1
|
Herrmann C Jr: Myasthenia gravis and the
myasthenic syndrome. Calif Med. 113:27–36. 1970.PubMed/NCBI
|
2
|
Vandiedonck C, Giraud M and Garchon HJ:
Genetics of autoimmune myasthenia gravis: The multifaceted
contribution of the HLA complex. J Autoimmun. 25:6–11. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lazaridis K and Tzartos SJ: Autoantibody
specificities in Myasthenia Gravis; implications for improved
diagnostics and therapeutics. Front Immunol. 11:2122020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Frykman H, Kumar P and Oger J:
Immunopathology of Autoimmune Myasthenia Gravis: Implications for
Improved Testing Algorithms and Treatment Strategies. Front Neurol.
11:5966212020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Garchon HJ: Genetics of autoimmune
myasthenia gravis, a model for antibody-mediated autoimmunity in
man. J Autoimmun. 21:105–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pal J, Rozsa C, Komoly S and Illes Z:
Clinical and biological heterogeneity of autoimmune myasthenia
gravis. J Neuroimmunol. 231:43–54. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mori S and Shigemoto K: Mechanisms
associated with the pathogenicity of antibodies against
muscle-specific kinase in myasthenia gravis. Autoimmun Rev.
12:912–917. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kordas G, Lagoumintzis G, Sideris S,
Poulas K and Tzartos SJ: Direct proof of the in vivo pathogenic
role of the AChR autoantibodies from myasthenia gravis patients.
PLoS One. 9:e1083272014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Beeson D, Morris A, Vincent A and
Newsom-Davis J: The human muscle nicotinic acetylcholine receptor
alpha-subunit exist as two isoforms: A novel exon. EMBO J.
9:2101–2106. 1990. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rødgaard A, Nielsen FC, Djurup R, Somnier
F and Gammeltoft S: Acetylcholine receptor antibody in myasthenia
gravis: Predominance of IgG subclasses 1 and 3. Clin Exp Immunol.
67:82–88. 1987.
|
11
|
Oosterhuis HJ, Limburg PC, Hummel-Tappel E
and The TH: Anti-acetylcholine receptor antibodies in myasthenia
gravis. Part 2. Clinical and serological follow-up of individual
patients. J Neurol Sci. 58:371–385. 1983. View Article : Google Scholar : PubMed/NCBI
|
12
|
Berrih-Aknin S and Le Panse R: Myasthenia
gravis: A comprehensive review of immune dysregulation and
etiological mechanisms. J Autoimmun. 52:90–100. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zisimopoulou P, Evangelakou P, Tzartos J,
Lazaridis K, Zouvelou V, Mantegazza R, Antozzi C, Andreetta F,
Evoli A, Deymeer F, et al: A comprehensive analysis of the
epidemiology and clinical characteristics of anti-LRP4 in
myasthenia gravis. J Autoimmun. 52:139–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tzartos JS, Zisimopoulou P, Rentzos M,
Karandreas N, Zouvelou V, Evangelakou P, Tsonis A, Thomaidis T,
Lauria G, Andreetta F, et al: LRP4 antibodies in serum and CSF from
amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol.
1:80–87. 2014. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Zhong H, Zhao C and Luo S: HLA in
myasthenia gravis: From superficial correlation to underlying
mechanism. Autoimmun Rev. 18:1023492019. View Article : Google Scholar : PubMed/NCBI
|
16
|
NCBI, MYAS1 Myasthenia gravis with thymus
hyperplasia [homo sapiens (human)], . Gene ID: 246750, updated on
16 Aug 2019. Updated Aug 16 2019.
|
17
|
Thomann HK and Pandya S: Myasthenia
gravis: pathophysiology, diagnosis, differential diagnosis and
management. Clin Eye Vis Care. 7:3–13. 1995. View Article : Google Scholar
|
18
|
Wolfe GI, Kaminski HJ, Aban IB, Minisman
G, Kuo HC, Marx A, Ströbel P, Mazia C, Oger J, et al: Randomized
Trial of Thymectomy in Myasthenia Gravis. N Engl J Med Aug.
11:375:511–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zagoriti Z, Georgitsi M, Giannakopoulou O,
Ntellos F, Tzartos SJ, Patrinos GP and Poulas K: Genetics of
myasthenia gravis: A case-control association study in the Hellenic
population. Clin Dev Immunol. 2012:4849192012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Price P, Witt C, Allcock R, Sayer D,
Garlepp M, Kok CC, French M, Mallal S and Christiansen F: The
genetic basis for the association of the 8.1 ancestral haplotype
(A1, B8, DR3) with multiple immunopathological diseases. Immunol
Rev. 167:257–274. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Seldin MF, Alkhairy OK, Lee AT, Lamb JA,
Sussman J, Pirskanen-Matell R, Piehl F, Verschuuren JJGM,
Kostera-Pruszczyk A, Szczudlik P, et al: Genome-wide association
study of late-onset Myasthenia Gravis: Confirmation of TNFRSF11A
and identification of ZBTB10 and three distinct HLA associations.
Mol Med. 21:769–781. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vereecke L, Beyaert R and van Loo G: The
ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of
immunopathology. Trends Immunol. 30:383–391. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Moore KW, de Waal Malefyt R, Coffman RL
and O'Garra A: Interleukin-10 and the interleukin-10 receptor. Annu
Rev Immunol. 19:683–765. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Vecchio D, Ramdas S, Munot P, Pitt M,
Beeson D, Knight R, Rodríguez Cruz P, Vincent A, Jayawant S, DeVile
C, et al: Paediatric myasthenia gravis: Prognostic factors for drug
free remission. Neuromuscul Disord. 30:120–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tournier-Lasserve E and Bach JF: The
immunogenetics of myasthenia gravis, multiple sclerosis and their
animal models. J Neuroimmunol. 47:103–114. 1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu FC, Kuo CF, See LC, Tsai HI and Yu HP:
Familial aggregation of myasthenia gravis in affected families: A
population based study. Clin Epidemiol. 9:527–535. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Aguirre F and Villa AM: Myasthenia gravis.
Register of 190 cases in a single center. Medicina (B Aires).
80:10–16. 2020.(In Spanish). PubMed/NCBI
|
28
|
Gioia C, Lucchino B, Tarsitano MG,
Iannuccelli C and Di Franco M: Dietary habits and nutrition in
rheumatoid arthritis: Can diet influence disease development and
clinical manifestations? Nutrients. 12:14562020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shi J, Knevel R, Suwannalai P, van der
Linden MP, Janssen GMC, van Veelen PA, Levarht NEW, van der
Helm-van Mil AH, Cerami A, Huizinga TWJ, et al: Autoantibodies
recognizing carbamylated proteins are present in sera of patients
with rheumatoid arthritis and predict joint damage. Proc Natl Acad
Sci USA. 108:17372–17377. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lucchino B, Spinelli FR, Iannuccelli C,
Guzzo MP, Conti F and Di Franco M: Mucosa-environment interactions
in the pathogenesis of rheumatoid arthritis. Cells. 8:7002019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zouali M: DNA methylation signatures of
autoimmune diseases in human B lymphocytes. Clin Immunol.
222:1086222021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bray GA: Medical consequences of obesity.
J Clin Endocrinol Metab. 89:2583–2589. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Benros ME, Waltoft BL, Nordentoft M,
Ostergaard SD, Eaton WW, Krogh J and Mortensen PB: Autoimmune
diseases and severe infections as risk factors for mood disorders:
A nationwide study. JAMA Psychiatry. 70:812–820. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Katz N and Barohn JR: The history of
acetylcholinesterase inhibitors in the treatment of myasthenia
gravis. Neuropharmacology. 182:1083032021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mantegazza R and Antozzi C: From
traditional to targeted immunotherapy in Myasthenia Gravis:
Prospects for research. Front Neurol. 11:9812020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Andersen H, Mantegazza R, Wang JJ, O'Brien
F, Patra K and Howard JF Jr; REGAIN Study Group, : Eculizumab
improves fatigue in refractory generalized myasthenia gravis. Qual
Life Res. 28:2247–2254. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peres J, Martins R, Alves JD and Valverde
A: Rituximab in generalized myasthenia gravis: Clinical, quality of
life and cost-utility analysis. Porto Biomed J. 2:81–85. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Restivo DA, Centonze D, Alesina A and
Marchese-Ragona R: Myasthenia Gravis associated with SARS CoV 2
infection. Ann Intern Med. 173:1027–1028. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Papageorgiou L, Loukatou S, Sofia K,
Maroulis D and Vlachakis D: An updated evolutionary study of
Flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase
reveals novel invariable motifs as potential pharmacological
targets. Mol Biosyst. 12:2080–2093. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Vlachakis D, Fakourelis P, Megalooikonomou
V, Makris C and Kossida S: DrugOn: A fully integrated pharmacophore
modeling and structure optimization toolkit. PeerJ. 3:e7252015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Vlachakis D and Kossida S: Molecular
modeling and pharmacophore elucidation study of the Classical Swine
Fever virus helicase as a promising pharmacological target. PeerJ.
1:e852013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hughes T: The early history of myasthenia
gravis. Neuromuscul Disord. 15:878–886. 2005. View Article : Google Scholar : PubMed/NCBI
|