Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2021 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.xlsx
    • Supplementary_Data2.pdf
    • Supplementary_Data3.xlsx
Article Open Access

Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease

  • Authors:
    • Franciele Cascaes Da Silva
    • Michele Patrícia Rode
    • Giovanna Grunewald Vietta
    • Rodrigo Da Rosa Iop
    • Tânia Beatriz Creczynski‑Pasa
    • Alessandra Swarowsky Martin
    • Rudney Da Silva
  • View Affiliations / Copyright

    Affiliations: Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil, Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil, Nucleus of Epidemiology, University of Southern Santa Catarina, Palhoça, Santa Catarina 88137‑270, Brazil, Center for Health and Sport Sciences, Physical Therapy Department, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
    Copyright: © Da Silva et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 618
    |
    Published online on: June 29, 2021
       https://doi.org/10.3892/mmr.2021.12257
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

There is a consensus regarding the efficacy of physical exercise in maintaining or improving human health; however, there are few studies examining the effect of physical exercise on the expression levels of microRNAs (miRNA/miRs) in Parkinson's disease (PD). The aim of the present study was to investigate the effects of an interval training program on a cycle ergometer on the expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in serum samples from men with PD. This was a quasi‑experimental study with pre‑ and post‑testing and with a non‑equivalent group design. The participants were selected based on the eligibility criteria and subsequently classified into two groups: Experimental group and control group. The evaluations were performed at the beginning of the study (week 0) and after 8 weeks of the intervention program (week 9). The interval training program was performed on a cycle ergometer for 30 min, three times a week during an 8‑week period. The expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in the experimental group were increased after physical exercise and were associated with cognitive improvement in men with PD. However, further studies are required to clarify the potential use of these circulating miRNAs as markers of adaptation to physical exercise. Collectively, the present results indicated that these three miRNAs may be associated with the exercise response and cognitive improvement in men with PD.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

The World Health Organization 2017. Physical activity and adults. http://www.who.int/dietphysicalactivity/factsheet_adults/en/January 8–2019

2 

Barnett A, Smith B, Lord SR, Williams M and Baumand A: Community-based group exercise improves balance and reduces falls in at-risk older people: A randomised controlled trial. Age Ageing. 32:407–414. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM and Lamb SE: Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. CD0071462012.PubMed/NCBI

4 

Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG and Close JC: Effective exercise for the prevention of falls: A systematic review and meta-analysis. J Am Geriatr Soc. 56:2234–2243. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Fox KR: The influence of physical activity on mental well-being. Public Health Nutr. 2:411–418. 1999. View Article : Google Scholar : PubMed/NCBI

6 

Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M and Mead GE: Exercise for depression. Cochrane Database Syst Rev. CD0043662013.PubMed/NCBI

7 

Latt MD, Lord SR, Morris JG and Fung VS: Clinical and physiological assessments for elucidating falls risk in Parkinson's disease. Mov Disord. 24:1280–1289. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Allen NE, Canning CG, Sherrington C, Lord SR, Latt MD, Close JC, O'Rourke SD, Murray SM and Fung VS: The effects of an exercise program on fall risk factors in people with Parkinson's disease: A randomized controlled trial. Mov Disord. 25:1217–1225. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Lun V, Pullan N, Labelle N, Adams C and Suchowersky O: Comparison of the effects of a self-supervised home exercise program with a physiotherapist-supervised exercise program on the motor symptoms of Parkinson's disease. Mov Disord. 20:971–975. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Tomlinson CL, Patel S, Meek C, Clarke CE, Stowe R, Shah L, Sackley CM, Deane KHO, Herd CP, Wheatley K and Ives N: Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev. CD0028172012.

11 

Goodwin VA, Richards SH, Taylor RS, Taylor AH and Campbell JL: The effectiveness of exercise interventions for people with Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 23:631–640. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Rochester L, Nieuwboer A and Lord S: Physiotherapy for Parkinson's disease: Defining evidence within a framework for intervention. Neurodegenerative Disease Management. 1:57–65. 2011. View Article : Google Scholar

13 

da Silva FC, Iop RDR, de Oliveira LC, Boll AM, de Alvarenga JGS, Gutierres Filho PJB, de Melo LMAB, Xavier AJ and da Silva R: Effects of physical exercise programs on cognitive function in Parkinson's disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS One. 13:e01931132018. View Article : Google Scholar : PubMed/NCBI

14 

Oguh O, Eisenstein A, Kwasny M and Simuni T: Back to the basics: Regular exercise matters in parkinson's disease: Results from the national Parkinson foundation QII registry study. Parkinsonism Relat Disord. 20:1221–1225. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Murray DK, Sacheli MA, Eng JJ and Stoessl AJ: The effects of exercise on cognition in Parkinson's disease: A systematic review. Transl Neurodegener. 3:52014. View Article : Google Scholar : PubMed/NCBI

16 

Schapira AH: Neurobiology and treatment of Parkinson's disease. Trends Pharmacol Sci. 30:41–47. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Morris ME, Iansek R and Kirkwood B: A randomized controlled trial of movement strategies compared with exercise for people with Parkinson's disease. Mov Disord. 24:64–71. 2009. View Article : Google Scholar : PubMed/NCBI

18 

van Nimwegen M, Speelman AD, Hofman-van Rossum EJ, Overeem S, Deeg DJ, Borm GF, van der Horst MH, Bloem BR and Munneke M: Physical inactivity in Parkinson's disease. J Neurol. 258:2214–2221. 2011. View Article : Google Scholar : PubMed/NCBI

19 

van Hilten JJ, Hoogland G, van der Velde EA, Middelkoop HA, Kerkhof GA and Roos RA: Diurnal effects of motor activity and fatigue in Parkinson's disease. J Neurol Neurosurg Psychiatry. 56:874–877. 1993. View Article : Google Scholar : PubMed/NCBI

20 

Harraz MM, Dawson TM and Dawson VL: MicroRNAs in Parkinson's disease. J Chem Neuroanat. 4:127–130. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Mouradian MM: MicroRNAs in Parkinson's disease. Neurobiol Dis. 46:279–284. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Filatova EV, Alieva AKh, Shadrina MI and Slominsky PA: MicroRNAs: Possible role in pathogenesis of Parkinson's disease. Biochemistry (Mosc). 77:813–819. 2012. View Article : Google Scholar : PubMed/NCBI

23 

da Silva FC, Iop RD, Vietta GG, Kair DA, Gutierres Filho PJ, de Alvarenga JG and da Silva R: microRNAs involved in Parkinson's disease: A systematic review. Mol Med Rep. 14:4015–4022. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB and Silva RD: Effects of physical exercise on the expression of MicroRNAs: A Systematic review. J Strength Cond Res. 34:270–280. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Radom-Aizik S, Zaldivar F, Oliver S, Galassetti P and Cooper DM: Effects of exercise on miRNA expression levels in human peripheral blood mononuclear cells (PBMCs). FASEB J. 24:626.42010. View Article : Google Scholar

26 

Radom-Aizik S, Zaldivar F Jr, Leu SY, Adams GR, Oliver S and Cooper DM: Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 5:32–38. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Radom-Aizik S, Zaldivar F, Haddad F and Cooper DM: Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985). 114:628–636. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Radom-Aizik S, Zaldivar FP Jr, Haddad F and Cooper DM: Impact of brief exercise on circulating monocyte gene and microRNA expression: Implications for atherosclerotic vascular disease. Brain Behav Immun. 39:121–129. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S and Stocchi V: Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One. 10:e01250942015. View Article : Google Scholar : PubMed/NCBI

30 

Chilton WL, Marques FZ, West J, Kannourakis G, Berzins SP, O'Brien BJ and Charchar FJ: Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One. 9:e920882014. View Article : Google Scholar : PubMed/NCBI

31 

Uhlemann M, Möbius-Winkler S, Fikenzer S, Adam J, Redlich M, Möhlenkamp S, Hilberg T, Schuler GC and Adams V: Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol. 21:484–491. 2014. View Article : Google Scholar : PubMed/NCBI

32 

McLean CS, Mielke C, Cordova JM, Langlais PR, Bowen B, Miranda D, Coletta DK and Mandarino LJ: Gene and MicroRNA expression responses to exercise; relationship with insulin sensitivity. PLoS One. 10:e01270892015. View Article : Google Scholar : PubMed/NCBI

33 

Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP and Stepto NK: Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 310:R1297–R1311. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Denham J, O'Brien BJ, Marques FZ and Charchar FJ: Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol (1985). 118:475–488. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Dias RG, Silva MS, Duarte NE, Bolani W, Alves CR, Lemos JR, da Silva JL, de Oliveira PA, Alves GB, de Oliveira EM, et al: PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 7:13–23. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK and Laye MJ: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 588:4029–4037. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Backes C, Leidinger P, Keller A, Hart M, Meyer T, Meese E and Hecksteden A: Blood born miRNAs signatures that can serve as disease specific biomarkers are not significantly affected by overall fitness and exercise. PLoS One. 9:e1021832014. View Article : Google Scholar : PubMed/NCBI

38 

Tonevitsky AG, Maltseva DV, Abbasi A, Samatov TR, Sakharov DA, Shkurnikov MU, Lebedev AE, Galatenko VV, Grigoriev AI and Northoff H: Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 13:92013. View Article : Google Scholar : PubMed/NCBI

39 

Mooren FC, Viereck J, Kruger K and Thum T: Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol. 4:H557–H563. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ and Chan SY: Dynamic regulation of circulating MicroRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 589:3983–3994. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Cui SF, Li W, Niu J, Zhang CY, Chen X and Ma JZ: Acute responses of circulating microRNAs to low-volume sprint interval cycling. Front Physiol. 6:3112015. View Article : Google Scholar : PubMed/NCBI

42 

Cui SF, Wang C, Yin X, Tian D, Lu QJ, Zhang CY, Chen X and Ma JZ: Similar responses of circulating microRNAs to acute high-intensity interval exercise and vigorous-intensity continuous exercise. Front Physiol. 7:1022016. View Article : Google Scholar : PubMed/NCBI

43 

Zacharewicz E, Della Gatta P, Reynolds J, Garnham A, Crowley T, Russell AP and Lamon S: Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS One. 9:e1140092014. View Article : Google Scholar : PubMed/NCBI

44 

Mueller M, Breil FA, Lurman G, Klossner S, Fluck M, Billeter R, Dapp C and Hoppeler H: Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology. 57:528–538. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Drummond MJ, McCarthy JJ, Fry CS, Esser KA and Rasmussen BB: Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 295:E1333–E1340. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA and Phillips SM: High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physio (1985). 110:309–317. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Nielsen S, Hvid T, Kelly M, Lindegaard B, Dethlefsen C, Winding K, Mathur N, Scheele C, Pedersen BK and Laye MJ: Muscle specific miRNAs are induced by testosterone and independently upregulated by age. Front Physiol. 4:3942014. View Article : Google Scholar : PubMed/NCBI

48 

Zhang T, Birbrair A, Wang ZM, Messi ML, Marsh AP, Leng I, Nicklas BJ and Delbono O: Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol. 62:7–13. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Aoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y and Yoshikawa T: Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol. 4:802013. View Article : Google Scholar : PubMed/NCBI

50 

Margolis LM, Lessard SJ, Ezzyat Y, Fielding RA and Rivas DA: Circulating MicroRNA are predictive of aging and acute adaptive response to resistance exercise in men. J Gerontol A Biol Sci Med Sci. 72:1319–1326. 2017.PubMed/NCBI

51 

Xu T, Liu Q, Yao J, Dai Y, Wang H and Xiao J: Circulating microRNAs in response to exercise. Scand J Med Sci Sports. 25:e149–e154. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Riedel S, Radzanowski S, Bowen TS, Werner S, Erbs S, Schuler G and Adams V: Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells. Eur J Prev Cardiol. 22:899–903. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Van Craenenbroeck AH, Ledeganck KJ, Van Ackeren K, Jürgens A, Hoymans VY, Fransen E, Adams V, De Winter BY, Verpooten GA, Vrints CJ, et al: Plasma levels of microRNA in chronic kidney disease: Patterns in acute and chronic exercise. Am J Physiol Heart Circ Physiol. 309:H2008–H2016. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, et al: Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol Genomics. 46:747–765. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Parrizas M, Brugnara L, Esteban Y, Gonzalez-Franquesa A, Canivell S, Murillo S, Gordillo-Bastidas E, Cusso R, Cadefau JA, Garcia-Roves PM, et al: Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J Clin Endocrinol Metab. 100:E407–E415. 2015. View Article : Google Scholar : PubMed/NCBI

56 

da Silva ND Jr, Roseguini BT, Chehuen M, Fernandes T, Mota GF, Martin PK, Han SW, Forjaz CL, Wolosker N and de Oliveira EM: Effects of oral N-acetylcysteine on walking capacity, leg reactive hyperemia, and inflammatory and angiogenic mediators in patients with intermittent claudication. Am J Physiol Heart Circ Physiol. 309:H897–H905. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Nowak WN, Mika P, Nowobilski R, Kusinska K, Bukowska-Strakova K, Nizankowski R, Józkowicz A, Szczeklik A and Dulak J: Exercise training in intermittent claudication: Effects on antioxidant genes, inflammatory mediators and proangiogenic progenitor cells. Thromb Haemost. 108:824–831. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Shen JJ, Wang YF and Yang W: Sex-interacting mRNA- and miRNA-eQTLs and their implications in gene expression regulation and disease. Front Genet. 10:3132019. View Article : Google Scholar : PubMed/NCBI

59 

Sharma S and Eghbali M: Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ. 5:32014. View Article : Google Scholar : PubMed/NCBI

60 

Hoehn MM and Yahr MD: Parkinsonism: Onset, progression and mortality. Neurology. 17:427–442. 1967. View Article : Google Scholar : PubMed/NCBI

61 

Fahn S and Elton R: Members of the UPDRS Development Committee. Recent Developments in Parkinson's Disease. 2. Fahn S, Marsden CD, Calne DB and Goldstein M: Macmillan Health Care Information; Florham park, NJ: pp. 153–163, 293-304. 1987

62 

Folstein MF, Folstein SE and McHugh PR: ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12:189–198. 1975. View Article : Google Scholar : PubMed/NCBI

63 

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL and Chertkow H: The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 53:695–699. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Britto RR and Sousa LAP: Teste de caminhada de seis minutos-uma normatização brasileira. Fisioter Mov. 19:49–54. 2006.

65 

Kobayashi E, Himuro N and Takahashi M: Clinical utility of the 6-min walk test for patients with moderate Parkinson's disease. Int J Rehabil Res. 40:66–70. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial. Recomendações da Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial para coleta de sangue venoso. 2nd edition. Minha Editora; Barueri, SP: 2010

67 

ANVISA, . Agência Nacional de Vigilância Sanitária. Guia para transportes de sangue e componentes. 2013.

68 

Ramakers C, Ruijter JM, Deprez RH and Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 339:62–66. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:e050052015. View Article : Google Scholar : PubMed/NCBI

71 

Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43((Database Issue)): D146–D152. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

73 

Supek F, Bošnjak M, Škunca N and Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 6:e218002011. View Article : Google Scholar : PubMed/NCBI

74 

Uygur M, Bellumori M and Knight CA: Effects of a low-resistance, interval bicycling intervention in Parkinson's disease. Physiother Theory Pract. 33:897–904. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Eacker SM, Dawson TM and Dawson VL: Understanding microRNAs in neurodegeneration. Nat Rev Neurosci. 10:837–841. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Margis R, Margis R and Rieder CR: Identification of blood microRNAs associated to Parkinsonis disease. J Biotechnol. 152:96–101. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, et al: Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson's disease. PLoS One. 6:e254432011. View Article : Google Scholar : PubMed/NCBI

78 

Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA and Cooper JM: Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease. Cell Death Dis. 4:e5452013. View Article : Google Scholar : PubMed/NCBI

79 

Serafin A, Foco L, Zanigni S, Blankenburg H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli P, et al: Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology. 84:645–653. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Roshan R, Ghosh T, Scaria V and Pillai B: MicroRNAs: Novel therapeutic targets in neurodegenerative diseases. Drug Discov Today. 14:1123–1129. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Ragusa M, Bosco P, Tamburello L, Barbagallo C, Condorelli AG, Tornitore M, Spada RS, Barbagallo D, Scalia M, Elia M, et al: miRNAs plasma profiles in vascular dementia: Biomolecular data and biomedical implications. Front Cell Neurosci. 10:512016. View Article : Google Scholar : PubMed/NCBI

82 

Kondo M, Yamada H, Munetsuna E, Yamazaki M, Hatta T, Iwahara A, Ohashi K, Ishikawa H, Tsuboi Y, Inoue T, et al: Associations of serum microRNA-20a, −27a, and −103a with cognitive function in a Japanese population: The Yakumo study. Arch Gerontol Geriatr. 82:155–160. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Zhang M, Ye Y, Cong J, Pu D, Liu J, Hu G and Wu J: Regulation of STAT3 by miR-106a is linked to cognitive impairment in ovariectomized mice. Brain Res. 1503:43–52. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Hao H, Xia G, Wang C, Zhong F, Liu L and Zhang D: miR-106a suppresses tumor cells death in colorectal cancer through targeting ATG7. Med Mol Morphol. 50:76–85. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM and Savitt JM: Development and characterization of a new Parkinson's disease model resulting from impaired autophagy. J Neurosci. 32:16503–16509. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Liu Y, Zhang J, Sun X and Li M: EMMPRIN Down-regulating miR-106a/b modifies breast cancer stem-like cell properties via interaction with fibroblasts through STAT3 and HIF-1α. Sci Rep. 6:283292016. View Article : Google Scholar : PubMed/NCBI

87 

Li X, Zhu Y, Zhang H, Ma G, Wu G, Xiang A, Shi X, Yang GS and Sun S: MicroRNA-106a-5p Inhibited C2C12 myogenesis via targeting PIK3R1 and modulating the PI3K/AKT signaling. Genes (Basel). 9:3332018. View Article : Google Scholar : PubMed/NCBI

88 

Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK and Laye MJ: The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 9:e873082014. View Article : Google Scholar : PubMed/NCBI

89 

Berwick DC and Harvey K: The importance of Wnt signalling for neurodegeneration in Parkinson's disease. Biochem Soc Trans. 40:1123–1128. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Stephano F, Nolte S, Hoffmann J, El-Kholy S, von Frieling J, Bruchhaus I, Fink C and Roeder T: Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model. Sci Rep. 8:23722018. View Article : Google Scholar : PubMed/NCBI

91 

Liu J, Wu M, Feng G, Li R, Wang Y and Jiao J: Downregulation of LINC00707 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating DKK1 via targeting miR-103a-3p. Int J Mol Med. 46:1029–1038. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Dun Y, Yang Y, Xiong Z, Feng M, Zhang Y, Wang M, Xiang J, Li G and Ma R: Induction of dickkopf-1 contributes to the neurotoxicity of MPP+ in PC12 cells via inhibition of the canonical Wnt signaling pathway. Neuropharmacology. 67:168–175. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Scott EL and Brann DW: Estrogen regulation of Dkk1 and Wnt/β-catenin signaling in neurodegenerative disease. Brain Res. 1514:63–74. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Li M, Liu Z, Zhang Z, Liu G, Sun S and Sun C: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem. 396:235–244. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Gao L, She H, Li W, Zeng J, Zhu J, Jones DP, Mao Z, Gao G and Yang Q: Oxidation of survival factor MEF2D in neuronal death and Parkinson's disease. Antioxid Redox Signal. 20:2936–2948. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, et al: Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia. 53:1099–1109. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Aviles-Olmos I, Limousin P, Lees A and Foltynie T: Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain. 136:374–384. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Mandillo S, Golini E, Marazziti D, Di Pietro C, Matteoni R and Tocchini-Valentini GP: Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: Age and gender effect. Genes Brain Behav. 12:465–477. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Karic A, Terzic R, Karic A and Peterlin B: Identifying candidate genes for Parkinson's disease by integrative genomics method. Biochem Med (Zagreb). 21:174–181. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Da Silva FC, Rode MP, Vietta GG, Iop RD, Creczynski‑Pasa TB, Martin AS and Da Silva R: Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 24: 618, 2021.
APA
Da Silva, F.C., Rode, M.P., Vietta, G.G., Iop, R.D., Creczynski‑Pasa, T.B., Martin, A.S., & Da Silva, R. (2021). Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Molecular Medicine Reports, 24, 618. https://doi.org/10.3892/mmr.2021.12257
MLA
Da Silva, F. C., Rode, M. P., Vietta, G. G., Iop, R. D., Creczynski‑Pasa, T. B., Martin, A. S., Da Silva, R."Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease". Molecular Medicine Reports 24.2 (2021): 618.
Chicago
Da Silva, F. C., Rode, M. P., Vietta, G. G., Iop, R. D., Creczynski‑Pasa, T. B., Martin, A. S., Da Silva, R."Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease". Molecular Medicine Reports 24, no. 2 (2021): 618. https://doi.org/10.3892/mmr.2021.12257
Copy and paste a formatted citation
x
Spandidos Publications style
Da Silva FC, Rode MP, Vietta GG, Iop RD, Creczynski‑Pasa TB, Martin AS and Da Silva R: Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 24: 618, 2021.
APA
Da Silva, F.C., Rode, M.P., Vietta, G.G., Iop, R.D., Creczynski‑Pasa, T.B., Martin, A.S., & Da Silva, R. (2021). Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Molecular Medicine Reports, 24, 618. https://doi.org/10.3892/mmr.2021.12257
MLA
Da Silva, F. C., Rode, M. P., Vietta, G. G., Iop, R. D., Creczynski‑Pasa, T. B., Martin, A. S., Da Silva, R."Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease". Molecular Medicine Reports 24.2 (2021): 618.
Chicago
Da Silva, F. C., Rode, M. P., Vietta, G. G., Iop, R. D., Creczynski‑Pasa, T. B., Martin, A. S., Da Silva, R."Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease". Molecular Medicine Reports 24, no. 2 (2021): 618. https://doi.org/10.3892/mmr.2021.12257
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team