Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells

  • Authors:
    • Jie Xia
    • Songmei Li
    • Dianfei Ma
    • Wenyujie Guo
    • Hong Long
    • Weiping Yin
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Yunnan Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China, Department of Pediatrics, Kunming Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650011, P.R. China, Department of Pediatrics, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
    Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 432
    |
    Published online on: April 8, 2021
       https://doi.org/10.3892/mmr.2021.12071
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to analyze the effects and underlying mechanisms of microRNA (miR)‑29‑3p on the proliferation and secretory abilities of prolactinoma cells by targeting insulin‑like growth factor (IGF)‑1/β‑catenin. The relationship between miR‑29a‑3p and the survival of prolactinoma cells was analyzed with the Kaplan‑Meier method in reference to The Cancer Genome Atlas. The expression levels of miR‑29a‑3p and IGF‑1 in MMQ and GH3 cells were detected. A dual‑luciferase reporter gene assay was performed to verify the combination of miR‑29a‑3p and IGF‑1. Cells were transfected with a miR‑29a‑3p mimic and/or IGF‑1 pcDNA3.1 to analyze the effects on the proliferation, apoptosis and secretion of prolactin (PRL) and growth hormone (GH) of prolactinoma cells. The effects on β‑catenin in the cytoplasm and nucleus were investigated by western blot analysis. The results showed that miR‑29a‑3p expression was low in MMQ and GH3 cells. Overexpression miR‑29a‑3p inhibited IGF‑1 mRNA and protein expression. miR‑29a‑3p inhibited cell proliferation and PRL and GH expression, and promoted apoptosis by inhibiting IGF‑1. Increasing the expression of miR‑29a‑3p increased β‑catenin levels in the cytoplasm, whereas IGF‑1 promoted β‑catenin activation and entry into the nucleus, and reversed the inhibitory effects of miR‑29a‑3p on β‑catenin. To conclude, miR‑29a‑3p inhibited the proliferation and secretory abilities of prolactinoma cells by inhibiting nuclear translocation of β‑catenin via a molecular mechanism that is inseparable from IGF‑1.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Glezer A and Bronstein MD: Prolactinomas. Endocrinol Metab Clin North Am. 44:71–78. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Vroonen L, Daly AF and Beckers A: Epidemiology and management challenges in prolactinomas. Neuroendocrinology. 109:20–27. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Blanco AM: Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol. 287:1133222020. View Article : Google Scholar : PubMed/NCBI

4 

Silveira MA, Zampieri TT, Furigo IC, Abdulkader F, Donato J Jr and Frazão R: Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis. Brain Res. 1714:210–217. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Kubo T, Furujo M, Mori S, Imai K, Ueda Y, Tsukahara K, Morita H, Ogura K, Fukuhara S, Shimizu J, et al: An infant case of macroprolactinemia with transient idiopathic central precocious puberty. Endocr J. 54:825–828. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Tirosh A and Shimon I: Current approach to treatments for prolactinomas. Minerva Endocrinol. 41:316–323. 2016.PubMed/NCBI

7 

Faltermeier CM, Magill ST, Blevins LS Jr and Aghi MK: Molecular biology of pituitary adenomas. Neurosurg Clin N Am. 30:391–400. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Donoho DA and Laws ER Jr: The role of surgery in the management of prolactinomas. Neurosurg Clin N Am. 30:509–514. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Chen T, Zheng F, Tao J, Tan S, Zeng L, Peng X and Wu B: Insulin-like growth factor-1 contributes to mucosal repair by β-arrestin2-mediated extracellular signal-related kinase signaling in experimental colitis. Am J Pathol. 185:2441–2453. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Yoneyama Y, Lanzerstorfer P, Niwa H, Umehara T, Shibano T, Yokoyama S, Chida K, Weghuber J, Hakuno F and Takahashi SI: IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. Elife. 7:e328932018. View Article : Google Scholar : PubMed/NCBI

11 

Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, Papkovsky DB, Hursting SD and O'Connor R: Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J Biol Chem. 292:16983–16998. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 14:e02259132019. View Article : Google Scholar : PubMed/NCBI

13 

Cónsole GM, Hereñú CB, Camihort GA, Luna GC, Ferese C and Goya RG: Effect of insulin-like growth factor-I gene therapy on the somatotropic axis in experimental prolactinomas. Cells Tissues Organs. 190:20–26. 2009. View Article : Google Scholar

14 

Castillo AI and Aranda A: Differential regulation of pituitary-specific gene expression by insulin-like growth factor 1 in rat pituitary GH4C1 and GH3 cells. Endocrinology. 138:5442–5451. 1997. View Article : Google Scholar : PubMed/NCBI

15 

Simonson B and Das S: MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 15:467–474. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Hu B, Mao Z, Du Q, Jiang X, Wang Z, Xiao Z, Zhu D, Wang X, Zhu Y and Wang H: miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull. 149:21–31. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Jian M, Du Q, Zhu D, Mao Z, Wang X, Feng Y, Xiao Z, Wang H and Zhu Y: Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1. J Endocrinol Invest. 42:639–652. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Xiao Z, Wang Z, Hu B, Mao Z, Zhu D, Feng Y and Zhu Y: MiR-1299 promotes the synthesis and secretion of prolactin by inhibiting FOXO1 expression in drug-resistant prolactinomas. Biochem Biophys Res Commun. 520:79–85. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Zhao X, Hou Y, Tuo Z and Wei F: Application values of miR-194 and miR-29 in the diagnosis and prognosis of gastric cancer. Exp Ther Med. 15:4179–4184. 2018.PubMed/NCBI

20 

Xu W, Li Z, Zhu X, Xu R and Xu Y: miR-29 family inhibits resistance to methotrexate and promotes cell apoptosis by targeting COL3A1 and MCL1 in osteosarcoma. Med Sci Monit. 24:8812–8821. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Gao G, Liang X and Ma W: Sinomenine restrains breast cancer cells proliferation, migration and invasion via modulation of miR-29/PDCD-4 axis. Artif Cells Nanomed Biotechnol. 47:3839–3846. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Habibi P, Alihemmatti A, Alipour M, Nourazar A, Yousefi H, Andalib S and Ahmadiasl N: Effects of exercise on miR-29 and IGF-1 expression and lipid profile in the heart of ovariectomized rat. Acta Endocrinol (Buchar). 12:130–136. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Tang H, Zhu D, Zhang G, Luo X and Xie W: AFAP1-AS1 promotes proliferation of pituitary adenoma cells through miR-103a-3p to activate PI3K/AKT signaling pathway. World Neurosurg. 130:e888–e898. 2019. View Article : Google Scholar

25 

Molitch ME: Diagnosis and treatment of pituitary adenomas: A review. JAMA. 317:516–524. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Lamberts SW, de Quijada M and Klijn JG: The effect of tamoxifen on GH and PRL secretion by human pituitary tumors. J Endocrinol Invest. 3:343–347. 1980. View Article : Google Scholar : PubMed/NCBI

27 

Watanabe D, Yagasaki H, Kojika S, Ogiwara M, Kinouchi H, Nakane T and Inukai T: GH/PRL-secreting pituitary macroadenoma associated with GNAS p.Gln227Leu mutation: Pediatric case report and review. Endocr J. 66:403–408. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Console GM, Herenu CB, Camihort GA, Luna GC, Bracamonte MI, Morel GR and Goya RG: Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas. Mol Cancer. 7:132008. View Article : Google Scholar : PubMed/NCBI

29 

Gupta P, Rai A, Mukherjee KK, Sachdeva N, Radotra BD, Punia RPS, Vashista RK, Hota D, Srinivasan A, Dhandapani S, et al: Imatinib inhibits GH secretion from somatotropinomas. Front Endocrinol (Lausanne). 9:4532018. View Article : Google Scholar : PubMed/NCBI

30 

Kempf J, Schmitz A, Meier A, Delfs N, Mueller B, Fandino J, Schuetz P and Berkmann S: Adenoma size and postoperative IGF-1 levels predict surgical outcomes in acromegaly patients: Results of the Swiss pituitary registry (SwissPit). Swiss Med Wkly. 148:w146532018.PubMed/NCBI

31 

O'Neill BT, Lee KY, Klaus K, Softic S, Krumpoch MT, Fentz J, Stanford KI, Robinson MM, Cai W, Kleinridders A, et al: Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest. 126:3433–3446. 2016. View Article : Google Scholar

32 

Cui X, Li M, He Z, Hu L, Liu J, Yan J and Hua L: MiR-302b-5p enhances the neuroprotective effect of IGF-1 in methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease by regulating inducible nitric-oxide synthase. Cell Biochem Funct. 38:1025–1035. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, Xu Y, Wei Z and Cao Y: miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 683:87–100. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Zhou Y, Li S, Li J, Wang D and Li Q: Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 42:1431–1446. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Liu Y, Hu Q, Ao J, Li H and Li M: Role of miR-92a-3p/PTEN axis in regulation of pancreatic cancer cell proliferation and metastasis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 45:280–289. 2020.(In English, Chinese). PubMed/NCBI

36 

Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, Liu Z, Ge J and Shi B: Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev. 2019:79546572019. View Article : Google Scholar : PubMed/NCBI

37 

Shastri AA, Saleh A, Savage JE, DeAngelis T, Camphausen K and Simone NL: Dietary alterations modulate the microRNA 29/30 and IGF-1/AKT signaling axis in breast cancer liver metastasis. Nutr Metab (Lond). 17:232020. View Article : Google Scholar : PubMed/NCBI

38 

Li Z, Jiang R, Yue Q and Peng H: MicroRNA-29 regulates myocardial microvascular endothelial cells proliferation and migration in association with IGF1 in type 2 diabetes. Biochem Biophys Res Commun. 487:15–21. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Cao L, Gao H, Li P, Gui S and Zhang Y: The Wnt/β-catenin signaling pathway is involved in the antitumor effect of fulvestrant on rat prolactinoma MMQ cells. Tumour Biol. 35:5121–5127. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Chauvet N, Romanò N, Meunier AC, Galibert E, Fontanaud P, Mathieu MN, Osterstock G, Osterstock P, Baccino E, Rigau V, et al: Combining cadherin expression with molecular markers discriminates invasiveness in growth hormone and prolactin pituitary adenomas. J Neuroendocrinol. 28:123522016. View Article : Google Scholar : PubMed/NCBI

41 

Wang C, Tan C, Wen Y, Zhang D, Li G, Chang L, Su J and Wang X: FOXP1-induced lncRNA CLRN1-AS1 acts as a tumor suppressor in pituitary prolactinoma by repressing the autophagy via inactivating Wnt/β-catenin signaling pathway. Cell Death Dis. 10:4992019. View Article : Google Scholar : PubMed/NCBI

42 

Lei C, Jing G, Jichao W, Xiaohui L, Fang Q, Hua G, Yazhou M and Zhang Y: MiR-137′s tumor suppression on prolactinomas by targeting MITF and modulating Wnt signaling pathway. J Clin Endocrinol Metab. 104:6391–6402. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xia J, Li S, Ma D, Guo W, Long H and Yin W: MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells. Mol Med Rep 23: 432, 2021.
APA
Xia, J., Li, S., Ma, D., Guo, W., Long, H., & Yin, W. (2021). MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells. Molecular Medicine Reports, 23, 432. https://doi.org/10.3892/mmr.2021.12071
MLA
Xia, J., Li, S., Ma, D., Guo, W., Long, H., Yin, W."MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells". Molecular Medicine Reports 23.6 (2021): 432.
Chicago
Xia, J., Li, S., Ma, D., Guo, W., Long, H., Yin, W."MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells". Molecular Medicine Reports 23, no. 6 (2021): 432. https://doi.org/10.3892/mmr.2021.12071
Copy and paste a formatted citation
x
Spandidos Publications style
Xia J, Li S, Ma D, Guo W, Long H and Yin W: MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells. Mol Med Rep 23: 432, 2021.
APA
Xia, J., Li, S., Ma, D., Guo, W., Long, H., & Yin, W. (2021). MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells. Molecular Medicine Reports, 23, 432. https://doi.org/10.3892/mmr.2021.12071
MLA
Xia, J., Li, S., Ma, D., Guo, W., Long, H., Yin, W."MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells". Molecular Medicine Reports 23.6 (2021): 432.
Chicago
Xia, J., Li, S., Ma, D., Guo, W., Long, H., Yin, W."MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells". Molecular Medicine Reports 23, no. 6 (2021): 432. https://doi.org/10.3892/mmr.2021.12071
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team