|
1
|
D'Amato G and Cecchi L: Effects of climate
change on environmental factors in respiratory allergic diseases.
Clin Exp Allergy. 38:1264–1274. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ferkol T and Schraufnagel D: The global
burden of respiratory disease. Ann Am Thorac Soc. 11:404–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Newman SP: Delivering drugs to the lungs:
The history of repurposing in the treatment of respiratory
diseases. Adv Drug Deliv Rev. 133:5–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chang LH and Rivera MP: Respiratory
diseases: Meeting the challenges of screening, prevention, and
treatment. N C Med J. 74:385–392. 2013.PubMed/NCBI
|
|
5
|
Jeong J, Lee S, Kim SH, Han Y, Lee DK,
Yang JY, Jeong J, Roh C, Huh YS and Cho WS: Evaluation of the dose
metric for acute lung inflammogenicity of fast-dissolving metal
oxide nanoparticles. Nanotoxicology. 10:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pison U, Welte T, Giersig M and Groneberg
DA: Nanomedicine for respiratory diseases. Eur J Pharmacol.
533:341–350. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fröhlich E and Salar-Behzadi S:
Toxicological assessment of inhaled nanoparticles: Role of in vivo,
ex vivo, in vitro, and in silico studies. Int J Mol Sci.
15:4795–4822. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sung JC, Pulliam BL and Edwards DA:
Nanoparticles for drug delivery to the lungs. Trends Biotechnol.
25:563–570. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bakand S, Hayes A and Dechsakulthorn F:
Nanoparticles: A review of particle toxicology following inhalation
exposure. Inhal Toxicol. 24:125–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Donaldson K, Tran L, Jimenez LA, Duffin R,
Newby DE, Mills N, MacNee W and Stone V: Combustion-derived
nanoparticles: A review of their toxicology following inhalation
exposure. Part Fibre Toxicol. 2:102005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xu Y, Li S, Luo Z, Ren H, Zhang X, Huang
F, Zuo YY and Yue T: Role of lipid coating in the transport of
nanodroplets across the pulmonary surfactant layer revealed by
molecular dynamics simulations. Langmuir. 34:9054–9063. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Auria-Soro C, Nesma T, Juanes-Velasco P,
Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R,
Parra MJA, Manzano-Roman R and Fuentes M: Interactions of
nanoparticles and biosystems: Microenvironment of nanoparticles and
biomolecules in nanomedicine. Nanomaterials (Basel). 9:13652019.
View Article : Google Scholar
|
|
13
|
Senapati S, Mahanta AK, Kumar S and Maiti
P: Controlled drug delivery vehicles for cancer treatment and their
performance. Signal Transduct Target Ther. 3:72018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Poh TY, Mohamed Ali NAB, Aogáin MM,
Kathawala MH, Setyawati MI, Ng KW and Chotirmall SH: Inhaled
nanomaterials and the respiratory microbiome: Clinical,
immunological and toxicological perspectives. Part Fibre Toxicol.
15:462018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Oberdorster G, Elder A and Rinderknecht A:
Nanoparticles and the brain: Cause for concern? J Nanosci
Nanotechnol. 9:4996–5007. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Murgia X, Pawelzyk P, Schaefer UF, Wagner
C, Willenbacher N and Lehr CM: Size-Limited penetration of
nanoparticles into porcine respiratory mucus after aerosol
deposition. Biomacromolecules. 17:1536–1542. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Blank F, Stumbles PA, Seydoux E, Holt PG,
Fink A, Rothen-Rutishauser B, Strickland DH and von Garnier C:
Size-Dependent uptake of particles by pulmonary antigen-presenting
cell populations and trafficking to regional lymph nodes. Am J
Respir Cell Mol Biol. 49:67–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ghaffar KA, Marasini N, Giddam AK,
Batzloff MR, Good MF, Skwarczynski M and Toth I: The role of size
in development of mucosal liposome-lipopeptide vaccine candidates
against group a streptococcus. Med Chem. 13:22–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Murugan K, Choonara YE, Kumar P, Bijukumar
D, du Toit LC and Pillay V: Parameters and characteristics
governing cellular internalization and trans-barrier trafficking of
nanostructures. Int J Nanomedicine. 10:2191–2206. 2015.PubMed/NCBI
|
|
20
|
Zhang L, Wang Y, Yang D, Huang W, Hao P,
Feng S, Appelhans D, Zhang T and Zan X: Shape effect of
nanoparticles on tumor penetration in monolayers versus spheroids.
Mol Pharm. 16:2902–2911. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gratton SE, Ropp PA, Pohlhaus PD, Luft JC,
Madden VJ, Napier ME and DeSimone JM: The effect of particle design
on cellular internalization pathways. Proc Natl Acad Sci USA.
105:11613–11618. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Black KC, Wang Y, Luehmann HP, Cai X, Xing
W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y and Xia Y: Radioactive
198Au-doped nanostructures with different shapes for in vivo
analyses of their biodistribution, tumor uptake, and intratumoral
distribution. ACS Nano. 8:4385–4394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hu G, Jiao B, Shi X, Valle RP, Fan Q and
Zuo YY: Physicochemical properties of nanoparticles regulate
translocation across pulmonary surfactant monolayer and formation
of lipoprotein corona. ACS Nano. 7:10525–10533. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin X, Zuo YY and Gu N: Shape affects the
interactions of nanoparticles with pulmonary surfactant. Sci China
Mater. 58:28–37. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Beck-Broichsitter M, Ruppert C, Schmehl T,
Günther A and Seeger W: Biophysical inhibition of synthetic vs.
Naturally-Derived pulmonary surfactant preparations by polymeric
nanoparticles. Biochim Biophys Acta. 1838:474–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li J: Development of a QTsome lipid
nanoparticle delivery platform for oligonucleotide therapeutics.
The Ohio State University. 2018.
|
|
27
|
Mousseau F and Berret JF: The role of
surface charge in the interaction of nanoparticles with model
pulmonary surfactants. Soft Matter. 14:5764–5774. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fromen CA, Rahhal TB, Robbins GR, Kai MP,
Shen TW, Luft JC and DeSimone JM: Nanoparticle surface charge
impacts distribution, uptake and lymph node trafficking by
pulmonary antigen-presenting cells. Nanomedicine. 12:677–687. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tada R, Hidaka A, Kiyono H, Kunisawa J and
Aramaki Y: Intranasal administration of cationic liposomes enhanced
granulocyte-macrophage colony-stimulating factor expression and
this expression is dispensable for mucosal adjuvant activity. BMC
Res Notes. 11:4722018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fromen CA, Robbins GR, Shen TW, Kai MP,
Ting JP and DeSimone JM: Controlled analysis of nanoparticle charge
on mucosal and systemic antibody responses following pulmonary
immunization. Proc Natl Acad Sci U S A. 112:488–493. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Howard KA, Rahbek UL, Liu X, Damgaard CK,
Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR,
Besenbacher F and Kjems J: RNA interference in vitro and in vivo
using a novel chitosan/siRNA nanoparticle system. Mol Ther.
14:476–484. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fadeel B: Clear and present danger?
Engineered nanoparticles and the immune system. Swiss Med Wkly.
142:w136092012.PubMed/NCBI
|
|
33
|
Li B, Xie J, Yuan Z, Jain P, Lin X, Wu K
and Jiang S: Mitigation of inflammatory immune responses with
hydrophilic nanoparticles. Angew Chem Int Ed Engl. 57:4527–4531.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Guzmán E, Ferrari M, Santini E, Liggieri L
and Ravera F: Effect of silica nanoparticles on the interfacial
properties of a canonical lipid mixture. Colloids Surf B
Biointerfaces. 136:971–980. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Borm PJ and Kreyling W: Toxicological
hazards of inhaled nanoparticles-potential implications for drug
delivery. J Nanosci Nanotechnol. 4:521–531. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Oberdörster G, Oberdörster E and
Oberdörster J: Nanotoxicology: An emerging discipline evolving from
studies of ultrafine particles. Environ Health Perspect.
113:823–839. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ngan CL and Asmawi AA: Lipid-Based
pulmonary delivery system: A review and future considerations of
formulation strategies and limitations. Drug Deliv Transl Res.
8:1527–1544. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Patra JK, Das G, Fraceto LF, Campos EVR,
Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R,
Swamy MK, Sharma S, et al: Nano based drug delivery systems: Recent
developments and future prospects. J Nanobiotechnology. 16:712018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bulbake U, Doppalapudi S, Kommineni N and
Khan W: Liposomal formulations in clinical use: An updated review.
Pharmaceutics. 9:122017. View Article : Google Scholar
|
|
40
|
Rudokas M, Najlah M, Alhnan MA and Elhissi
A: Liposome delivery systems for inhalation: A critical review
highlighting formulation issues and anticancer applications. Med
Princ Pract. 25:60–72. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH,
Chen X, Zhang G, Lu A and Yang Z: Surface functionalization and
targeting strategies of liposomes in solid tumor therapy: A Review.
Int J Mol Sci. 19:1952018. View Article : Google Scholar
|
|
42
|
Garbuzenko OB, Mainelis G, Taratula O and
Minko T: Inhalation treatment of lung cancer: The influence of
composition, size and shape of nanocarriers on their lung
accumulation and retention. Cancer Biol Med. 11:44–55.
2014.PubMed/NCBI
|
|
43
|
Barenholz Y: Doxil®-the first
FDA-approved nano-drug: lessons learned. J Control Release.
160:117–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rust DM and Jameson G: The novel lipid
delivery system of amphotericin B: Drug profile and relevance to
clinical practice. Oncol Nurs Forum. 25:35–48. 1998.PubMed/NCBI
|
|
45
|
Garbuzenko OB, Saad M, Betigeri S, Zhang
M, Vetcher AA, Soldatenkov VA, Reimer DC, Pozharov VP and Minko T:
Intratracheal versus intravenous liposomal delivery of siRNA,
antisense oligonucleotides and anticancer drug. Pharm Res.
26:382–394. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Koshkina NV, Waldrep JC, Roberts LE,
Golunski E, Melton S and Knight V: Paclitaxel liposome aerosol
treatment induces inhibition of pulmonary metastases in murine
renal carcinoma model. Clin Cancer Res. 7:3258–3262.
2001.PubMed/NCBI
|
|
47
|
Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju
C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, et al:
Depletion of tumor-associated macrophages slows the growth of
chemically induced mouse lung adenocarcinomas. Front Immunol.
5:5872014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wittgen BP, Kunst PW, van der Born K, van
Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S,
Peters GJ and Postmus PE: Phase I study of aerosolized SLIT
cisplatin in the treatment of patients with carcinoma of the lung.
Clin Cancer Res. 13:2414–2421. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Olivier KN, Griffith DE, Eagle G, McGinnis
JP II, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S,
Addrizzo-Harris DJ, et al: Randomized trial of liposomal amikacin
for inhalation in nontuberculous mycobacterial lung disease. Am J
Respir Crit Care Med. 195:814–823. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang J, Leifer F, Rose S, Chun DY, Thaisz
J, Herr T, Nashed M, Joseph J, Perkins WR and DiPetrillo K:
Amikacin liposome inhalation suspension (ALIS) penetrates
non-tuberculous mycobacterial biofilms and enhances amikacin uptake
into macrophages. Front Microbiol. 9:9152018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Okusanya OO, Bhavnani SM, Hammel J, Minic
P, Dupont LJ, Forrest A, Mulder GJ, Mackinson C, Ambrose PG and
Gupta R: Pharmacokinetic and pharmacodynamic evaluation of
liposomal amikacin for inhalation in cystic fibrosis patients with
chronic pseudomonal infection. Antimicrob Agents Chemother.
53:3847–3854. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Konduri KS, Nandedkar S, Rickaby DA,
Düzgüneş N and Gangadharam PR: The use of sterically stabilized
liposomes to treat asthma. Methods Enzymol. 391:413–427. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen X, Huang W, Wong BC, Yin L, Wong YF,
Xu M and Yang Z: Liposomes prolong the therapeutic effect of
anti-asthmatic medication via pulmonary delivery. Int J
Nanomedicine. 7:1139–1148. 2012.PubMed/NCBI
|
|
54
|
Ng ZY, Wong JY, Panneerselvam J,
Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M, Wark
P, et al: Assessing the potential of liposomes loaded with curcumin
as a therapeutic intervention in asthma. Colloids Surf B
Biointerfaces. 172:51–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Komalla V, Allam VS, Kwok CL,
Sheikholeslami B, Owen L, Jaffe A, Waters SA, Mohammad S, Oliver
BG, Chen H and Haghi M: A phospholipid-based formulation for the
treatment of airway inflammation in chronic respiratory diseases.
Eur J Pharm Biopharm. 157:47–58. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nahar K, Absar S, Patel B and Ahsan F:
Starch-coated magnetic liposomes as an inhalable carrier for
accumulation of fasudil in the pulmonary vasculature. Int J Pharm.
464:185–195. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wijagkanalan W, Kawakami S, Takenaga M,
Igarashi R, Yamashita F and Hashida M: Efficient targeting to
alveolar macrophages by intratracheal administration of
mannosylated liposomes in rats. J Control Release. 125:121–130.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cryan SA, Devocelle M, Moran PJ, Hickey AJ
and Kelly JG: Increased intracellular targeting to airway cells
using octaarginine-coated liposomes: In vitro assessment of their
suitability for inhalation. Mol Pharm. 3:104–112. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Uner M and Yener G: Importance of solid
lipid nanoparticles (SLN) in various administration routes and
future perspectives. Int J Nanomedicine. 2:289–300. 2007.PubMed/NCBI
|
|
60
|
Bi R, Shao W, Wang Q and Zhang N: Solid
lipid nanoparticles as insulin inhalation carriers for enhanced
pulmonary delivery. J Biomed Nanotechnol. 5:84–92. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nassimi M, Schleh C, Lauenstein HD,
Hussein R, Lübbers K, Pohlmann G, Switalla S, Sewald K, Müller M,
Krug N, et al: Low cytotoxicity of solid lipid nanoparticles in in
vitro and ex vivo lung models. Inhal Toxicol. 21:104–109. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Videira M, Almeida AJ and Fabra A:
Preclinical evaluation of a pulmonary delivered paclitaxel-loaded
lipid nanocarrier antitumor effect. Nanomedicine. 8:1208–1215.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Castellani S, Trapani A, Spagnoletta A, di
Toma L, Magrone T, Di Gioia S, Mandracchia D, Trapani G, Jirillo E
and Conese M: Nanoparticle delivery of grape seed-derived
proanthocyanidins to airway epithelial cells dampens oxidative
stress and inflammation. J Transl Med. 16:1402018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bayón-Cordero L, Alkorta I and Arana L:
Application of solid lipid nanoparticles to improve the efficiency
of anticancer drugs. Nanomaterials (Basel). 9:4742019. View Article : Google Scholar
|
|
65
|
Maretti E, Costantino L, Buttini F,
Rustichelli C, Leo E, Truzzi E and Iannuccelli V: Newly synthesized
surfactants for surface mannosylation of respirable SLN assemblies
to target macrophages in tuberculosis therapy. Drug Deliv Transl
Res. 9:298–310. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nimje N, Agarwal A, Saraogi GK, Lariya N,
Rai G, Agrawal H and Agrawal GP: Mannosylated nanoparticulate
carriers of rifabutin for alveolar targeting. J Drug Target.
17:777–787. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rytting E, Nguyen J, Wang X and Kissel T:
Biodegradable polymeric nanocarriers for pulmonary drug delivery.
Expert Opin Drug Deliv. 5:629–639. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Marasini N, Haque S and Kaminskas LM:
Polymer-Drug conjugates as inhalable drug delivery systems: A
review. Curr Opin Colloid Interface Sci. 31:2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang M, Yamamoto H, Kurashima H, Takeuchi
H, Yokoyama T, Tsujimoto H and Kawashima Y: Design and evaluation
of poly(DL-lactic-co-glycolic acid) nanocomposite particles
containing salmon calcitonin for inhalation. Eur J Pharm Sci.
46:374–380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Türeli NG, Torge A, Juntke J, Schwarz BC,
Schneider-Daum N, Türeli AE, Lehr CM and Schneider M:
Ciprofloxacin-Loaded PLGA nanoparticles against cystic fibrosis P.
Aeruginosa lung infections. Eur J Pharm Biopharm. 117:363–371.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT,
Shin BS, Lee KC and Youn YS: Doxorubicin-Loaded highly porous large
PLGA microparticles as a sustained- release inhalation system for
the treatment of metastatic lung cancer. Biomaterials.
33:5574–5583. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pandey R, Sharma A, Zahoor A, Sharma S,
Khuller GK and Prasad B: Poly (DL-lactide-co-glycolide)
nanoparticle-based inhalable sustained drug delivery system for
experimental tuberculosis. J Antimicrob Chemother. 52:981–986.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tomoda K, Ohkoshi T, Hirota K, Sonavane
GS, Nakajima T, Terada H, Komuro M, Kitazato K and Makino K:
Preparation and properties of inhalable nanocomposite particles for
treatment of lung cancer. Colloids Surf B Biointerfaces.
71:177–182. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zou W, Liu C, Chen Z and Zhang N: Studies
on bioadhesive PLGA nanoparticles: A promising gene delivery system
for efficient gene therapy to lung cancer. Int J Pharm.
370:187–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dailey LA and Kissel T: New
poly(lactic-co-glycolic acid) derivatives: Modular polymers with
tailored properties. Drug Discov Today Technol. 2:7–13. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xu Y, Kim CS, Saylor DM and Koo D: Polymer
degradation and drug delivery in PLGA-based drug-polymer
applications: A review of experiments and theories. J Biomed Mater
Res B Appl Biomater. 105:1692–1716. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fu J, Fiegel J, Krauland E and Hanes J:
New polymeric carriers for controlled drug delivery following
inhalation or injection. Biomaterials. 23:4425–4433. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fatemeh DRA, Shahmabadi HE, Abedi A, Alavi
SE, Movahedi F, Esfahani MKM, Mehrizi TZ and Akbarzadeh A:
Polybutylcyanoacrylate nanoparticles and drugs of the platinum
family: Last status. Indian J Clin Biochem. 29:333–338. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Melguizo C, Cabeza L, Prados J, Ortiz R,
Caba O, Rama AR, Delgado ÁV and Arias JL: Enhanced antitumoral
activity of doxorubicin against lung cancer cells using
biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des
Devel Ther. 9:6433–6444. 2015.PubMed/NCBI
|
|
80
|
Choi WS, Murthy GG, Edwards DA, Langer R
and Klibanov AM: Inhalation delivery of proteins from ethanol
suspensions. Proc Natl Acad Sci USA. 98:11103–11107. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nam JP and Nah JW: Target gene delivery
from targeting ligand conjugated chitosan-PEI copolymer for cancer
therapy. Carbohydr Polym. 135:153–161. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhao L, Li Y, Pei D, Huang Q, Zhang H,
Yang Z, Li F and Shi T: Glycopolymers/PEI complexes as
serum-tolerant vectors for enhanced gene delivery to hepatocytes.
Carbohydr Polym. 205:167–175. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
B. Thapa and R. Narain; 1-Mechanism
current challenges new approaches for non viral gene delivery, :
Ravin Narain, Polymers and Nanomaterials for Gene Therapy. Woodhead
Publishing; 2016, pp. 1–27
|
|
84
|
Germershaus O, Mao S, Sitterberg J,
Bakowsky U and Kissel T: Gene delivery using chitosan, trimethyl
chitosan or polyethylenglycol-graft-trimethyl chitosan block
copolymers: Establishment of structure-activity relationships in
vitro. J Control Release. 125:145–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mehta M, Deeksha, Tewari D, Gupta G,
Awasthi R, Singh H, Pandey P, Chellappan DK, Wadhwa R, Collet T, et
al: Oligonucleotide therapy: An emerging focus area for drug
delivery in chronic inflammatory respiratory diseases. Chem Biol
Interact. 308:206–215. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ahmad J, Akhter S, Rizwanullah Md, Amin S,
Rahman M, Ahmad MZ, Rizvi MA, Kamal MA and Ahmad FJ:
Nanotechnology-Based inhalation treatments for lung cancer: State
of the art. Nanotechnol Sci Appl. 8:55–66. 2015.PubMed/NCBI
|
|
87
|
Mendes LP, Pan J and Torchilin VP:
Dendrimers as nanocarriers for nucleic acid and drug delivery in
cancer therapy. Molecules. 22:14012017. View Article : Google Scholar
|
|
88
|
Bellini RG, Guimarães AP, Pacheco MA, Dias
DM, Furtado VR, de Alencastro RB and Horta BAC: Association of the
anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol
Graph Model. 60:34–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rajabnezhad S, Casettari L, Lam JK, Nomani
A, Torkamani MR, Palmieri GF, Rajabnejad MR and Darbandi MA:
Pulmonary delivery of rifampicin microspheres using lower
generation polyamidoamine dendrimers as a carrier. Powder Technol.
291:366–374. 2016. View Article : Google Scholar
|
|
90
|
Conti DS, Brewer D, Grashik J, Avasarala S
and da Rocha SR: Poly(amidoamine) dendrimer nanocarriers and their
aerosol formulations for siRNA delivery to the lung epithelium. Mol
Pharm. 11:1808–1822. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhong Q, Bielski ER, Rodrigues LS, Brown
MR, Reineke JJ and da Rocha SR: Conjugation to poly(amidoamine)
dendrimers and pulmonary delivery reduce cardiac accumulation and
enhance antitumor activity of doxorubicin in lung metastasis. Mol
Pharm. 13:2363–2375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Inapagolla R, Guru BR, Kurtoglu YE, Gao X,
Lieh-Lai M, Bassett DJP and Kannan RM: In vivo efficacy of
dendrimer-methylprednisolone conjugate formulation for the
treatment of lung inflammation. Int J Pharm. 399:140–147. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mehta M, Deeksha, Sharma N, Vyas M,
Khurana N, Maurya PK, Singh H, de Jesus TPA, Dureja H, Chellappan
DK, et al: Interactions with the macrophages: An emerging targeted
approach using novel drug delivery systems in respiratory diseases.
Chem Biol Interact. 304:10–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cortajarena AL, Ortega D, Ocampo SM,
Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C and
Ayuso-Sacido A: Engineering iron oxide nanoparticles for clinical
settings. Nanobiomedicine (Rij). 1:22014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Motomura K, Ishitobi M, Komoike Y, Koyama
H, Noguchi A, Sumino H, Kumatani Y, Inaji H, Horinouchi T and
Nakanishi K: SPIO-Enhanced magnetic resonance imaging for the
detection of metastases in sentinel nodes localized by computed
tomography lymphography in patients with breast cancer. Ann Surg
Oncol. 18:3422–3429. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yhee JY, Im J and Nho RS: Advanced
therapeutic strategies for chronic lung disease using
nanoparticle-based drug delivery. J Clin Med. 5:822016. View Article : Google Scholar
|
|
97
|
Chen YH, Tsai CY, Huang PY, Chang MY,
Cheng PC, Chou CH, Chen DH, Wang CR, Shiau AL and Wu CL:
Methotrexate conjugated to gold nanoparticles inhibits tumor growth
in a syngeneic lung tumor model. Mol Pharm. 4:713–722. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Brown SD, Nativo P, Smith JA, Stirling D,
Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D and Wheate
NJ: Gold nanoparticles for the improved anticancer drug delivery of
the active component of oxaliplatin. J Am Chem Soc. 132:4678–4684.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Codullo V, Cova E, Pandolfi L, Breda S,
Morosini M, Frangipane V, Malatesta M, Calderan L, Cagnone M,
Pacini C, et al: Imatinib-Loaded gold nanoparticles inhibit
proliferation of fibroblasts and macrophages from systemic
sclerosis patients and ameliorate experimental bleomycin-induced
lung fibrosis. J Control Release. 310:198–208. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang J, Mou L and Jiang X: Surface
chemistry of gold nanoparticles for health-related applications.
Chem Sci. 11:923–936. 2020. View Article : Google Scholar
|
|
101
|
Omlor AJ, Le DD, Schlicker J, Hannig M,
Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, et al:
Local effects on airway inflammation and systemic uptake of 5 nm
PEGylated and citrated gold nanoparticles in asthmatic mice. Small.
13:10022017. View Article : Google Scholar
|
|
102
|
Park H, Tsutsumi H and Mihara H:
Cell-Selective intracellular drug delivery using doxorubicin and
α-helical peptides conjugated to gold nanoparticles. Biomaterials.
35:3480–3487. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bhaskar S and Lim S: Engineering protein
nanocages as carriers for biomedical applications. NPG Asia Mater.
9:e3712017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Syomin BV and Ilyin YV: Virus-Like
particles as an instrument of vaccine production. Mol Biol.
53:323–334. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bobo D, Robinson KJ, Islam J, Thurecht KJ
and Corrie SR: Nanoparticle-Based medicines: A review of
FDA-approved materials and clinical trials to date. Pharm Res.
33:2373–2387. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Renukaradhya GJ, Narasimhan B and
Mallapragada SK: Respiratory nanoparticle-based vaccines and
challenges associated with animal models and translation. J
Controll Release. 219:622–631. 2015. View Article : Google Scholar
|
|
107
|
Coleman CM, Liu YV, Mu H, Taylor JK,
Massare M, Flyer DC, Smith GE and Frieman MB: Purified coronavirus
spike protein nanoparticles induce coronavirus neutralizing
antibodies in mice. Vaccine. 32:3169–3174. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Smith G, Raghunandan R, Wu Y, Liu Y,
Massare M, Nathan M, Zhou B, Lu H, Boddapati S, Li J, et al:
Respiratory syncytial virus fusion glycoprotein expressed in insect
cells form protein nanoparticles that induce protective immunity in
cotton rats. PLoS One. 7:e508522012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lee YT, Ko EJ, Kim KH, Hwang HS, Lee Y,
Kwon YM, Kim MC, Lee YN, Jung YJ and Kang SM: Cellular immune
correlates preventing disease against respiratory syncytial virus
by vaccination with virus-like nanoparticles carrying fusion
proteins. J Biomed Nanotechnol. 13:84–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Pápay ZE, Kósa A, Böddi B, Merchant Z,
Saleem IY, Zariwala MG, Klebovich I, Somavarapu S and Antal I:
Study on the pulmonary delivery system of apigenin-loaded albumin
nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug
Deliv. 30:274–288. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Labiris NR and Dolovich MB: Pulmonary drug
delivery. Part I: Physiological factors affecting therapeutic
effectiveness of aerosolized medications. Br J Clin Pharmacol.
56:588–599. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Patton JS, Fishburn CS and Weers JG: The
lungs as a portal of entry for systemic drug delivery. Proc Am
Thorac Soc. 1:338–344. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shen AM and Minko T: Pharmacokinetics of
inhaled nanotherapeutics for pulmonary delivery. J Control Release.
326:222–244. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Scherließ R: Future of nanomedicines for
treating respiratory diseases. Expert Opin Drug Deliv. 16:59–68.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Oberdörster G: Safety assessment for
nanotechnology and nanomedicine: Concepts of nanotoxicology. J
Intern Med. 267:89–105. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ferreira AJ, Cemlyn-Jones J and Cordeiro
CR: Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev
Port Pneumol. 19:28–37. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Jones MC, Jones SA, Riffo-Vasquez Y, Spina
D, Hoffman E, Morgan A, Patel A, Page C, Forbes B and Dailey LA:
Quantitative assessment of nanoparticle surface hydrophobicity and
its influence on pulmonary biocompatibility. J Control Release.
183:94–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Dailey LA, Jekel N, Fink L, Gessler T,
Schmehl T, Wittmar M, Kissel T and Seeger W: Investigation of the
proinflammatory potential of biodegradable nanoparticle drug
delivery systems in the lung. Toxicol Appl Pharmacol. 215:100–108.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhang WF, Zhou HY, Chen XG, Tang SH and
Zhang JJ: Biocompatibility study of
theophylline/chitosan/beta-cyclodextrin microspheres as pulmonary
delivery carriers. J Mater Sci Mater Med. 20:1321–1330. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Nakamura K, Matsubara H, Akagi S,
Sarashina T, Ejiri K, Kawakita N, Yoshida M, Miyoshi T, Watanabe A,
Nishii N and Ito H: Nanoparticle-Mediated drug delivery system for
pulmonary arterial hypertension. J Clin Med. 6:482017. View Article : Google Scholar
|