J, Jung S, Kim A and Park JE: MERS
transmission and risk factors: A systematic review. BMC Public
Health. 18:5742018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fani M, Teimoori A and Ghafari S:
Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with
SARS-CoV and MERS-CoV infections. Future Virol. 15:2020. View Article : Google Scholar
|
|
37
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen T, Wu D, Chen H, Yan W, Yang D, Chen
G, Ma K, Xu D, Yu H, Wang H, et al: Clinical characteristics of 113
deceased patients with coronavirus disease 2019: Retrospective
study. BMJ. 368:m10912020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou
J, Liu W, Bi Y and Gao GF: Epidemiology, genetic recombination, and
pathogenesis of coronaviruses. Trends Microbiol. 24:490–502. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wevers BA and van der Hoek L: Recently
discovered human coronaviruses. Clin Lab Med. 29:715–724. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xu X, Chen P, Wang J, Feng J, Zhou H, Li
X, Zhong W and Hao P: Evolution of the novel coronavirus from the
ongoing Wuhan outbreak and modeling of its spike protein for risk
of human transmission. Sci China Life Sci. 63:457–460. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L,
Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, et al: Identification of a
novel coronavirus causing severe pneumonia in human: A descriptive
study. Chin Med J (Engl). 133:1015–1024. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li
Z, Cui X, Xiao J, Meng T, Zhou W, et al: The digestive system is a
potential route of 2019-nCov infection: A bioinformatics analysis
based on single-cell transcriptomes. bioRxiv. 2020.
|
|
44
|
Zou X, Chen K, Zou J, Han P, Hao J and Han
Z: Single-cell RNA-seq data analysis on the receptor ACE2
expression reveals the potential risk of different human organs
vulnerable to 2019-nCoV infection. Front Med. 14:185–192. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shi H, Han X, Jiang N, Cao Y, Alwalid O,
Gu J, Fan Y and Zheng C: Radiological findings from 81 patients
with COVID-19 pneumonia in Wuhan, China: A descriptive study.
Lancet Infect Dis. 20:425–434. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong
Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission
dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen N, Zhou M, Dong X, Qu J, Gong F, Han
Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Loeffelholz MJ and Tang YW: Laboratory
diagnosis of emerging human coronavirus infections-the state of the
art. Emerg Microbes Infect. 9:747–756. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
To KK, Tsang OT, Yip CC, Chan KH, Wu TC,
Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, et al: Consistent
detection of 2019 novel coronavirus in saliva. Clin Infect Dis.
71:841–843. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei
J, Lv T, Liang J, Zhang Q, Xu W, et al: Recapitulation of
SARS-CoV-2 infection and cholangiocyte damage with human liver
ductal organoids. Protein Cell. 11:771–775. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A,
Zhou J, Shi G, Fang N, Fan J, et al: Specific ACE2 expression in
cholangiocytes may cause liver damage after 2019-nCoV infection.
bioRxiv. 2020.
|
|
53
|
Leung WK, To KF, Chan PK, Chan HL, Wu AK,
Lee N, Yuen KY and Sung JJ: Enteric involvement of severe acute
respiratory syndrome-associated coronavirus infection.
Gastroenterology. 125:1011–1017. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Holshue ML, DeBolt C, Lindquist S, Lofy
KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural
A, et al: First case of 2019 novel coronavirus in the United
States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin W, Hu L, Zhang Y, Ooi JD, Meng T, Jin
P, Ding X, Peng L, Song L, Xiao Z, et al: Single-cell analysis of
ACE2 expression in human kidneys and bladders reveals a potential
route of 2019-nCoV infection. bioRxiv: 2020.02.08.939892. 2020.
View Article : Google Scholar
|
|
56
|
Fan C, Li K, Ding Y, Lu WL and Wang J:
ACE2 expression in kidney and testis may cause kidney and testis
damage after 2019-nCoV infection. medRxiv: 2020.02.12.20022418.
2020. View Article : Google Scholar
|
|
57
|
Xu Z, Shi L, Wang Y, Zhang J, Huang L,
Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings
of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao
M and Xiao SY: Pathological study of the 2019 novel coronavirus
disease (COVID-19) through postmortem core biopsies. Mod Pathol.
33:1007–1014. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Peiris JS, Chu CM, Cheng VC, Chan KS, Hung
IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, et al: Clinical
progression and viral load in a community outbreak of
coronavirus-associated SARS pneumonia: A prospective study. Lancet.
361:1767–1772. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Drosten C, Günther S, Preiser W, van der
Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L,
Fouchier RA, et al: Identification of a novel coronavirus in
patients with severe acute respiratory syndrome. N Engl J Med.
348:1967–1976. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tang P, Louie M, Richardson SE, Smieja M,
Simor AE, Jamieson F, Fearon M, Poutanen SM, Mazzulli T, Tellier R,
et al: Interpretation of diagnostic laboratory tests for severe
acute respiratory syndrome: The Toronto experience. CMAJ.
170:47–54. 2004.PubMed/NCBI
|
|
62
|
Pitzer VE, Leung GM and Lipsitch M:
Estimating variability in the transmission of severe acute
respiratory syndrome to household contacts in Hong Kong, China. Am
J Epidemiol. 166:355–363. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tang JW, To KF, Lo AW, Sung JJ, Ng HK and
Chan PK: Quantitative temporal-spatial distribution of severe acute
respiratory syndrome-associated coronavirus (SARS-CoV) in
post-mortem tissues. J Med Virol. 79:1245–1253. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lo YM: SARS diagnosis, monitoring and
prognostication by SARS-coronavirus RNA detection. Hong Kong Med J.
15 (Suppl 8):S11–S14. 2009.
|
|
65
|
Mahase E: China coronavirus: Mild but
infectious cases may make it hard to control outbreak, report
warns. BMJ. 368(m325)2020.
|
|
66
|
Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye
F, Huang B, Zhao L, Wang H, Zhou W, et al: Morphogenesis and
cytopathic effect of SARS-CoV-2 infection in human airway
epithelial cells. Nat Commun. 11:39102020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kai H and Kai M: Interactions of
coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons
from available evidence and insights into COVID-19. Hypertens Res.
43:648–654. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lee HK, Tso EY, Chau TN, Tsang OT, Choi KW
and Lai TS: Asymptomatic severe acute respiratory
syndrome-associated coronavirus infection. Emerg Infect Dis.
9:1491–1492. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Che XY, Di B, Zhao GP, Wang YD, Qiu LW,
Hao W, Wang M, Qin PZ, Liu YF, Chan KH, et al: A patient with
asymptomatic severe acute respiratory syndrome (SARS) and
antigenemia from the 2003–2004 community outbreak of SARS in
Guangzhou, China. Clin Infect Dis. 43:e1–e5. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cowling BJ, Park M, Fang VJ, Wu P, Leung
GM and Wu JT: Preliminary epidemiological assessment of MERS-CoV
outbreak in South Korea, May to June 2015. Euro Surveill. 20:7–13.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Al-Tawfiq JA: Asymptomatic coronavirus
infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med Infect
Dis. 35:1016082020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wölfel R, Corman VM, Guggemos W, Seilmaier
M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et
al: Virological assessment of hospitalized patients with
COVID-2019. Nature. 581:465–469. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu X and Yang R: COVID-19 transmission
through asymptomatic carriers is a challenge to containment.
Influenza Other Respir Viruses. 14:474–475. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Toyoshima Y, Nemoto K, Matsumoto S,
Nakamura Y and Kiyotani K: SARS-CoV-2 genomic variations associated
with mortality rate of COVID-19. J Hum Genet. 1–8. Jul
22–2020.(Online ahead of print).
|
|
75
|
Liang W, Guan W, Chen R, Wang W, Li J, Xu
K, Li C, Ai Q, Lu W, Liang H, et al: Cancer patients in SARS-CoV-2
infection: A nationwide analysis in China. Lancet Oncol.
21:335–337. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang L, Zhu F, Xie L, Wang C, Wang J,
Chen R, Jia P, Guan HQ, Peng L, Chen Y, et al: Clinical
characteristics of COVID-19-infected cancer patients: A
retrospective case study in three hospitals within Wuhan, China.
Ann Oncol. 31:894–901. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lian J, Jin X, Hao S, Cai H, Zhang S,
Zheng L, Jia H, Hu J, Gao J, Zhang Y, et al: Analysis of
epidemiological and clinical features in older patients with
coronavirus disease 2019 (COVID-19) outside Wuhan. Clin Infect Dis.
71:740–747. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian
Z, Wang C, Wang Y, Li L, Ren L, et al: Activation and evasion of
type I interferon responses by SARS-CoV-2. Nat Commun. 11:38102020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mossel EC, Huang C, Narayanan K, Makino S,
Tesh RB and Peters CJ: Exogenous ACE2 expression allows refractory
cell lines to support severe acute respiratory syndrome coronavirus
replication. J Virol. 79:3846–3850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cai G: Tobacco-use disparity in gene
expression of ACE2, the receptor of 2019-nCov. medRxiv. 2020.
|
|
81
|
Bergmann CC, Lane T and Stohlman SA:
Coronavirus infection of the central nervous system: Host-virus
stand-off. Nat Rev Microbiol. 4:121–132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Takeuchi O and Akira S: Innate immunity to
virus infection. Immunol Rev. 227:75–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fung TS and Liu DX: Human coronavirus:
Host-pathogen interaction. Annu Rev Microbiol. 73:529–557. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Perlman S and Dandekar AA:
Immunopathogenesis of coronavirus infections: Implications for
SARS. Nat Rev Immunol. 5:917–927. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Newton AH, Cardani A and Braciale TJ: The
host immune response in respiratory virus infection: Balancing
virus clearance and immunopathology. Semin Immunopathol.
38:471–482. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li SW, Wang CY, Jou YJ, Huang SH, Hsiao
LH, Wan L, Lin YJ, Kung SH and Lin CW: SARS coronavirus papain-like
protease inhibits the TLR7 signaling pathway through removing
Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci.
17:6782016. View Article : Google Scholar
|
|
87
|
Cervantes-Barragan L, Lewis K, Firner S,
Thiel V, Hugues S, Reith W, Ludewig B and Reizis B: Plasmacytoid
dendritic cells control T-cell response to chronic viral infection.
Proc Natl Acad Sci USA. 109:3012–3017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li H, Wang YM, Xu JY and Cao B: Potential
antiviral therapeutics for 2019 novel coronavirus. Zhonghua Jie He
He Hu Xi Za Zhi. 43:E002Jul 23–2020.(Epub ahead of print) (In
Chinese). PubMed/NCBI
|
|
89
|
Versteeg GA, Bredenbeek PJ, van den Worm
SH and Spaan WJ: Group 2 coronaviruses prevent immediate early
interferon induction by protection of viral RNA from host cell
recognition. Virology. 361:18–26. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lui PY, Wong LY, Fung CL, Siu KL, Yeung
ML, Yuen KS, Chan CP, Woo PC, Yuen KY and Jin DY: Middle East
respiratory syndrome coronavirus M protein suppresses type I
interferon expression through the inhibition of TBK1-dependent
phosphorylation of IRF3. Emerg Microbes Infect. 5:e392016.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P
and Jin DY: Suppression of innate antiviral response by severe
acute respiratory syndrome coronavirus M protein is mediated
through the first transmembrane domain. Cell Mol Immunol.
11:141–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cheung CY, Poon LL, Ng IH, Luk W, Sia SF,
Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y and Peiris JS: Cytokine
responses in severe acute respiratory syndrome coronavirus-infected
macrophages in vitro: Possible relevance to pathogenesis. J Virol.
79:7819–7826. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Law HK, Cheung CY, Ng HY, Sia SF, Chan YO,
Luk W, Nicholls JM, Peiris JS and Lau YL: Chemokine up-regulation
in SARS-coronavirus-infected, monocyte-derived human dendritic
cells. Blood. 106:2366–2374. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wong CK, Lam C, Wu AK, Ip WK, Lee NL, Chan
IH, Lit LC, Hui DS, Chan MH, Chung SS and Sung JJ: Plasma
inflammatory cytokines and chemokines in severe acute respiratory
syndrome. Clin Exp Immunol. 136:95–103. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang Y, Li J, Zhan Y, Wu L, Yu X, Zhang
W, Ye L, Xu S, Sun R, Wang Y and Lou J: Analysis of serum cytokines
in patients with severe acute respiratory syndrome. Infect Immun.
72:4410–4415. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tynell J, Westenius V, Rönkkö E, Munster
VJ, Melén K, Österlund P and Julkunen I: Middle East respiratory
syndrome coronavirus shows poor replication but significant
induction of antiviral responses in human monocyte-derived
macrophages and dendritic cells. J Gen Virol. 97:344–355. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou J, Chu H, Li C, Wong BH, Cheng ZS,
Poon VK, Sun T, Lau CC, Wong KK, Chan JY, et al: Active replication
of Middle East respiratory syndrome coronavirus and aberrant
induction of inflammatory cytokines and chemokines in human
macrophages: Implications for pathogenesis. J Infect Dis.
209:1331–1342. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lau SKP, Lau CCY, Chan KH, Li CPY, Chen H,
Jin DY, Chan JFW, Woo PCY and Yuen KY: Delayed induction of
proinflammatory cytokines and suppression of innate antiviral
response by the novel Middle East respiratory syndrome coronavirus:
Implications for pathogenesis and treatment. J Gen Virol.
94:2679–2690. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kim ES, Choe PG, Park WB, Oh HS, Kim EJ,
Nam EY, Na SH, Kim M, Song KH, Bang JH, et al: Clinical progression
and cytokine profiles of Middle East respiratory syndrome
coronavirus infection. J Korean Med Sci. 31:1717–1725. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Min CK, Cheon S, Ha NY, Sohn KM, Kim Y,
Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, et al: Comparative and
kinetic analysis of viral shedding and immunological responses in
MERS patients representing a broad spectrum of disease severity.
Sci Rep. 6:253592016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wong RS, Wu A, To KF, Lee N, Lam CW, Wong
CK, Chan PK, Ng MH, Yu LM, Hui DS, et al: Haematological
manifestations in patients with severe acute respiratory syndrome:
Retrospective analysis. BMJ. 326:1358–1362. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z,
Ma X, Fan H, Lu W, Xie J, et al: Significant changes of peripheral
T lymphocyte subsets in patients with severe acute respiratory
syndrome. J Infect Dis. 189:648–651. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cui W, Fan Y, Wu W, Zhang F, Wang JY and
Ni AP: Expression of lymphocytes and lymphocyte subsets in patients
with severe acute respiratory syndrome. Clin Infect Dis.
37:857–859. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
104
|
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA,
Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN,
Balkhy HH, Al-Hakeem RF, et al: Epidemiological, demographic, and
clinical characteristics of 47 cases of Middle East respiratory
syndrome coronavirus disease from Saudi Arabia: A descriptive
study. Lancet Infect Dis. 13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Usul E, Şan İ, Bekgöz B and Şahin A: The
role of hematological parameters in COVID-19 patients in the
emergency room. Biomark Med. 14:1207–1215. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cai C, Zeng X, Ou AH, Huang Y and Zhang X:
Study on T cell subsets and their activated molecules from the
convalescent SARS patients during two follow-up surveys. Xi Bao Yu
Fen Zi Mian Yi Xue Za Zhi. 20:322–324. 2004.(In Chinese).
PubMed/NCBI
|
|
107
|
Yu XY, Zhang YC, Han CW, Wang P, Xue XJ
and Cong YL: Change of T lymphocyte and its activated subsets in
SARS patients. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 25:542–546.
2003.(In Chinese). PubMed/NCBI
|
|
108
|
van den Brand JM, Haagmans BL, van Riel D,
Osterhaus AD and Kuiken T: The pathology and pathogenesis of
experimental severe acute respiratory syndrome and influenza in
animal models. J Comp Pathol. 151:83–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gretebeck LM and Subbarao K: Animal models
for SARS and MERS coronaviruses. Curr Opin Virol. 13:123–129. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Roberts A, Paddock C, Vogel L, Butler E,
Zaki S and Subbarao K: Aged BALB/c mice as a model for increased
severity of severe acute respiratory syndrome in elderly humans. J
Virol. 79:5833–5838. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhao J, Zhao J, Legge K and Perlman S:
Age-related increases in PGD(2) expression impair respiratory DC
migration, resulting in diminished T cell responses upon
respiratory virus infection in mice. J Clin Invest. 121:4921–4930.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li T, Qiu Z, Han Y, Wang Z, Fan H, Lu W,
Xie J, Ma X and Wang A: Rapid loss of both CD4+ and CD8+ T
lymphocyte subsets during the acute phase of severe acute
respiratory syndrome. Chin Med J (Engl). 116:985–987.
2003.PubMed/NCBI
|
|
113
|
Kim KD, Zhao J, Auh S, Yang X, Du P, Tang
H and Fu YX: Adaptive immune cells temper initial innate responses.
Nat Med. 13:1248–1252. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao
Z, Koup RA, Bailer RT and Wu C: Persistent memory CD4+ and CD8+
T-cell responses in recovered severe acute respiratory syndrome
(SARS) patients to SARS coronavirus M antigen. J Gen Virol.
88:2740–2748. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yang LT, Peng H, Zhu ZL, Li G, Huang ZT,
Zhao ZX, Koup RA, Bailer RT and Wu CY: Long-lived effector/central
memory T-cell responses to severe acute respiratory syndrome
coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin
Immunol. 120:171–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Peng H, Yang LT, Wang LY, Li J, Huang J,
Lu ZQ, Koup RA, Bailer RT and Wu CY: Long-lived memory T lymphocyte
responses against SARS coronavirus nucleocapsid protein in
SARS-recovered patients. Virology. 351:466–475. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen H, Hou J, Jiang X, Ma S, Meng M, Wang
B, Zhang M, Zhang M, Tang X, Zhang F, et al: Response of memory
CD8+ T cells to severe acute respiratory syndrome (SARS)
coronavirus in recovered SARS patients and healthy individuals. J
Immunol. 175:591–598. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Rodriguez-Morales AJ, Cardona-Ospina JA,
Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y,
Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK,
Franco-Paredes C, Henao-Martinez AF, et al: Clinical, laboratory
and imaging features of COVID-19: A systematic review and
meta-analysis. Travel Med Infect Dis. 34:1016232020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu
GM and Zhang LJ: Coronavirus disease 2019 (COVID-19): A perspective
from China. Radiology. 296:E15–E25. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu H, Liu F, Li J, Zhang T, Wang D and
Lan W: Clinical and CT imaging features of the COVID-19 pneumonia:
Focus on pregnant women and children. J Infect. 80:e7–e13. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Umar A, Boisseau M, Segur MC, Begaud B and
Moore N: Effect of age of Armagnac extract and duration of
treatment on antithrombotic effects in a rat thrombosis model.
Thromb Res. 111:185–189. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gu J, Gong E, Zhang B, Zheng J, Gao Z,
Zhong Y, Zou W, Zhan J, Wang S, Xie Z, et al: Multiple organ
infection and the pathogenesis of SARS. J Exp Med. 202:415–424.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Nicholls JM, Poon LL, Lee KC, Ng WF, Lai
ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, et al: Lung pathology
of fatal severe acute respiratory syndrome. Lancet. 361:1773–1778.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ng DL, Al Hosani F, Keating MK, Gerber SI,
Jones TL, Metcalfe MG, Tong S, Tao Y, Alami NN, Haynes LM, et al:
Clinicopathologic, immunohistochemical, and ultrastructural
findings of a fatal case of middle east respiratory syndrome
coronavirus infection in the United Arab Emirates, April 2014. Am J
Pathol. 186:652–658. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Bhatia M and Moochhala S: Role of
inflammatory mediators in the pathophysiology of acute respiratory
distress syndrome. J Pathol. 202:145–156. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lew TW, Kwek TK, Tai D, Earnest A, Loo S,
Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, et al: Acute respiratory
distress syndrome in critically ill patients with severe acute
respiratory syndrome. JAMA. 290:374–380. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu
J, Luo W, Chen T, Qin Q and Deng P: Characterization of
cytokine/chemokine profiles of severe acute respiratory syndrome.
Am J Respir Crit Care Med. 171:850–857. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wuhan Municipal Health Commission, .
Report of clustering pneumonia of unknown etiology in Wuhan City.
Wuhan, China: 2019, http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989
|
|
129
|
Vabret N, Britton GJ, Gruber C, Hegde S,
Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, et al:
Immunology of COVID-19: Current state of the science. Immunity.
52:910–941. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang
Y, Dai T, Zhang T, Lai Y, Wang J, et al: COVID-19 infection induces
readily detectable morphological and inflammation-related
phenotypic changes in peripheral blood monocytes, the severity of
which correlate with patient outcome. medRxiv: 2020.03.24.20042655.
2020. View Article : Google Scholar
|
|
131
|
Cameron MJ, Bermejo-Martin JF, Danesh A,
Muller MP and Kelvin DJ: Human immunopathogenesis of severe acute
respiratory syndrome (SARS). Virus Res. 133:13–19. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ye Q, Wang B and Mao J: The pathogenesis
and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect.
80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Channappanavar R and Perlman S: Pathogenic
human coronavirus infections: Causes and consequences of cytokine
storm and immunopathology. Semin Immunopathol. 39:529–539. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xiang-Hua Y, Le-Min W, Ai-Bin L, Zhu G,
Riquan L, Xu-You Z, Wei-Wei R and Ye-Nan W: Severe acute
respiratory syndrome and venous thromboembolism in multiple organs.
Am J Respir Crit Care Med. 182:436–437. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Iba TA-O and Levy JH: Inflammation and
thrombosis: Roles of neutrophils, platelets and endothelial cells
and their interactions in thrombus formation during sepsis. J
Thromb Haemost. 16:231–241. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Akira S, Uematsu S and Takeuchi O:
Pathogen recognition and innate immunity. Cell. 124:783–801. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Connors JM and Levy JH: COVID-19 and its
implications for thrombosis and anticoagulation. Blood.
135:2033–2040. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Jackson S, Darbousset R and Schoenwaelder
S: Thromboinflammation: Challenges of therapeutically targeting
coagulation and other host defense mechanisms. Blood. 133:906–918.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Iba T, Levy JH, Wada H, Thachil J,
Warkentin T and Levi M; Subcommittee on Disseminated Intravascular
Coagulation, : Differential diagnoses for sepsis-induced
disseminated intravascular coagulation: Communication from the SSC
of the ISTH. J Thromb Haemost. 17:415–419. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Goshua G, Pine AB, Meizlish ML, Chang CH,
Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, et al:
Endotheliopathy in COVID-19-associated coagulopathy: Evidence from
a single-centre, cross-sectional study. Lancet Haematol.
7:e575–e582. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Del Turco S, Vianello A, Ragusa R, Caselli
C and Basta G: COVID-19 and cardiovascular consequences: Is the
endothelial dysfunction the hardest challenge? Thromb Res.
196:143–151. Aug 24–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|