Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway

  • Authors:
    • Xiaoying Zhao
    • Sijia Li
    • Zhe Wang
    • Ning Bai
    • Yuan Feng
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Rheumatology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China, Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, Department of Pathology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China, Department of Rheumatology and Immunology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
  • Article Number: 359
    |
    Published online on: March 12, 2021
       https://doi.org/10.3892/mmr.2021.11998
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease often used as a model in genomics research. The downregulation of microRNA‑101‑3p (miR‑101‑3p) participates in the progression of SLE, although the underlying mechanisms remain to be elucidated. The present study aimed to evaluate the specific roles of miR‑101‑3p in the SLE inflammatory response and its potential mechanisms. Reverse transcription‑quantitative (RT‑q) PCR was used to profile miR‑101‑3p expression in the peripheral blood mononuclear cells (PBMCs) from 40 female patients with SLE and 20 female healthy volunteers. The interactions between miR‑101‑3p and MAPK1 were identified and evaluated using dual‑luciferase reporter and RNA pull‑down assays. The levels of IL‑10 and IFN‑γ were evaluated by enzyme‑linked immunosorbent assay. The expression of NF‑κB p65 and phosphorylated IκBα were evaluated using western blotting. miR‑101‑3p expression was demonstrated to be downregulated in SLE PBMCs. miR‑101‑3p negatively regulated IL‑10 and IFN‑γ expression in SLE samples and was demonstrated to target MAPK1. Increases in MAPK1 expression eliminated miR‑101‑3p inhibition of IL‑10 and IFN‑γ. MAPK1 activated the NF‑κB pathway in SLE PBMCs and this activation was inhibited when miR‑101‑3p was overexpressed. In addition, treatment with BAY11‑7085 (NF‑κB activator) was demonstrated to reverse the inhibitory effects of miR‑101‑3p expression on both IL‑10 and IFN‑γ in SLE PBMCs. BAY11‑7082 also markedly reduced MAPK1‑induced increases in IL‑10 and IFN‑γ in SLE PBMCs. miR‑101‑3p overexpression attenuated the inflammatory response in SLE PBMCs by inhibiting the expression of MAPK1 and blocking the NF‑κB pathway. The results revealed a novel regulatory mechanism in SLE inflammation and offer a new direction for the development of SLE treatments.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Zucchi D, Elefante E, Calabresi E, Signorini V, Bortoluzzi A and Tani C: One year in review 2019: Systemic lupus erythematosus. Clin Exp Rheumatol. 37:715–722. 2019.PubMed/NCBI

2 

Tsang-A-Sjoe M and Bultink IE: Systemic lupus erythematosus: Review of synthetic drugs. Expert Opin Pharmacother. 16:2793–2806. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Aringer M: Inflammatory markers in systemic lupus erythematosus. J Autoimmun. 110:1023742020. View Article : Google Scholar : PubMed/NCBI

4 

Uzrail AH, Assaf AM and Abdalla SS: Correlations of expression levels of a panel of genes (IRF5, STAT4, TNFSF4, MECP2 and TLR7) and cytokine levels (IL-2, IL-6, IL-10, IL-12, IFN-γ and TNF-α) with systemic lupus erythematosus outcomes in Jordanian patients. Biomed Res Int. 2019:17038422019. View Article : Google Scholar : PubMed/NCBI

5 

Di Battista M, Marcucci E, Elefante E, Tripoli A, Governato G, Zucchi D, Tani C and Alunno A: One year in review 2018: Systemic lupus erythematosus. Clin Exp Rheumatol. 36:763–777. 2018.PubMed/NCBI

6 

Ali M, Firoz CK, Jabir NR, Rehan M, Khan MS and Tabrez S: An insight on the pathogenesis and treatment of systemic lupus erythematosus. Endocr Metab Immune Disord Drug Targets. 18:110–123. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Katsuyama E, Yan M, Watanabe KS, Narazaki M, Matsushima S, Yamamura Y, Hiramatsu S, Ohashi K, Watanabe H, Katsuyama T, et al: Downregulation of miR-200a-3p, targeting CtBP2 complex, is involved in the hypoproduction of IL-2 in systemic lupus erythematosus-derived T cells. J Immunol. 198:4268–4276. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Zheng B, Zhang P, Yuan L, Chhetri RK, Guo Y and Deng D: Effects of human umbilical cord mesenchymal stem cells on inflammatory factors and miR-181a in T lymphocytes from patients with systemic lupus erythematosus. Lupus. 29:126–135. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Cao W, Qian G, Luo W, Liu X, Pu Y, Hu G, Han L, Yuan L, A X and Deng D: miR-125b is downregulated in systemic lupus erythematosus patients and inhibits autophagy by targeting UVRAG. Biomed Pharmacother. 99:791–797. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Liu D, Zhang N, Zhang X, Qin M, Dong Y and Jin L: MiR-410 down-regulates the expression of interleukin-10 by targeting STAT3 in the pathogenesis of systemic lupus erythematosus. Cell Physiol Biochem. 39:303–315. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Ren D, Liu F, Dong G, You M, Ji J, Huang Y, Hou Y and Fan H: Activation of TLR7 increases CCND3 expression via the downregulation of miR-15b in B cells of systemic lupus erythematosus. Cell Mol Immunol. 13:764–775. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Chen S, Wang Y, Qin H, Lin J, Xie L, Chen S, Liang J and Xu J: Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4+ T cells. Lupus. 28:510–519. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Rasmussen TK, Andersen T, Bak RO, Yiu G, Sørensen CM, Stengaard-Pedersen K, Mikkelsen JG, Utz PJ, Holm CK and Deleuran B: Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Res Ther. 17:1542015. View Article : Google Scholar : PubMed/NCBI

14 

Liu Y, Dong J, Mu R, Gao Y, Tan X, Li Y, Li Z and Yang G: MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum. 65:1603–1611. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Wei Q, Lv F, Zhang H, Wang X, Geng Q, Zhang X, Li T, Wang S, Wang Y and Cui Y: MicroRNA-101-3p inhibits fibroblast-like synoviocyte proliferation and inflammation in rheumatoid arthritis by targeting PTGS2. Biosci Rep. 40:BSR201911362020. View Article : Google Scholar : PubMed/NCBI

16 

Sun H, Guo F and Xu L: Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell Biochem. 121:4310–4320. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Gang C, Jiahui Y, Huaizhou W, Qing C, Dongbao Z and Qian S: Defects of mitogen-activated protein kinase in ICOS signaling pathway lead to CD4(+) and CD8(+) T-cell dysfunction in patients with active SLE. Cell Immunol. 258:83–89. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Liu Y, Deng W, Meng Q, Qiu X, Sun D and Dai C: CD8+iTregs attenuate glomerular endothelial cell injury in lupus-prone mice through blocking the activation of p38 MAPK and NF-κB. Mol Immunol. 103:133–143. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Yang J, Lu YW, Lu MM, Leng RX, Pan HF and Ye DQ: MicroRNA-101, mitogen-activated protein kinases and mitogen-activated protein kinases phosphatase-1 in systemic lupus erythematosus. Lupus. 22:115–120. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Hellweg CE: The nuclear factor κB pathway: A link to the immune system in the radiation response. Cancer Lett. 368:275–289. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Cao HY, Li D, Wang YP, Lu HX, Sun J and Li HB: The protection of NF-κB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung J Med Sci. 36:354–362. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, Zhang X, Yu T, Gan S, Dai D, et al: Peli1 negatively regulates noncanonical NF-κB signaling to restrain systemic lupus erythematosus. Nat Commun. 9:11362018. View Article : Google Scholar : PubMed/NCBI

23 

Ji L, Hou X, Liu W, Deng X, Jiang Z, Huang K and Li R: Paeoniflorin inhibits activation of the IRAK1-NF-κB signaling pathway in peritoneal macrophages from lupus-prone MRL/lpr mice. Microb Pathog. 124:223–229. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang L, Sun P and Mu H: MicroRNA-146a inhibits NF-κB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp Ther Med. 18:3078–3084. 2019.PubMed/NCBI

25 

Zhang W, Yu T, Cui X, Yu H and Li X: Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA-101 expression and the E2F2-TLR4-NF-κB axis. Exp Physiol. 105:1588–1597. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Hochberg MC: Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40:17251997. View Article : Google Scholar : PubMed/NCBI

27 

Bombardier C, Gladman DD, Urowitz MB, Caron D and Chang CH: Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum. 35:630–640. 1992. View Article : Google Scholar : PubMed/NCBI

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Fava A and Petri M: Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun. 96:1–13. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Xie L and Xu J: Role of MiR-98 and its underlying mechanisms in systemic lupus erythematosus. J Rheumatol. 45:1397–1405. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, Qiu X, Tan Y, Dai Y, Yung S, et al: The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics. 7:242015. View Article : Google Scholar : PubMed/NCBI

32 

Sarhan RA, Aboelenein HR, Sourour SK, Fawzy IO, Salah S and Abdelaziz AI: Targeting E2F1 and c-Myc expression by microRNA-17-5p represses interferon-stimulated gene MxA in peripheral blood mononuclear cells of pediatric systemic lupus erythematosus patients. Discov Med. 19:419–425. 2015.PubMed/NCBI

33 

Motawi TK, Mohsen DA, El-Maraghy SA and Kortam MA: MicroRNA-21, microRNA-181a and microRNA-196a as potential biomarkers in adult Egyptian patients with systemic lupus erythematosus. Chem Biol Interact. 260:110–116. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Clancy R, El Bannoudi H, Rasmussen SE, Bornkamp N, Allen N, Dann R, Reynolds H, Buyon JP and Berger JS: Human low-affinity IgG receptor FcγRIIA polymorphism H131R associates with subclinical atherosclerosis and increased platelet activity in systemic lupus erythematosus. J Thromb Haemost. 17:532–537. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Yuan W, Cao H, Wan P, Shi R, Zhou S and Zheng J: Clinical evaluation of total and high-avidity anti-dsDNA antibody assays for the diagnosis of systemic lupus erythematosus. Lupus. 28:1387–1396. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Sun J, Li X, Zhou H, Liu X, Jia J, Xie Q, Peng S, Sun X, Wang Q and Yi L: Anti-GAPDH autoantibody is associated with increased disease activity and intracranial pressure in systemic lupus erythematosus. J Immunol Res. 2019:74307802019. View Article : Google Scholar : PubMed/NCBI

37 

Yuan S, Tang C, Chen D, Li F, Huang M, Ye J, He Z, Li W, Chen Y, Lin X, et al: miR-98 modulates cytokine production from human PBMCs in systemic lupus erythematosus by targeting IL-6 mRNA. J Immunol Res. 2019:98275742019. View Article : Google Scholar : PubMed/NCBI

38 

Li HS, Ning Y, Li SB, Shao PY, Chen SJ, Ye Q and Heng X: Expression and clinical significance of miR-181a and miR-203 in systemic lupus erythematosus patients. Eur Rev Med Pharmacol Sci. 21:4790–4796. 2017.PubMed/NCBI

39 

Lin LJ, Mai LJ, Chen G, Zhao EN, Xue M and Su XD: Expression and diagnostic value of plasma miR-145 and miR-183 in children with lupus nephritis. Zhongguo Dang Dai Er Ke Za Zhi. 22:632–637. 2020.(In Chinese). PubMed/NCBI

40 

Yao Y, Wang JB, Xin MM, Li H, Liu B, Wang LL, Wang LQ and Zhao L: Balance between inflammatory and regulatory cytokines in systemic lupus erythematosus. Genet Mol Res. 15:1–8. 2016. View Article : Google Scholar

41 

Godsell J, Rudloff I, Kandane-Rathnayake R, Hoi A, Nold MF, Morand EF and Harris J: Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep. 6:346042016. View Article : Google Scholar : PubMed/NCBI

42 

Yuan Y, Wang X, Ren L, Kong Y, Bai J and Yan Y: Associations between interleukin-10 gene polymorphisms and systemic lupus erythematosus risk: A meta-analysis with trial sequential analysis. Clin Exp Rheumatol. 37:242–253. 2019.PubMed/NCBI

43 

Liu M, Liu J, Hao S, Wu P, Zhang X, Xiao Y, Jiang G and Huang X: Higher activation of the interferon-gamma signaling pathway in systemic lupus erythematosus patients with a high type I IFN score: Relation to disease activity. Clin Rheumatol. 37:2675–2684. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Kokic V, Martinovic Kaliterna D, Radic M, Perkovic D, Cvek M and Capkun V: Relationship between vitamin D, IFN-γ, and E2 levels in systemic lupus erythematosus. Lupus. 25:282–288. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Jiao Q, Qian Q, Zhao Z, Fang F, Hu X, An J, Wu J and Liu C: Expression of human T cell immunoglobulin domain and mucin-3 (TIM-3) and TIM-3 ligands in peripheral blood from patients with systemic lupus erythematosus. Arch Dermatol Res. 308:553–561. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Dahal LN, Basu N, Youssef H, Khanolkar RC, Barker RN, Erwig LP and Ward FJ: Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus. Arthritis Res Ther. 18:1802016. View Article : Google Scholar : PubMed/NCBI

47 

Bashanfer SAA, Saleem M, Heidenreich O, Moses EJ and Yusoff NM: Disruption of MAPK1 expression in the ERK signalling pathway and the RUNX1-RUNX1T1 fusion gene attenuate the differentiation and proliferation and induces the growth arrest in t(8;21) leukaemia cells. Oncol Rep. 41:2027–2040. 2019.PubMed/NCBI

48 

Zhu Y, Yang T, Duan J, Mu N and Zhang T: MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY). 11:1089–1109. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Aparicio-Soto M, Sánchez-Hidalgo M, Cárdeno A, Rosillo MÁ, Sánchez-Fidalgo S, Utrilla J, Martín-Lacave I and Alarcón-de-la-Lastra C: Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation. J Nutr Biochem. 27:278–288. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Cheng Z, Qiu S, Jiang L, Zhang A, Bao W, Liu P and Liu J: MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol. 33:567–576. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Zhu S, Song W, Sun Y, Zhou Y and Kong F: MiR-342 attenuates lipopolysaccharide-induced acute lung injury via inhibiting MAPK1 expression. Clin Exp Pharmacol Physiol. 47:1448–1454. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Chen W, Bian H, Xie X, Yang X, Bi B, Li C, Zhang Y, Zhu Q, Song J, Qin C and Qi J: Negative feedback loop of ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J Cell Mol Med. 24:10935–10945. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Shalini V, Pushpan CK, G S, A J and A H: Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology. 221:137–144. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Matsuzawa T, Fujiwara E and Washi Y: Autophagy activation by interferon-γ via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology. 141:61–69. 2013. View Article : Google Scholar

55 

Garcia-Rodriguez S, Callejas-Rubio JL, Ortego-Centeno N, Zumaquero E, Ríos-Fernandez R, Arias-Santiago S, Navarro P, Sancho J and Zubiaur M: Altered AKT1 and MAPK1 gene expression on peripheral blood mononuclear cells and correlation with T-helper-transcription factors in systemic lupus erythematosus patients. Mediators Inflamm. 2012:4959342012. View Article : Google Scholar : PubMed/NCBI

56 

Shi X, Qian T, Li M, Chen F, Chen Y and Hao F: Aberrant low expression of A20 in tumor necrosis factor-α-stimulated SLE monocytes mediates sustained NF-κB inflammatory response. Immunol Invest. 44:497–508. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Kong X, Zhang Z, Fu T, Ji J, Yang J and Gu Z: TNF-α regulates microglial activation via the NF-κB signaling pathway in systemic lupus erythematosus with depression. Int J Biol Macromol. 125:892–900. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Chai Z, Yin X, Chen J, Shi J, Sun J, Liu C, Liu F and Cheng S: MicroRNA-101 modulates cisplatin chemoresistance in liver cancer cells via the DNA-PKcs signaling pathway. Oncol Lett. 18:3655–3663. 2019.PubMed/NCBI

60 

Liu JC, Xue DF, Wang XQ, Ai DB and Qin PJ: MiR-101 relates to chronic peripheral neuropathic pain through targeting KPNB1 and regulating NF-κB signaling. Kaohsiung J Med Sci. 35:139–145. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Hu Q, Yang C, Wang Q, Zeng H and Qin W: Demethylzeylasteral (T-96) treatment ameliorates mice lupus nephritis accompanied by inhibiting activation of NF-κB pathway. PLoS One. 10:e01337242015. View Article : Google Scholar : PubMed/NCBI

62 

Fu HX, Fan XP, Li M, Liu MJ and Sun QL: MiR-146a relieves kidney injury in mice with systemic lupus erythematosus through regulating NF-κB pathway. Eur Rev Med Pharmacol Sci. 23:7024–7032. 2019.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao X, Li S, Wang Z, Bai N and Feng Y: miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway. Mol Med Rep 23: 359, 2021.
APA
Zhao, X., Li, S., Wang, Z., Bai, N., & Feng, Y. (2021). miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway. Molecular Medicine Reports, 23, 359. https://doi.org/10.3892/mmr.2021.11998
MLA
Zhao, X., Li, S., Wang, Z., Bai, N., Feng, Y."miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway". Molecular Medicine Reports 23.5 (2021): 359.
Chicago
Zhao, X., Li, S., Wang, Z., Bai, N., Feng, Y."miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway". Molecular Medicine Reports 23, no. 5 (2021): 359. https://doi.org/10.3892/mmr.2021.11998
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao X, Li S, Wang Z, Bai N and Feng Y: miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway. Mol Med Rep 23: 359, 2021.
APA
Zhao, X., Li, S., Wang, Z., Bai, N., & Feng, Y. (2021). miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway. Molecular Medicine Reports, 23, 359. https://doi.org/10.3892/mmr.2021.11998
MLA
Zhao, X., Li, S., Wang, Z., Bai, N., Feng, Y."miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway". Molecular Medicine Reports 23.5 (2021): 359.
Chicago
Zhao, X., Li, S., Wang, Z., Bai, N., Feng, Y."miR‑101‑3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF‑κB pathway". Molecular Medicine Reports 23, no. 5 (2021): 359. https://doi.org/10.3892/mmr.2021.11998
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team