Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)

  • Authors:
    • Qi-Ni Cheng
    • Xue Yang
    • Jiang-Feng Wu
    • Wen-Bing Ai
    • Yi-Ran Ni
  • View Affiliations / Copyright

    Affiliations: Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China, The Yiling Hospital of Yichang, Yichang, Hubei 443100, P.R. China
    Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 364
    |
    Published online on: March 16, 2021
       https://doi.org/10.3892/mmr.2021.12003
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatic fibrosis (HF) is the process of fibrous scar formation caused by chronic liver injury of different etiologies. Previous studies have hypothesized that the activation of hepatic stellate cells (HSCs) is the central process in HF. The interaction between HSCs and surrounding cells is also crucial. Additionally, hepatic sinusoids capillarization, inflammation, angiogenesis and fibrosis develop during HF. The process involves multiple cell types that are highly connected and work in unison to maintain the homeostasis of the hepatic microenvironment, which serves a key role in the initiation and progression of HF. The current review provides novel insight into the intercellular interaction among liver sinusoidal endothelial cells, HSCs and Kupffer cells, as well as the hepatic microenvironment in the development of HF.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Aydin MM and Akcali KC: Liver fibrosis. Turk J Gastroenterol. 29:14–21. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Greuter T and Shah VH: Hepatic sinusoids in liver injury, inflammation, and fibrosis: New pathophysiological insights. J Gastroenterol. 51:511–519. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Liu X, Hu H and Yin JQ: Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int. 26:8–22. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Marrone G, Shah VH and Gracia-Sancho J: Sinusoidal communication in liver fibrosis and regeneration. J Hepatol. 65:608–617. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Klenerman P and Ramamurthy N: Liver sinusoidal endothelial cells: An antiviral ‘defendothelium’. Gastroenterology. 148:288–291. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Ray K: Liver: Hepatic stellate cells hold the key to liver fibrosis. Nat Rev Gastroenterol Hepatol. 11:742014. View Article : Google Scholar : PubMed/NCBI

8 

Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D and Rautou PE: Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol. 66:212–227. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Shetty S, Lalor PF and Adams DH: Liver sinusoidal endothelial cells-gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 15:555–567. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Sorensen KK, Simon-Santamaria J, McCuskey RS and Smedsrod B: Liver Sinusoidal Endothelial Cells. Compr Physiol. 5:1751–1774. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Ni Y, Li JM, Liu MK, Zhang TT, Wang DP, Zhou WH, Hu LZ and Lv WL: Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol. 23:7666–7677. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Dixon LJ, Barnes M, Tang H, Pritchard MT and Nagy LE: Kupffer cells in the liver. Compr Physiol. 3:785–797. 2013.PubMed/NCBI

14 

Dou L, Shi X, He X and Gao Y: Macrophage phenotype and function in liver disorder. Front Immunol. 10:31122019. View Article : Google Scholar : PubMed/NCBI

15 

Liu HL, Lv J, Zhao ZM, Xiong AM, Tan Y, Glenn JS, Tao YY, Weng HL and Liu CH: Fuzhenghuayu decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis. Sci Rep. 9:187192019. View Article : Google Scholar : PubMed/NCBI

16 

Brusilovskaya K, Konigshofer P, Schwabl P and Reiberger T: Vascular targets for the treatment of portal hypertension. Semin Liver Dis. 39:483–501. 2019. View Article : Google Scholar : PubMed/NCBI

17 

DeLeve LD: Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology. 61:1740–1746. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Tuohetahuntila M, Molenaar MR, Spee B, Brouwers JF, Wubbolts R, Houweling M, Yan C, Du H, VanderVen BC, Vaandrager AB and Helms JB: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation. J Biol Chem. 292:12436–12448. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Peterova E, Podmolikova L, Rezacova M and Mrkvicova A: Fibroblast growth Factor-1 suppresses TGF-β-mediated myofibroblastic differentiation of rat hepatic stellate cells. Acta Medica (Hradec Kralove). 59:124–132. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F and Weiskirchen R: Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front Pharmacol. 7:332016. View Article : Google Scholar : PubMed/NCBI

21 

Ezhilarasan D, Sokal E and Najimi M: Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int. 17:192–197. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q and Weng Q: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res. 155:1047202020. View Article : Google Scholar : PubMed/NCBI

23 

Ramirez-Pedraza M and Fernandez M: Interplay between macrophages and angiogenesis: A double-edged sword in liver disease. Front Immunol. 10:28822019. View Article : Google Scholar : PubMed/NCBI

24 

Lafoz E, Ruart M, Anton A, Oncins A and Hernández-Gea V: The endothelium as a driver of liver fibrosis and regeneration. Cells. 9:9292020. View Article : Google Scholar

25 

Soydemir S, Comella O, Abdelmottaleb D and Pritchett J: Does mechanocrine signaling by liver sinusoidal endothelial cells offer new opportunities for the development of anti-fibrotics? Front Med (Lausanne). 6:3122019. View Article : Google Scholar : PubMed/NCBI

26 

Kaur S and Anita K: Angiogenesis in liver regeneration and fibrosis: ‘A double-edged sword’. Hepatol Int. 7:959–968. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Wells RG: Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis. 12:759–768. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Maher JJ and McGuire RF: Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest. 86:1641–1648. 1990. View Article : Google Scholar : PubMed/NCBI

29 

Yu F, Dong B, Dong P, He Y, Zheng J and Xu P: Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway. Mol Cell Biochem. 465:115–123. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Shi YF, Fong CC, Zhang Q, Cheung PY, Tzang CH, Wu RS and Yang M: Hypoxia induces the activation of human hepatic stellate cells LX-2 through TGF-beta signaling pathway. FEBS Lett. 581:203–210. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Jin Y, Bai Y, Ni H, Qiang L, Ye L, Shan Y and Zhou M: Activation of autophagy through calcium-dependent AMPK/mTOR and PKCθ pathway causes activation of rat hepatic stellate cells under hypoxic stress. FEBS Lett. 590:672–682. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Chen W, Rock JB, Yearsley MM, Ferrell LD and Frankel WL: Different collagen types show distinct rates of increase from early to late stages of hepatitis C-related liver fibrosis. Hum Pathol. 45:160–165. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Ghafoory S, Varshney R, Robison T, Kouzbari K, Woolington S, Murphy B, Xia L and Ahamed J: Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv. 2:470–480. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Baghy K, Iozzo RV and Kovalszky I: Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J Histochem Cytochem. 60:262–268. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Hayes BJ, Riehle KJ, Shimizu-Albergine M, Bauer RL, Hudkins KL, Johansson F, Yeh MM, Mahoney WJ, Yeung RS and Campbell JS: Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS One. 9:e929252014. View Article : Google Scholar : PubMed/NCBI

36 

Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J and Yu CH: PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep. 16:7879–7889. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Borkham-Kamphorst E and Weiskirchen R: The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 28:53–61. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Borkham-Kamphorst E, Meurer SK, Van de Leur E, Haas U, Tihaa L and Weiskirchen R: PDGF-D signaling in portal myofibroblasts and hepatic stellate cells proves identical to PDGF-B via both PDGF receptor type alpha and β. Cell Signal. 27:1305–1314. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Kocabayoglu P, Lade A, Lee YA, Dragomir A, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and Friedman SL: β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Thabut D and Shah V: Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: New targets for the treatment of portal hypertension? J Hepatol. 53:976–980. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Lim BJ, Lee WK, Lee HW, Lee KS, Kim JK, Chang HY and Lee JI: Selective deletion of hepatocyte platelet-derived growth factor receptor α and development of liver fibrosis in mice. Cell Commun Signal. 16:932018. View Article : Google Scholar : PubMed/NCBI

42 

Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L and Gabbiani G: The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 142:873–881. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Gabbiani G: The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Bocca C, Novo E, Miglietta A and Parola M: Angiogenesis and Fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 1:477–488. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Kardum D, Fabijanic D, Lukic A, Romic Z, Petrovecki M, Bogdanovic Z, Juric K, Urek-Crncevic M and Banic M: Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis. Coll Antropol. 36:413–418. 2012.PubMed/NCBI

46 

Yokomori H, Oda M, Ogi M, Kamegaya Y, Tsukada N, Nakamura M and Ishii H: Enhanced expression of endothelin receptor subtypes in cirrhotic rat liver. Liver. 21:114–122. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Koda M, Bauer M, Krebs A, Hahn EG, Schuppan D and Murawaki Y: Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells. Comp Hepatol. 5:52006. View Article : Google Scholar : PubMed/NCBI

48 

Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C and Gentilini P: Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 110:534–548. 1996. View Article : Google Scholar : PubMed/NCBI

49 

Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D and Shah VH: Ephrin B2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol. 298:G908–G915. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Li G, Peng Y, Zhao T, Lin J, Duan X, Wei Y and Ma J: Plumbagin alleviates capillarization of hepatic sinusoids in vitro by downregulating ET-1, VEGF, LN, and type IV collagen. Biomed Res Int. 2017:56032162017.PubMed/NCBI

51 

Lee JS, Semela D, Iredale J and Shah VH: Sinusoidal remodeling and angiogenesis: A new function for the liver-specific pericyte? Hepatology. 45:817–825. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Rockey DC: Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis. 21:337–349. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Henderson NC and Iredale JP: Liver fibrosis: Cellular mechanisms of progression and resolution. Clin Sci (Lond). 112:265–280. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Knittel T, Mehde M, Kobold D, Saile B, Dinter C and Ramadori G: Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: Regulation by TNF-alpha and TGF-beta1. J Hepatol. 30:48–60. 1999. View Article : Google Scholar : PubMed/NCBI

55 

Liu T, Xu L, Wang C, Chen K, Xia Y, Li J, Li S, Wu L, Feng J, Xu S, et al: Alleviation of hepatic fibrosis and autophagy via inhibition of transforming growth factor-β1/Smads pathway through shikonin. J Gastroenterol Hepatol. 34:263–276. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Gupta G, Khadem F and Uzonna JE: Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine. 124:1545422019. View Article : Google Scholar : PubMed/NCBI

57 

Marchand M, Monnot C, Muller L and Germain S: Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 89:147–156. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Mokkapati S, Fleger-Weckmann A, Bechtel M, Koch M, Breitkreutz D, Mayer U, Smyth N and Nischt R: Basement membrane deposition of nidogen 1 but not nidogen 2 requires the nidogen binding module of the laminin gamma1 chain. J Biol Chem. 286:1911–1918. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Mak KM and Mei R: Basement membrane type IV collagen and laminin: An overview of their biology and value as fibrosis biomarkers of liver disease. Anat Rec (Hoboken). 300:1371–1390. 2017. View Article : Google Scholar : PubMed/NCBI

60 

McGuire RF, Bissell DM, Boyles J and Roll FJ: Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 15:989–997. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Braet F and Wisse E: Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp Hepatol. 1:12002. View Article : Google Scholar : PubMed/NCBI

62 

Natarajan V, Harris EN and Kidambi S: SECs (Sinusoidal Endothelial Cells), liver microenvironment, and fibrosis. Biomed Res Int. 2017:40972052017. View Article : Google Scholar : PubMed/NCBI

63 

DeLeve LD, Wang X, Hu L, McCuskey MK and McCuskey RS: Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol. 287:G757–G763. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Desroches-Castan A, Tillet E, Ricard N, Ouarne M, Mallet C, Belmudes L, Coute Y, Boillot O, Scoazec JY, Bailly S and Feige JJ: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology. 70:1392–1408. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Soon RJ and Yee HJ: Stellate cell contraction: Role, regulation, and potential therapeutic target. Clin Liver Dis. 12:791–803. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Hintermann E, Bayer M, Ehser J, Aurrand-Lions M, Pfeilschifter JM, Imhof BA and Christen U: Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 10:419–433. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Hintermann E, Bayer M, Conti CB, Fuchs S, Fausther M, Leung PS, Aurrand-Lions M, Taubert R, Pfeilschifter JM, Friedrich-Rust M, et al: Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice. J Autoimmun. 91:83–96. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Saiman Y, Agarwal R, Hickman DA, Fausther M, El-Shamy A, Dranoff JA, Friedman SL and Bansal MB: CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway. Am J Physiol Gastrointest Liver Physiol. 305:G375–G382. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, Dranoff JA, Torok NJ and Mehal WZ: Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology. 49:185–194. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Zhang Z, Zhang F, Lu Y and Zheng S: Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res. 45:162–178. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Budny T, Palmes D, Stratmann U, Minin E, Herbst H and Spiegel HU: Morphologic features in the regenerating liver-a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Virchows Arch. 451:781–791. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I and Van Vlierberghe H: Angiogenesis in chronic liver disease and its complications. Liver Int. 31:146–162. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Karkkainen MJ and Petrova TV: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 19:5598–5605. 2000. View Article : Google Scholar : PubMed/NCBI

74 

Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, Gaarde WA and Deleve LD: Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology. 142:918–927. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Deleve LD, Wang X and Guo Y: Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 48:920–930. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Li X, Yao Q, Liu H, Jin Q, Xu B, Zhang S and Tu C: Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J Cell Mol Med. 21:2370–2385. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Dewerchin M and Carmeliet P: PlGF: A multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med. 2:a0110562012. View Article : Google Scholar : PubMed/NCBI

78 

Li X, Jin Q, Yao Q, Zhou Y, Zou Y, Li Z, Zhang S and Tu C: Placental growth factor contributes to liver inflammation, angiogenesis, Fibrosis in mice by promoting hepatic macrophage recruitment and activation. Front Immunol. 8:8012017. View Article : Google Scholar : PubMed/NCBI

79 

Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA and Rippe RA: The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 278:8083–8090. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Van Steenkiste C, Ribera J, Geerts A, Pauta M, Tugues S, Casteleyn C, Libbrecht L, Olievier K, Schroyen B, Reynaert H, et al: Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology. 53:1629–1640. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Augustin HG, Koh GY, Thurston G and Alitalo K: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 10:165–177. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, Sommer K, Di Tacchio M, Vutukuri R, Beck H, et al: Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 131:753–773. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Wynn TA and Barron L: Macrophages: Master regulators of inflammation and fibrosis. Semin Liver Dis. 30:245–257. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Varol C, Mildner A and Jung S: Macrophages: Development and tissue specialization. Annu Rev Immunol. 33:643–675. 2015. View Article : Google Scholar : PubMed/NCBI

87 

You Q, Holt M, Yin H, Li G, Hu CJ and Ju C: Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol. 86:836–843. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Vollmar B, Siegmund S, Richter S and Menger MD: Microvascular consequences of Kupffer cell modulation in rat liver fibrogenesis. J Pathol. 189:85–91. 1999. View Article : Google Scholar : PubMed/NCBI

89 

Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Martin C, Zimmermann HW, Pack O, Gassler N, Hittatiya K, et al: Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J Immunol. 190:5226–5236. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Tacke F and Zimmermann HW: Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 60:1090–1096. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Zhou WC, Zhang QB and Qiao L: Pathogenesis of liver cirrhosis. World J Gastroenterol. 20:7312–7324. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Koyama Y and Brenner DA: Liver inflammation and fibrosis. J Clin Invest. 127:55–64. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Luckey SW and Petersen DR: Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats. Exp Mol Pathol. 71:226–240. 2001. View Article : Google Scholar : PubMed/NCBI

94 

Weiskirchen R and Tacke F: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 3:344–363. 2014.PubMed/NCBI

95 

Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM, Brigstock D and George J: Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 137:713–723. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, et al: Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 143:765–776. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Seki E and Brenner DA: Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 22:512–518. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Hara M, Kono H, Furuya S, Hirayama K, Tsuchiya M and Fujii H: Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice. J Surg Res. 183:574–582. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Mochida S, Ishikawa K, Toshima K, Inao M, Ikeda H, Matsui A, Shibuya M and Fujiwara K: The mechanisms of hepatic sinusoidal endothelial cell regeneration: A possible communication system associated with vascular endothelial growth factor in liver cells. J Gastroenterol Hepatol. 13 (Suppl 1):S1–S5. 1998. View Article : Google Scholar

100 

Zhang CY, Yuan WG, He P, Lei JH and Wang CX: Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 22:10512–10522. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Melgar-Lesmes P and Edelman ER: Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol. 63:917–925. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, Grundmann S, Voskuil M, Ozaki CK, Piek JJ and Buschmann IR: Arteriogenesis proceeds via ICAM-1/Mac-1-mediated mechanisms. Circ Res. 94:1179–1185. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Schubert SY, Benarroch A, Monter-Solans J and Edelman ER: Primary monocytes regulate endothelial cell survival through secretion of angiopoietin-1 and activation of endothelial Tie2. Arterioscler Thromb Vasc Biol. 31:870–875. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Priya MK, Sahu G, Soto-Pantoja DR, Goldy N, Sundaresan AM, Jadhav V, Barathkumar TR, Saran U, Jaffar AB, Roberts DD, et al: Tipping off endothelial tubes: Nitric oxide drives tip cells. Angiogenesis. 18:175–189. 2015. View Article : Google Scholar : PubMed/NCBI

106 

De Smet F, Segura I, De Bock K, Hohensinner PJ and Carmeliet P: Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol. 29:639–649. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Gao B and Radaeva S: Natural killer and natural killer T cells in liver fibrosis. Biochim Biophys Acta. 1832:1061–1069. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Connolly MK, Bedrosian AS, Mallen-St CJ, Mitchell AP, Ibrahim J, Stroud A, Pachter HL, Bar-Sagi D, Frey AB and Miller G: In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest. 119:3213–3225. 2009.PubMed/NCBI

109 

Ehrlich L, Scrushy M, Meng F, Lairmore TC, Alpini G and Glaser S: Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clin Res Hepatol Gastroenterol. 42:296–305. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Gao B, Radaeva S and Park O: Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. J Leukoc Biol. 86:513–528. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Wang H and Yin S: Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol. 9:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z and Gao B: Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology. 130:435–452. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Peng Y, Yang T, Huang K, Shen L, Tao Y and Liu C: Salvia miltiorrhiza ameliorates liver fibrosis by activating hepatic natural killer cells in vivo and in vitro. Front Pharmacol. 9:7622018. View Article : Google Scholar : PubMed/NCBI

114 

Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW and Zhang Q: Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 5:e1982016. View Article : Google Scholar : PubMed/NCBI

115 

Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M and Aloman C: Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 55:244–255. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Sato K, Meng F, Giang T, Glaser S and Alpini G: Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis. 1864:1262–1269. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Omenetti A, Syn WK, Jung Y, Francis H, Porrello A, Witek RP, Choi SS, Yang L, Mayo MJ, Gershwin ME, et al: Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology. 50:518–527. 2009. View Article : Google Scholar : PubMed/NCBI

118 

Parola M and Pinzani M: Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 65:37–55. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Sohrabpour AA, Mohamadnejad M and Malekzadeh R: Review article: The reversibility of cirrhosis. Aliment Pharmacol Ther. 36:824–832. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Poilil SS, George TR, Moon MJ and Jeong YY: Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine. 12:6997–7006. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Feng R, Yuan X, Shao C, Ding H, Liebe R and Weng HL: Are we any closer to treating liver fibrosis (and if no, why not)? J Dig Dis. 19:118–126. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Gracia-Sancho J, Marrone G and Fernandez-Iglesias A: Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol. 16:221–234. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cheng Q, Yang X, Wu J, Ai W and Ni Y: Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review). Mol Med Rep 23: 364, 2021.
APA
Cheng, Q., Yang, X., Wu, J., Ai, W., & Ni, Y. (2021). Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review). Molecular Medicine Reports, 23, 364. https://doi.org/10.3892/mmr.2021.12003
MLA
Cheng, Q., Yang, X., Wu, J., Ai, W., Ni, Y."Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)". Molecular Medicine Reports 23.5 (2021): 364.
Chicago
Cheng, Q., Yang, X., Wu, J., Ai, W., Ni, Y."Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)". Molecular Medicine Reports 23, no. 5 (2021): 364. https://doi.org/10.3892/mmr.2021.12003
Copy and paste a formatted citation
x
Spandidos Publications style
Cheng Q, Yang X, Wu J, Ai W and Ni Y: Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review). Mol Med Rep 23: 364, 2021.
APA
Cheng, Q., Yang, X., Wu, J., Ai, W., & Ni, Y. (2021). Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review). Molecular Medicine Reports, 23, 364. https://doi.org/10.3892/mmr.2021.12003
MLA
Cheng, Q., Yang, X., Wu, J., Ai, W., Ni, Y."Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)". Molecular Medicine Reports 23.5 (2021): 364.
Chicago
Cheng, Q., Yang, X., Wu, J., Ai, W., Ni, Y."Interaction of non‑parenchymal hepatocytes in the process of hepatic fibrosis (Review)". Molecular Medicine Reports 23, no. 5 (2021): 364. https://doi.org/10.3892/mmr.2021.12003
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team