Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application of nanotechnology in drug delivery systems for respiratory diseases (Review)

  • Authors:
    • Ming-Xin Luo
    • Shan Hua
    • Qi-Yun Shang
  • View Affiliations / Copyright

    Affiliations: Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
    Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 325
    |
    Published online on: March 5, 2021
       https://doi.org/10.3892/mmr.2021.11964
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Respiratory disease is a common disease with a high incidence worldwide, which is a serious threat to human health, and is considered a societal and economic burden. The application of nanotechnology in drug delivery systems has created new treatments for respiratory diseases. Within this context, the present review systematically introduced the physicochemical properties of nanoparticles (NPs); reviewed the current research status of different nanocarriers in the treatment of respiratory diseases, including liposomes, solid lipid nanocarriers, polymeric nanocarriers, dendrimers, inorganic nanocarriers and protein nanocarriers; and discussed the main advantages and limitations of therapeutic nanomedicine in this field. The application of nanotechnology overcomes drug inherent deficiencies to a certain extent, and provides unlimited potential for the development of drugs to treat respiratory diseases. However, most of the related research work is in the preclinical experimental stage and safety assessment is still a challenging task. Future studies are needed to focus on the performance modification, molecular mechanism and potential toxicity of therapeutic nanomedicine.
View Figures
View References

1 

D'Amato G and Cecchi L: Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy. 38:1264–1274. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Ferkol T and Schraufnagel D: The global burden of respiratory disease. Ann Am Thorac Soc. 11:404–406. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Newman SP: Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev. 133:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Chang LH and Rivera MP: Respiratory diseases: Meeting the challenges of screening, prevention, and treatment. N C Med J. 74:385–392. 2013.PubMed/NCBI

5 

Jeong J, Lee S, Kim SH, Han Y, Lee DK, Yang JY, Jeong J, Roh C, Huh YS and Cho WS: Evaluation of the dose metric for acute lung inflammogenicity of fast-dissolving metal oxide nanoparticles. Nanotoxicology. 10:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Pison U, Welte T, Giersig M and Groneberg DA: Nanomedicine for respiratory diseases. Eur J Pharmacol. 533:341–350. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Fröhlich E and Salar-Behzadi S: Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 15:4795–4822. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Sung JC, Pulliam BL and Edwards DA: Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25:563–570. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Bakand S, Hayes A and Dechsakulthorn F: Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal Toxicol. 24:125–135. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W and Stone V: Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2:102005. View Article : Google Scholar : PubMed/NCBI

11 

Xu Y, Li S, Luo Z, Ren H, Zhang X, Huang F, Zuo YY and Yue T: Role of lipid coating in the transport of nanodroplets across the pulmonary surfactant layer revealed by molecular dynamics simulations. Langmuir. 34:9054–9063. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Auria-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Parra MJA, Manzano-Roman R and Fuentes M: Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel). 9:13652019. View Article : Google Scholar

13 

Senapati S, Mahanta AK, Kumar S and Maiti P: Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 3:72018. View Article : Google Scholar : PubMed/NCBI

14 

Poh TY, Mohamed Ali NAB, Aogáin MM, Kathawala MH, Setyawati MI, Ng KW and Chotirmall SH: Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Part Fibre Toxicol. 15:462018. View Article : Google Scholar : PubMed/NCBI

15 

Oberdorster G, Elder A and Rinderknecht A: Nanoparticles and the brain: Cause for concern? J Nanosci Nanotechnol. 9:4996–5007. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Murgia X, Pawelzyk P, Schaefer UF, Wagner C, Willenbacher N and Lehr CM: Size-Limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules. 17:1536–1542. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, Strickland DH and von Garnier C: Size-Dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol. 49:67–77. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M and Toth I: The role of size in development of mucosal liposome-lipopeptide vaccine candidates against group a streptococcus. Med Chem. 13:22–27. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC and Pillay V: Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomedicine. 10:2191–2206. 2015.PubMed/NCBI

20 

Zhang L, Wang Y, Yang D, Huang W, Hao P, Feng S, Appelhans D, Zhang T and Zan X: Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol Pharm. 16:2902–2911. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME and DeSimone JM: The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 105:11613–11618. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Black KC, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y and Xia Y: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 8:4385–4394. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Hu G, Jiao B, Shi X, Valle RP, Fan Q and Zuo YY: Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano. 7:10525–10533. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Lin X, Zuo YY and Gu N: Shape affects the interactions of nanoparticles with pulmonary surfactant. Sci China Mater. 58:28–37. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Beck-Broichsitter M, Ruppert C, Schmehl T, Günther A and Seeger W: Biophysical inhibition of synthetic vs. Naturally-Derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta. 1838:474–481. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Li J: Development of a QTsome lipid nanoparticle delivery platform for oligonucleotide therapeutics. The Ohio State University. 2018.

27 

Mousseau F and Berret JF: The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants. Soft Matter. 14:5764–5774. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC and DeSimone JM: Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine. 12:677–687. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Tada R, Hidaka A, Kiyono H, Kunisawa J and Aramaki Y: Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes. 11:4722018. View Article : Google Scholar : PubMed/NCBI

30 

Fromen CA, Robbins GR, Shen TW, Kai MP, Ting JP and DeSimone JM: Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci U S A. 112:488–493. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F and Kjems J: RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 14:476–484. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Fadeel B: Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly. 142:w136092012.PubMed/NCBI

33 

Li B, Xie J, Yuan Z, Jain P, Lin X, Wu K and Jiang S: Mitigation of inflammatory immune responses with hydrophilic nanoparticles. Angew Chem Int Ed Engl. 57:4527–4531. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Guzmán E, Ferrari M, Santini E, Liggieri L and Ravera F: Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids Surf B Biointerfaces. 136:971–980. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Borm PJ and Kreyling W: Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol. 4:521–531. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Oberdörster G, Oberdörster E and Oberdörster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Ngan CL and Asmawi AA: Lipid-Based pulmonary delivery system: A review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 8:1527–1544. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al: Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 16:712018. View Article : Google Scholar : PubMed/NCBI

39 

Bulbake U, Doppalapudi S, Kommineni N and Khan W: Liposomal formulations in clinical use: An updated review. Pharmaceutics. 9:122017. View Article : Google Scholar

40 

Rudokas M, Najlah M, Alhnan MA and Elhissi A: Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med Princ Pract. 25:60–72. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A and Yang Z: Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A Review. Int J Mol Sci. 19:1952018. View Article : Google Scholar

42 

Garbuzenko OB, Mainelis G, Taratula O and Minko T: Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med. 11:44–55. 2014.PubMed/NCBI

43 

Barenholz Y: Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 160:117–134. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Rust DM and Jameson G: The novel lipid delivery system of amphotericin B: Drug profile and relevance to clinical practice. Oncol Nurs Forum. 25:35–48. 1998.PubMed/NCBI

45 

Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA, Reimer DC, Pozharov VP and Minko T: Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res. 26:382–394. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Koshkina NV, Waldrep JC, Roberts LE, Golunski E, Melton S and Knight V: Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res. 7:3258–3262. 2001.PubMed/NCBI

47 

Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, et al: Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 5:5872014. View Article : Google Scholar : PubMed/NCBI

48 

Wittgen BP, Kunst PW, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S, Peters GJ and Postmus PE: Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res. 13:2414–2421. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Olivier KN, Griffith DE, Eagle G, McGinnis JP II, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ, et al: Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 195:814–823. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, Nashed M, Joseph J, Perkins WR and DiPetrillo K: Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 9:9152018. View Article : Google Scholar : PubMed/NCBI

51 

Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, Mulder GJ, Mackinson C, Ambrose PG and Gupta R: Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 53:3847–3854. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Konduri KS, Nandedkar S, Rickaby DA, Düzgüneş N and Gangadharam PR: The use of sterically stabilized liposomes to treat asthma. Methods Enzymol. 391:413–427. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Chen X, Huang W, Wong BC, Yin L, Wong YF, Xu M and Yang Z: Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine. 7:1139–1148. 2012.PubMed/NCBI

54 

Ng ZY, Wong JY, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M, Wark P, et al: Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces. 172:51–59. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Komalla V, Allam VS, Kwok CL, Sheikholeslami B, Owen L, Jaffe A, Waters SA, Mohammad S, Oliver BG, Chen H and Haghi M: A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur J Pharm Biopharm. 157:47–58. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Nahar K, Absar S, Patel B and Ahsan F: Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm. 464:185–195. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F and Hashida M: Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 125:121–130. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Cryan SA, Devocelle M, Moran PJ, Hickey AJ and Kelly JG: Increased intracellular targeting to airway cells using octaarginine-coated liposomes: In vitro assessment of their suitability for inhalation. Mol Pharm. 3:104–112. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Uner M and Yener G: Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2:289–300. 2007.PubMed/NCBI

60 

Bi R, Shao W, Wang Q and Zhang N: Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol. 5:84–92. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Nassimi M, Schleh C, Lauenstein HD, Hussein R, Lübbers K, Pohlmann G, Switalla S, Sewald K, Müller M, Krug N, et al: Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol. 21:104–109. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Videira M, Almeida AJ and Fabra A: Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 8:1208–1215. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Castellani S, Trapani A, Spagnoletta A, di Toma L, Magrone T, Di Gioia S, Mandracchia D, Trapani G, Jirillo E and Conese M: Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med. 16:1402018. View Article : Google Scholar : PubMed/NCBI

64 

Bayón-Cordero L, Alkorta I and Arana L: Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel). 9:4742019. View Article : Google Scholar

65 

Maretti E, Costantino L, Buttini F, Rustichelli C, Leo E, Truzzi E and Iannuccelli V: Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res. 9:298–310. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Nimje N, Agarwal A, Saraogi GK, Lariya N, Rai G, Agrawal H and Agrawal GP: Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target. 17:777–787. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Rytting E, Nguyen J, Wang X and Kissel T: Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv. 5:629–639. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Marasini N, Haque S and Kaminskas LM: Polymer-Drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci. 31:2017. View Article : Google Scholar : PubMed/NCBI

69 

Yang M, Yamamoto H, Kurashima H, Takeuchi H, Yokoyama T, Tsujimoto H and Kawashima Y: Design and evaluation of poly(DL-lactic-co-glycolic acid) nanocomposite particles containing salmon calcitonin for inhalation. Eur J Pharm Sci. 46:374–380. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Türeli NG, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM and Schneider M: Ciprofloxacin-Loaded PLGA nanoparticles against cystic fibrosis P. Aeruginosa lung infections. Eur J Pharm Biopharm. 117:363–371. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, Lee KC and Youn YS: Doxorubicin-Loaded highly porous large PLGA microparticles as a sustained- release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 33:5574–5583. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK and Prasad B: Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 52:981–986. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Tomoda K, Ohkoshi T, Hirota K, Sonavane GS, Nakajima T, Terada H, Komuro M, Kitazato K and Makino K: Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf B Biointerfaces. 71:177–182. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Zou W, Liu C, Chen Z and Zhang N: Studies on bioadhesive PLGA nanoparticles: A promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm. 370:187–195. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Dailey LA and Kissel T: New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties. Drug Discov Today Technol. 2:7–13. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Xu Y, Kim CS, Saylor DM and Koo D: Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater. 105:1692–1716. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Fu J, Fiegel J, Krauland E and Hanes J: New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials. 23:4425–4433. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Fatemeh DRA, Shahmabadi HE, Abedi A, Alavi SE, Movahedi F, Esfahani MKM, Mehrizi TZ and Akbarzadeh A: Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J Clin Biochem. 29:333–338. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Melguizo C, Cabeza L, Prados J, Ortiz R, Caba O, Rama AR, Delgado ÁV and Arias JL: Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des Devel Ther. 9:6433–6444. 2015.PubMed/NCBI

80 

Choi WS, Murthy GG, Edwards DA, Langer R and Klibanov AM: Inhalation delivery of proteins from ethanol suspensions. Proc Natl Acad Sci USA. 98:11103–11107. 2001. View Article : Google Scholar : PubMed/NCBI

81 

Nam JP and Nah JW: Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydr Polym. 135:153–161. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Zhao L, Li Y, Pei D, Huang Q, Zhang H, Yang Z, Li F and Shi T: Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydr Polym. 205:167–175. 2019. View Article : Google Scholar : PubMed/NCBI

83 

B. Thapa and R. Narain; 1-Mechanism current challenges new approaches for non viral gene delivery, : Ravin Narain, Polymers and Nanomaterials for Gene Therapy. Woodhead Publishing; 2016, pp. 1–27

84 

Germershaus O, Mao S, Sitterberg J, Bakowsky U and Kissel T: Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure-activity relationships in vitro. J Control Release. 125:145–154. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Mehta M, Deeksha, Tewari D, Gupta G, Awasthi R, Singh H, Pandey P, Chellappan DK, Wadhwa R, Collet T, et al: Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact. 308:206–215. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Ahmad J, Akhter S, Rizwanullah Md, Amin S, Rahman M, Ahmad MZ, Rizvi MA, Kamal MA and Ahmad FJ: Nanotechnology-Based inhalation treatments for lung cancer: State of the art. Nanotechnol Sci Appl. 8:55–66. 2015.PubMed/NCBI

87 

Mendes LP, Pan J and Torchilin VP: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 22:14012017. View Article : Google Scholar

88 

Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB and Horta BAC: Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model. 60:34–42. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Rajabnezhad S, Casettari L, Lam JK, Nomani A, Torkamani MR, Palmieri GF, Rajabnejad MR and Darbandi MA: Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol. 291:366–374. 2016. View Article : Google Scholar

90 

Conti DS, Brewer D, Grashik J, Avasarala S and da Rocha SR: Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm. 11:1808–1822. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ and da Rocha SR: Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm. 13:2363–2375. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP and Kannan RM: In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm. 399:140–147. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, de Jesus TPA, Dureja H, Chellappan DK, et al: Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact. 304:10–19. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C and Ayuso-Sacido A: Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine (Rij). 1:22014. View Article : Google Scholar : PubMed/NCBI

95 

Motomura K, Ishitobi M, Komoike Y, Koyama H, Noguchi A, Sumino H, Kumatani Y, Inaji H, Horinouchi T and Nakanishi K: SPIO-Enhanced magnetic resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography lymphography in patients with breast cancer. Ann Surg Oncol. 18:3422–3429. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Yhee JY, Im J and Nho RS: Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med. 5:822016. View Article : Google Scholar

97 

Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, Chen DH, Wang CR, Shiau AL and Wu CL: Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 4:713–722. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D and Wheate NJ: Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 132:4678–4684. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Codullo V, Cova E, Pandolfi L, Breda S, Morosini M, Frangipane V, Malatesta M, Calderan L, Cagnone M, Pacini C, et al: Imatinib-Loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release. 310:198–208. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Zhang J, Mou L and Jiang X: Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 11:923–936. 2020. View Article : Google Scholar

101 

Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, et al: Local effects on airway inflammation and systemic uptake of 5 nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small. 13:10022017. View Article : Google Scholar

102 

Park H, Tsutsumi H and Mihara H: Cell-Selective intracellular drug delivery using doxorubicin and α-helical peptides conjugated to gold nanoparticles. Biomaterials. 35:3480–3487. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Bhaskar S and Lim S: Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater. 9:e3712017. View Article : Google Scholar : PubMed/NCBI

104 

Syomin BV and Ilyin YV: Virus-Like particles as an instrument of vaccine production. Mol Biol. 53:323–334. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Bobo D, Robinson KJ, Islam J, Thurecht KJ and Corrie SR: Nanoparticle-Based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 33:2373–2387. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Renukaradhya GJ, Narasimhan B and Mallapragada SK: Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Controll Release. 219:622–631. 2015. View Article : Google Scholar

107 

Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Smith GE and Frieman MB: Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 32:3169–3174. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Smith G, Raghunandan R, Wu Y, Liu Y, Massare M, Nathan M, Zhou B, Lu H, Boddapati S, Li J, et al: Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One. 7:e508522012. View Article : Google Scholar : PubMed/NCBI

109 

Lee YT, Ko EJ, Kim KH, Hwang HS, Lee Y, Kwon YM, Kim MC, Lee YN, Jung YJ and Kang SM: Cellular immune correlates preventing disease against respiratory syncytial virus by vaccination with virus-like nanoparticles carrying fusion proteins. J Biomed Nanotechnol. 13:84–98. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Pápay ZE, Kósa A, Böddi B, Merchant Z, Saleem IY, Zariwala MG, Klebovich I, Somavarapu S and Antal I: Study on the pulmonary delivery system of apigenin-loaded albumin nanocarriers with antioxidant activity. J Aerosol Med Pulm Drug Deliv. 30:274–288. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Labiris NR and Dolovich MB: Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 56:588–599. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Patton JS, Fishburn CS and Weers JG: The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 1:338–344. 2004. View Article : Google Scholar : PubMed/NCBI

113 

Shen AM and Minko T: Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release. 326:222–244. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Scherließ R: Future of nanomedicines for treating respiratory diseases. Expert Opin Drug Deliv. 16:59–68. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Oberdörster G: Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J Intern Med. 267:89–105. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Ferreira AJ, Cemlyn-Jones J and Cordeiro CR: Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol. 19:28–37. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Jones MC, Jones SA, Riffo-Vasquez Y, Spina D, Hoffman E, Morgan A, Patel A, Page C, Forbes B and Dailey LA: Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J Control Release. 183:94–104. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, Kissel T and Seeger W: Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol. 215:100–108. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Zhang WF, Zhou HY, Chen XG, Tang SH and Zhang JJ: Biocompatibility study of theophylline/chitosan/beta-cyclodextrin microspheres as pulmonary delivery carriers. J Mater Sci Mater Med. 20:1321–1330. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Nakamura K, Matsubara H, Akagi S, Sarashina T, Ejiri K, Kawakita N, Yoshida M, Miyoshi T, Watanabe A, Nishii N and Ito H: Nanoparticle-Mediated drug delivery system for pulmonary arterial hypertension. J Clin Med. 6:482017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luo M, Hua S and Shang Q: Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 23: 325, 2021.
APA
Luo, M., Hua, S., & Shang, Q. (2021). Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Molecular Medicine Reports, 23, 325. https://doi.org/10.3892/mmr.2021.11964
MLA
Luo, M., Hua, S., Shang, Q."Application of nanotechnology in drug delivery systems for respiratory diseases (Review)". Molecular Medicine Reports 23.5 (2021): 325.
Chicago
Luo, M., Hua, S., Shang, Q."Application of nanotechnology in drug delivery systems for respiratory diseases (Review)". Molecular Medicine Reports 23, no. 5 (2021): 325. https://doi.org/10.3892/mmr.2021.11964
Copy and paste a formatted citation
x
Spandidos Publications style
Luo M, Hua S and Shang Q: Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 23: 325, 2021.
APA
Luo, M., Hua, S., & Shang, Q. (2021). Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Molecular Medicine Reports, 23, 325. https://doi.org/10.3892/mmr.2021.11964
MLA
Luo, M., Hua, S., Shang, Q."Application of nanotechnology in drug delivery systems for respiratory diseases (Review)". Molecular Medicine Reports 23.5 (2021): 325.
Chicago
Luo, M., Hua, S., Shang, Q."Application of nanotechnology in drug delivery systems for respiratory diseases (Review)". Molecular Medicine Reports 23, no. 5 (2021): 325. https://doi.org/10.3892/mmr.2021.11964
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team