|
1
|
Vining KH and Mooney DJ: Mechanical forces
direct stem cell behaviour in development and regeneration. Nat Rev
Mol Cell Biol. 18:728–742. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Demehri S and Kopan R: Notch signaling in
bulge stem cells is not required for selection of hair follicle
fate. Development. 136:891–896. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dupont S, Morsut L, Aragona M, Enzo E,
Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M,
Bicciato S, et al: Role of YAP/TAZ in mechanotransduction. Nature.
474:179–183. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lee JH, Park HK and Kim KS: Intrinsic and
extrinsic mechanical properties related to the differentiation of
mesenchymal stem cells. Biochem Biophys Res Commun. 473:752–757.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Engler AJ, Sen S, Sweeney HL and Discher
DE: Matrix elasticity directs stem cell lineage specification.
Cell. 126:677–689. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li D, Zhou J, Chowdhury F, Cheng J, Wang N
and Wang F: Role of mechanical factors in fate decisions of stem
cells. Regen Med. 6:229–240. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Oh S, Brammer KS, Li YS, Teng D, Engler
AJ, Chien S and Jin S: Stem cell fate dictated solely by altered
nanotube dimension. Proc Natl Acad Sci USA. 106:2130–2135. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhong W, Tian K, Zheng X, Li L, Zhang W,
Wang S and Qin J: Mesenchymal stem cell and chondrocyte fates in a
multishear microdevice are regulated by Yes-associated protein.
Stem Cells Deve. 22:2083–2093. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ishihara E and Nishina H: Role of
Hippo-YAP/TAZ signaling pathway in mechanotransduction. Clin
Calcium. 26:1751–1756. 2016.(In Japanese). PubMed/NCBI
|
|
10
|
McBeath R, Pirone DM, Nelson CM,
Bhadriraju K and Chen CS: Cell shape, cytoskeletal tension, and
RhoA regulate stem cell lineage commitment. Dev Cell. 6:483–495.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dupont S: Role of YAP/TAZ in cell-matrix
adhesion-mediated signalling and mechanotransduction. Exp Cell Res.
343:42–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pocaterra A, Romani P and Dupont S:
YAP/TAZ functions and their regulation at a glance. J Cell Sci.
133:jcs2304252020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pan JX, Xiong L, Zhao K, Zeng P, Wang B,
Tang FL, Sun D, Guo HH, Yang X, Cui S, et al: YAP promotes
osteogenesis and suppresses adipogenic differentiation by
regulating β-catenin signaling. Bone Res. 6:182018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Oliver-De La Cruz J, Nardone G, Vrbsky J,
Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P
and Forte G: Substrate mechanics controls adipogenesis through YAP
phosphorylation by dictating cell spreading. Biomaterials.
205:64–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yang Y, Wang BK, Chang ML, Wan ZQ and Han
GL: Cyclic stretch enhances osteogenic differentiation of human
periodontal ligament cells via YAP activation. BioMed Res Int.
2018:21748242018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim NG, Koh E, Chen X and Gumbiner BM:
E-cadherin mediates contact inhibition of proliferation through
Hippo signaling-pathway components. Proc Natl Acad Sci USA.
108:11930–11935. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xue X, Hong X, Li Z, Deng CX and Fu J:
Acoustic tweezing cytometry enhances osteogenesis of human
mesenchymal stem cells through cytoskeletal contractility and YAP
activation. Biomaterials. 134:22–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hu JK, Du W, Shelton SJ, Oldham MC,
DiPersio CM and Klein OD: An FAK-YAP-mTOR signaling axis regulates
stem cell-based tissue renewal in mice. Cell Stem Cell.
21:91–106.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lecarpentier E, Bhatt M, Bertin GI,
Deloison B, Salomon LJ, Deloron P, Fournier T, Barakat AI and
Tsatsaris V: Computational fluid dynamic simulations of maternal
circulation: Wall shear stress in the human placenta and its
biological implications. PLoS One. 11:e01472622016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Adamo L and Garcia-Cardeña G: Directed
stem cell differentiation by fluid mechanical forces. Antioxid
Redox Signal. 15:1463–1473. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kaneko K, Ito M, Naoe Y, Lacy-Hulbert A
and Ikeda K: Integrin alphav in the mechanical response of
osteoblast lineage cells. Biochem Biophys Res Commun. 447:352–357.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhong W, Zhang W, Wang S and Qin J:
Regulation of fibrochondrogenesis of mesenchymal stem cells in an
integrated microfluidic platform embedded with biomimetic
nanofibrous scaffolds. PLoS One. 8:e612832013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang KC, Yeh YT, Nguyen P, Limqueco E,
Lopez J, Thorossian S, Guan KL, Li YJ and Chien S: Flow-dependent
YAP/TAZ activities regulate endothelial phenotypes and
atherosclerosis. Proc Natl Acad Sci USA. 113:11525–11530. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Halder G, Dupont S and Piccolo S:
Transduction of mechanical and cytoskeletal cues by YAP and TAZ.
Nat Rev Mol Cell Biol. 13:591–600. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang Y, Wang G, Luo X, Qiu J and Tang C:
Substrate stiffness regulates the proliferation, migration, and
differentiation of epidermal cells. Burns. 38:414–420. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Paszek MJ, Zahir N, Johnson KR, Lakins JN,
Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M,
Boettiger D, et al: Tensional homeostasis and the malignant
phenotype. Cancer Cell. 8:241–254. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Discher DE, Janmey P and Wang YL: Tissue
cells feel and respond to the stiffness of their substrate.
Science. 310:1139–1143. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Connelly JT, Gautrot JE, Trappmann B, Tan
DW, Donati G, Huck WT and Watt FM: Actin and serum response factor
transduce physical cues from the microenvironment to regulate
epidermal stem cell fate decisions. Nat Cell Biol. 12:711–718.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Z, Gong Y, Sun S, Du Y, Lü D, Liu X and
Long M: Differential regulation of stiffness, topography, and
dimension of substrates in rat mesenchymal stem cells.
Biomaterials. 34:7616–7625. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hadden WJ, Young JL, Holle AW, McFetridge
ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback
K, et al: Stem cell migration and mechanotransduction on linear
stiffness gradient hydrogels. Proc Natl Acad Sci USA.
114:5647–5652. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nelson CM and Bissell MJ: Modeling dynamic
reciprocity: Engineering three-dimensional culture models of breast
architecture, function, and neoplastic transformation. Semin Cancer
Biol. 15:342–352. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Witkowska-Zimny M, Walenko K, Wrobel E,
Mrowka P, Mikulska A and Przybylski J: Effect of substrate
stiffness on the osteogenic differentiation of bone marrow stem
cells and bone-derived cells. Cell Biol Int. 37:608–616. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brusatin G, Panciera T, Gandin A, Citron A
and Piccolo S: Biomaterials and engineered microenvironments to
control YAP/TAZ-dependent cell behaviour. Nat Mater. 17:1063–1075.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Singhvi R, Kumar A, Lopez GP,
Stephanopoulos GN, Wang DI, Whitesides GM and Ingber DE:
Engineering cell shape and function. Science. 264:696–698. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kuroda M, Wada H, Kimura Y, Ueda K and
Kioka N: Vinculin promotes nuclear localization of TAZ to inhibit
ECM stiffness-dependent differentiation into adipocytes. J Cell
Sci. 130:989–1002. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Musah S, Morin SA, Wrighton PJ, Zwick DB,
Jin S and Kiessling LL: Glycosaminoglycan-binding hydrogels enable
mechanical control of human pluripotent stem cell self-renewal. ACS
Nano. 6:10168–10177. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Caliari SR, Vega SL, Kwon M, Soulas EM and
Burdick JA: Dimensionality and spreading influence MSC YAP/TAZ
signaling in hydrogel environments. Biomaterials. 103:314–323.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang N, Butler JP and Ingber DE:
Mechanotransduction across the cell surface and through the
cytoskeleton. Science. 260:1124–1127. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Eyckmans J, Boudou T, Yu X and Chen CS: A
hitchhiker's guide to mechanobiology. Deve Cell. 21:35–47. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dogterom M, Kerssemakers JW, Romet-Lemonne
G and Janson ME: Force generation by dynamic microtubules. Curr
Opin Cell Biol. 17:67–74. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Vogel V and Sheetz M: Local force and
geometry sensing regulate cell functions. Nat Rev Mol Cell Biol.
7:265–275. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Schwartz MA: Integrins and extracellular
matrix in mechanotransduction. Cold Spring Harb Perspect Biol.
2:a0050662010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fernandez BG, Gaspar P, Bras-Pereira C,
Jezowska B, Rebelo SR and Janody F: Actin-Capping Protein and the
Hippo pathway regulate F-actin and tissue growth in Drosophila.
Development. 138:2337–2346. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sansores-Garcia L, Bossuyt W, Wada K,
Yonemura S, Tao C, Sasaki H and Halder G: Modulating F-actin
organization induces organ growth by affecting the Hippo pathway.
EMBO J. 30:2325–2335. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chakraborty S, Njah K, Pobbati AV, Lim YB,
Raju A, Lakshmanan M, Tergaonkar V, Lim CT and Hong W: Agrin as a
Mechanotransduction signal regulating YAP through the hippo
pathway. Cell Rep. 18:2464–2479. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Elosegui-Artola A, Andreu I, Beedle AEM,
Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres
P, Le Roux AL, et al: Force triggers YAP nuclear entry by
regulating transport across nuclear pores. Cell. 171:1397–1410.e14.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dasgupta I and McCollum D: Control of
cellular responses to mechanical cues through YAP/TAZ regulation. J
Biol Chem. 294:17693–17706. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cawthorn WP, Scheller EL and MacDougald
OA: Adipose tissue stem cells meet preadipocyte commitment: Going
back to the future. J Lipid Res. 53:227–246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fu J, Wang YK, Yang MT, Desai RA, Yu X,
Liu Z and Chen CS: Mechanical regulation of cell function with
geometrically modulated elastomeric substrates. Nat Methods.
7:733–736. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Geng Y and Wang Z: Review of cellular
mechanotransduction on micropost substrates. Med Biol Eng Comput.
54:249–271. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sero JE and Bakal C: Multiparametric
analysis of cell shape demonstrates that beta-PIX directly couples
YAP activation to extracellular matrix adhesion. Cell Syst.
4:84–96.e86. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tang Y, Rowe RG, Botvinick EL, Kurup A,
Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, et
al: MT1-MMP-dependent control of skeletal stem cell commitment via
a β1-integrin/YAP/TAZ signaling axis. Dev Cell. 25:402–416. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gattazzo F, Urciuolo A and Bonaldo P:
Extracellular matrix: A dynamic microenvironment for stem cell
niche. Biochim Biophys Acta. 1840:2506–2519. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lu D, Luo C, Zhang C, Li Z and Long M:
Differential regulation of morphology and stemness of mouse
embryonic stem cells by substrate stiffness and topography.
Biomaterials. 35:3945–3955. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pucci B, Kasten M and Giordano A: Cell
cycle and apoptosis. Neoplasia. 2:291–299. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pittenger MF, Discher DE, Peault BM,
Phinney DG, Hare JM and Caplan AI: Mesenchymal stem cell
perspective: Cell biology to clinical progress. NPJ Regen Med.
4:222019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen CS, Mrksich M, Huang S, Whitesides GM
and Ingber DE: Geometric control of cell life and death. Science.
276:1425–1428. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wada K, Itoga K, Okano T, Yonemura S and
Sasaki H: Hippo pathway regulation by cell morphology and stress
fibers. Development. 138:3907–3914. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pek YS, Wan AC and Ying JY: The effect of
matrix stiffness on mesenchymal stem cell differentiation in a 3D
thixotropic gel. Biomaterials. 31:385–391. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Burke DP and Kelly DJ: Substrate stiffness
and oxygen as regulators of stem cell differentiation during
skeletal tissue regeneration: A mechanobiological model. PLoS One.
7:e407372012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tse JR and Engler AJ: Stiffness gradients
mimicking in vivo tissue variation regulate mesenchymal stem cell
fate. PLoS One. 6:e159782011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Panciera T, Azzolin L, Cordenonsi M and
Piccolo S: Mechanobiology of YAP and TAZ in physiology and disease.
Nat Rev Mol Cell Biol. 18:758–770. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hansen CG, Moroishi T and Guan KL: YAP and
TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol.
25:499–513. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bejoy J, Song L and Li Y: Wnt-YAP
interactions in the neural fate of human pluripotent stem cells and
the implications for neural organoid formation. Organogenesis.
12:1–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang Y, Feinberg T, Keller ET, Li XY and
Weiss SJ: Snail/Slug binding interactions with YAP/TAZ control
skeletal stem cell self-renewal and differentiation. Nat Cell Biol.
18:917–929. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Szeto SG, Narimatsu M, Lu M, He X, Sidiqi
AM, Tolosa MF, Chan L, De Freitas K, Bialik JF, Majumder S, et al:
YAP/TAZ Are mechanoregulators of TGF-β-Smad signaling and renal
fibrogenesis. J Am Soc Nephrol. 27:3117–3128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Plouffe SW, Meng Z, Lin KC, Lin B, Hong
AW, Chun JV and Guan KL: Characterization of hippo pathway
components by gene inactivation. Mol Cell. 64:993–1008. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim
J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP
oncoprotein by the Hippo pathway is involved in cell contact
inhibition and tissue growth control. Genes Dev. 21:2747–2761.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bae JS, Kim SM and Lee H: The Hippo
signaling pathway provides novel anti-cancer drug targets.
Oncotarget. 8:16084–16098. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang C, Gu C, Jeong KJ, Zhang D, Guo W, Lu
Y, Ju Z, Panupinthu N, Yang JY, Gagea MM, et al: YAP/TAZ-mediated
upregulation of GAB2 leads to increased sensitivity to growth
factor-induced activation of the PI3K pathway. Cancer Res.
77:1637–1648. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang L, Luo JY, Li B, Tian XY, Chen LJ,
Huang Y, Liu J, Deng D, Lau CW, Wan S, et al: Integrin-YAP/TAZ-JNK
cascade mediates atheroprotective effect of unidirectional shear
flow. Nature. 540:579–582. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sukumaran SK, Stumpf M, Salamon S, Ahmad
I, Bhattacharya K, Fischer S, Müller R, Altmüller J, Budde B,
Thiele H, et al: CDK5RAP2 interaction with components of the Hippo
signaling pathway may play a role in primary microcephaly. Mol
Genet Genomics. 292:365–383. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Schlegelmilch K, Mohseni M, Kirak O,
Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J,
Brummelkamp TR and Camargo FD: Yap1 acts downstream of α-catenin to
control epidermal proliferation. Cell. 144:782–795. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang P, Bai Y, Song B, Wang Y, Liu D, Lai
Y, Bi X and Yuan Z: PP1A-mediated dephosphorylation positively
regulates YAP2 activity. PLoS One. 6:e242882011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Denis D, Rouleau C and Schaffhausen BS: A
transformation-defective polyomavirus middle T antigen with a novel
defect in PI3 kinase signaling. J Virol. 91:e01774–16. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Meng Z, Qiu Y, Lin KC, Kumar A, Placone
JK, Fang C, Wang KC, Lu S, Pan M, Hong AW, et al: RAP2 mediates
mechanoresponses of the Hippo pathway. Nature. 560:655–660. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chang L, Azzolin L, Di Biagio D, Zanconato
F, Battilana G, Lucon Xiccato R, Aragona M, Giulitti S, Panciera T,
Gandin A, et al: The SWI/SNF complex is a mechanoregulated
inhibitor of YAP and TAZ. Nature. 563:265–269. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Singh A, Brito I and Lammerding J: Beyond
tissue stiffness and bioadhesivity: Advanced biomaterials to model
tumor microenvironments and drug resistance. Trends Cancer.
4:281–291. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lopez JI, Mouw JK and Weaver VM:
Biomechanical regulation of cell orientation and fate. Oncogene.
27:6981–6993. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hoon JL, Tan MH and Koh CG: The regulation
of cellular responses to mechanical cues by Rho GTPases. Cells.
5:172016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Spector AA and Grayson WL: Stem cell fate
decision making: Modeling approaches. ACS Biomater Sci Eng.
3:2702–2711. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu RX, Yin Y, He XT, Li X and Chen FM:
Engineering a cell home for stem cell homing and accommodation. Adv
Biosyst. 1:e17000042017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Costanza B, Umelo IA, Bellier J,
Castronovo V and Turtoi A: Stromal modulators of TGF-β in cancer. J
Clin Med. 6:72017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Janmey PA, Wells RG, Assoian RK and
McCulloch CA: From tissue mechanics to transcription factors.
Differentiation. 86:112–120. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Muehlich S, Rehm M, Ebenau A and
Goppelt-Struebe M: Synergistic induction of CTGF by cytochalasin D
and TGFbeta-1 in primary human renal epithelial cells: Role of
transcriptional regulators MKL1, YAP/TAZ and Smad2/3. Cell Signal.
29:31–40. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rana MK, Aloisio FM, Choi C and Barber DL:
Formin-dependent TGF-β signaling for epithelial to mesenchymal
transition. Mol Biol Cell. 29:1465–1475. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ng LF, Kaur P, Bunnag N, Suresh J, Sung
ICH, Tan QH, Gruber J and Tolwinski NS: WNT signaling in disease.
Cells. 8:8262019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mezzacappa C, Komiya Y and Habas R:
Activation and function of small GTPases Rho, Rac, and Cdc42 during
gastrulation. Methods Mol Biol. 839:119–131. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Maeda T, Sakabe T, Sunaga A, Sakai K,
Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer
R, et al: Conversion of mechanical force into TGF-β-mediated
biochemical signals. Curr Biol. 21:933–941. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Varelas X, Sakuma R, Samavarchi-Tehrani P,
Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL:
TAZ controls Smad nucleocytoplasmic shuttling and regulates human
embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Varelas X, Samavarchi-Tehrani P, Narimatsu
M, Weiss A, Cockburn K, Larsen BG, Rossant J and Wrana JL: The
Crumbs complex couples cell density sensing to Hippo-dependent
control of the TGF-β-SMAD pathway. Dev Cell. 19:831–844. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Narimatsu M, Samavarchi-Tehrani P, Varelas
X and Wrana JL: Distinct polarity cues direct Taz/Yap and TGFβ
receptor localization to differentially control TGFβ-induced Smad
signaling. Dev Cell. 32:652–656. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu
J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ,
et al: Nuclear CDKs drive Smad transcriptional activation and
turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Qin Z, Xia W, Fisher GJ, Voorhees JJ and
Quan T: YAP/TAZ regulates TGF-β/Smad3 signaling by induction of
Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun
Signal. 16:182018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Serowoky MA, Arata CE, Crump JG and
Mariani FV: Skeletal stem cells: Insights into maintaining and
regenerating the skeleton. Development. 147:dev1793252020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tang Y and Weiss SJ: Snail/Slug-YAP/TAZ
complexes cooperatively regulate mesenchymal stem cell function and
bone formation. Cell Cycle. 16:399–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kovar H, Bierbaumer L and Radic-Sarikas B:
The YAP/TAZ pathway in osteogenesis and bone sarcoma pathogenesis.
Cells. 9:9722020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fernandez LA, Northcott PA, Dalton J,
Fraga C, Ellison D, Angers S, Taylor MD and Kenney AM: YAP1 is
amplified and up-regulated in hedgehog-associated medulloblastomas
and mediates Sonic hedgehog-driven neural precursor proliferation.
Genes Dev. 23:2729–2741. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lin YT, Ding JY, Li MY, Yeh TS, Wang TW
and Yu JY: YAP regulates neuronal differentiation through Sonic
hedgehog signaling pathway. Exp Cell Res. 318:1877–1888. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hayashi S, Tamura K and Yokoyama H: Yap1,
transcription regulator in the Hippo signaling pathway, is required
for Xenopus limb bud regeneration. Dev Biol. 388:57–67. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hsu TH, Yang CY, Yeh TH, Huang YC, Wang TW
and Yu JY: The Hippo pathway acts downstream of the Hedgehog
signaling to regulate follicle stem cell maintenance in the
Drosophila ovary. Sci Rep. 7:44802017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Machado MV, Michelotti GA, Pereira TA, Xie
G, Premont R, Cortez-Pinto H and Diehl AM: Accumulation of duct
cells with activated YAP parallels fibrosis progression in
non-alcoholic fatty liver disease. J Hepatol. 63:962–970. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yimlamai D, Christodoulou C, Galli GG,
Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ
and Camargo FD: Hippo pathway activity influences liver cell fate.
Cell. 157:1324–1338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou
J, Zhu LJ, Ip YT, Johnson RL and Mao J: YAP/TAZ and hedgehog
coordinate growth and patterning in gastrointestinal mesenchyme.
Dev Cell. 43:35–47.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X,
Wei Y, Fussenegger M and Deng X: Role of YAP/TAZ in cell lineage
fate determination and related signaling pathways. Front Cell Dev
Biol. 8:7352020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Blanpain C and Fuchs E: Epidermal
homeostasis: A balancing act of stem cells in the skin. Nat Rev Mol
Cell Biol. 10:207–217. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Simpson CL, Patel DM and Green KJ:
Deconstructing the skin: Cytoarchitectural determinants of
epidermal morphogenesis. Nat Rev Mol Cell Biol. 12:565–580. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Watt FM, Estrach S and Ambler CA:
Epidermal Notch signalling: Differentiation, cancer and adhesion.
Curr Opin Cell Biol. 20:171–179. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Totaro A, Castellan M, Battilana G,
Zanconato F, Azzolin L, Giulitti S, Cordenonsi M and Piccolo S:
YAP/TAZ link cell mechanics to Notch signalling to control
epidermal stem cell fate. Nat Commun. 8:152062017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Low BC, Pan CQ, Shivashankar GV,
Bershadsky A, Sudol M and Sheetz M: YAP/TAZ as mechanosensors and
mechanotransducers in regulating organ size and tumor growth. FEBS
Lett. 588:2663–2670. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Piccolo S, Cordenonsi M and Dupont S:
Molecular pathways: YAP and TAZ take center stage in organ growth
and tumorigenesis. Clin Cancer Res. 19:4925–4930. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hayashi S, Yokoyama H and Tamura K: Roles
of Hippo signaling pathway in size control of organ regeneration.
Dev Growth Differ. 57:341–351. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ramos A and Camargo FD: The Hippo
signaling pathway and stem cell biology. Trends Cell Biol.
22:339–346. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mo JS, Park HW and Guan KL: The Hippo
signaling pathway in stem cell biology and cancer. EMBO Rep.
15:642–656. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hans C: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Niehrs C and Acebron SP: Mitotic and
mitogenic Wnt signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Piccolo S, Dupont S and Cordenonsi M: The
biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev.
94:1287–1312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Azzolin L, Panciera T, Soligo S, Enzo E,
Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V,
et al: YAP/TAZ incorporation in the β-catenin destruction complex
orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Park HW, Kim YC, Yu B, Moroishi T, Mo JS,
Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative
Wnt signaling activates YAP/TAZ. Cell. 162:780–794. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen X, Yuan W, Li Y, Luo J and Hou N:
Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac
biology. Int J Biol Sci. 16:2454–2463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sato N, Meijer L, Skaltsounis L, Greengard
P and Brivanlou AH: Maintenance of pluripotency in human and mouse
embryonic stem cells through activation of Wnt signaling by a
pharmacological GSK-3-specific inhibitor. Nat Med. 10:55–63. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Weston CR and Davis RJ: The JNK signal
transduction pathway. Curr Opin Cell Biol. 19:142–149. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Chen F: JNK-induced apoptosis,
compensatory growth, and cancer stem cells. Cancer Res. 72:379–386.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Bogoyevitch MA and Kobe B: Uses for JNK:
The many and varied substrates of the c-Jun N-terminal kinases.
Microbiol Mol Biol Rev. 70:1061–1095. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kaunas R, Usami S and Chien S: Regulation
of stretch-induced JNK activation by stress fiber orientation. Cell
Signal. 18:1924–1931. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Codelia VA, Sun G and Irvine KD:
Regulation of YAP by mechanical strain through Jnk and Hippo
signaling. Curr Biol. 24:2012–2017. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang L, Luo JY, Li B, Tian XY, Chen LJ,
Huang Y, Liu J, Deng D, Lau CW, Wan S, et al: Integrin-YAP/TAZ-JNK
cascade mediates atheroprotective effect of unidirectional shear
flow. Nature. 540:579–582. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Plouffe SW, Hong AW and Guan KL: Disease
implications of the Hippo/YAP pathway. Trends Mol Med. 21:212–222.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Martinez B, Yang Y, Harker DMR, Farrar C,
Mukundan H, Nath P and Mascareñas D: YAP/TAZ related BioMechano
signal transduction and cancer metastasis. Front Cell Dev Biol.
7:1992019. View Article : Google Scholar : PubMed/NCBI
|