|
1
|
The World Health Organization 2017.
Physical activity and adults. http://www.who.int/dietphysicalactivity/factsheet_adults/en/January
8–2019
|
|
2
|
Barnett A, Smith B, Lord SR, Williams M
and Baumand A: Community-based group exercise improves balance and
reduces falls in at-risk older people: A randomised controlled
trial. Age Ageing. 32:407–414. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gillespie LD, Robertson MC, Gillespie WJ,
Sherrington C, Gates S, Clemson LM and Lamb SE: Interventions for
preventing falls in older people living in the community. Cochrane
Database Syst Rev. CD0071462012.PubMed/NCBI
|
|
4
|
Sherrington C, Whitney JC, Lord SR,
Herbert RD, Cumming RG and Close JC: Effective exercise for the
prevention of falls: A systematic review and meta-analysis. J Am
Geriatr Soc. 56:2234–2243. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fox KR: The influence of physical activity
on mental well-being. Public Health Nutr. 2:411–418. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cooney GM, Dwan K, Greig CA, Lawlor DA,
Rimer J, Waugh FR, McMurdo M and Mead GE: Exercise for depression.
Cochrane Database Syst Rev. CD0043662013.PubMed/NCBI
|
|
7
|
Latt MD, Lord SR, Morris JG and Fung VS:
Clinical and physiological assessments for elucidating falls risk
in Parkinson's disease. Mov Disord. 24:1280–1289. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Allen NE, Canning CG, Sherrington C, Lord
SR, Latt MD, Close JC, O'Rourke SD, Murray SM and Fung VS: The
effects of an exercise program on fall risk factors in people with
Parkinson's disease: A randomized controlled trial. Mov Disord.
25:1217–1225. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lun V, Pullan N, Labelle N, Adams C and
Suchowersky O: Comparison of the effects of a self-supervised home
exercise program with a physiotherapist-supervised exercise program
on the motor symptoms of Parkinson's disease. Mov Disord.
20:971–975. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tomlinson CL, Patel S, Meek C, Clarke CE,
Stowe R, Shah L, Sackley CM, Deane KHO, Herd CP, Wheatley K and
Ives N: Physiotherapy versus placebo or no intervention in
Parkinson's disease. Cochrane Database Syst Rev. CD0028172012.
|
|
11
|
Goodwin VA, Richards SH, Taylor RS, Taylor
AH and Campbell JL: The effectiveness of exercise interventions for
people with Parkinson's disease: A systematic review and
meta-analysis. Mov Disord. 23:631–640. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rochester L, Nieuwboer A and Lord S:
Physiotherapy for Parkinson's disease: Defining evidence within a
framework for intervention. Neurodegenerative Disease Management.
1:57–65. 2011. View
Article : Google Scholar
|
|
13
|
da Silva FC, Iop RDR, de Oliveira LC, Boll
AM, de Alvarenga JGS, Gutierres Filho PJB, de Melo LMAB, Xavier AJ
and da Silva R: Effects of physical exercise programs on cognitive
function in Parkinson's disease patients: A systematic review of
randomized controlled trials of the last 10 years. PLoS One.
13:e01931132018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Oguh O, Eisenstein A, Kwasny M and Simuni
T: Back to the basics: Regular exercise matters in parkinson's
disease: Results from the national Parkinson foundation QII
registry study. Parkinsonism Relat Disord. 20:1221–1225. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Murray DK, Sacheli MA, Eng JJ and Stoessl
AJ: The effects of exercise on cognition in Parkinson's disease: A
systematic review. Transl Neurodegener. 3:52014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schapira AH: Neurobiology and treatment of
Parkinson's disease. Trends Pharmacol Sci. 30:41–47. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Morris ME, Iansek R and Kirkwood B: A
randomized controlled trial of movement strategies compared with
exercise for people with Parkinson's disease. Mov Disord. 24:64–71.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
van Nimwegen M, Speelman AD, Hofman-van
Rossum EJ, Overeem S, Deeg DJ, Borm GF, van der Horst MH, Bloem BR
and Munneke M: Physical inactivity in Parkinson's disease. J
Neurol. 258:2214–2221. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
van Hilten JJ, Hoogland G, van der Velde
EA, Middelkoop HA, Kerkhof GA and Roos RA: Diurnal effects of motor
activity and fatigue in Parkinson's disease. J Neurol Neurosurg
Psychiatry. 56:874–877. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Harraz MM, Dawson TM and Dawson VL:
MicroRNAs in Parkinson's disease. J Chem Neuroanat. 4:127–130.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mouradian MM: MicroRNAs in Parkinson's
disease. Neurobiol Dis. 46:279–284. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Filatova EV, Alieva AKh, Shadrina MI and
Slominsky PA: MicroRNAs: Possible role in pathogenesis of
Parkinson's disease. Biochemistry (Mosc). 77:813–819. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
da Silva FC, Iop RD, Vietta GG, Kair DA,
Gutierres Filho PJ, de Alvarenga JG and da Silva R: microRNAs
involved in Parkinson's disease: A systematic review. Mol Med Rep.
14:4015–4022. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Silva FCD, Iop RDR, Andrade A, Costa VP,
Gutierres Filho PJB and Silva RD: Effects of physical exercise on
the expression of MicroRNAs: A Systematic review. J Strength Cond
Res. 34:270–280. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Radom-Aizik S, Zaldivar F, Oliver S,
Galassetti P and Cooper DM: Effects of exercise on miRNA expression
levels in human peripheral blood mononuclear cells (PBMCs). FASEB
J. 24:626.42010. View Article : Google Scholar
|
|
26
|
Radom-Aizik S, Zaldivar F Jr, Leu SY,
Adams GR, Oliver S and Cooper DM: Effects of exercise on microRNA
expression in young males peripheral blood mononuclear cells. Clin
Transl Sci. 5:32–38. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Radom-Aizik S, Zaldivar F, Haddad F and
Cooper DM: Impact of brief exercise on peripheral blood NK cell
gene and microRNA expression in young adults. J Appl Physiol
(1985). 114:628–636. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Radom-Aizik S, Zaldivar FP Jr, Haddad F
and Cooper DM: Impact of brief exercise on circulating monocyte
gene and microRNA expression: Implications for atherosclerotic
vascular disease. Brain Behav Immun. 39:121–129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Guescini M, Canonico B, Lucertini F,
Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S and Stocchi
V: Muscle releases alpha-sarcoglycan positive extracellular
vesicles carrying miRNAs in the bloodstream. PLoS One.
10:e01250942015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chilton WL, Marques FZ, West J,
Kannourakis G, Berzins SP, O'Brien BJ and Charchar FJ: Acute
exercise leads to regulation of telomere-associated genes and
microRNA expression in immune cells. PLoS One. 9:e920882014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Uhlemann M, Möbius-Winkler S, Fikenzer S,
Adam J, Redlich M, Möhlenkamp S, Hilberg T, Schuler GC and Adams V:
Circulating microRNA-126 increases after different forms of
endurance exercise in healthy adults. Eur J Prev Cardiol.
21:484–491. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McLean CS, Mielke C, Cordova JM, Langlais
PR, Bowen B, Miranda D, Coletta DK and Mandarino LJ: Gene and
MicroRNA expression responses to exercise; relationship with
insulin sensitivity. PLoS One. 10:e01270892015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fyfe JJ, Bishop DJ, Zacharewicz E, Russell
AP and Stepto NK: Concurrent exercise incorporating high-intensity
interval or continuous training modulates mTORC1 signaling and
microRNA expression in human skeletal muscle. Am J Physiol Regul
Integr Comp Physiol. 310:R1297–R1311. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Denham J, O'Brien BJ, Marques FZ and
Charchar FJ: Changes in the leukocyte methylome and its effect on
cardiovascular-related genes after exercise. J Appl Physiol (1985).
118:475–488. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dias RG, Silva MS, Duarte NE, Bolani W,
Alves CR, Lemos JR, da Silva JL, de Oliveira PA, Alves GB, de
Oliveira EM, et al: PBMCs express a transcriptome signature
predictor of oxygen uptake responsiveness to endurance exercise
training in men. Physiol Genomics. 7:13–23. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nielsen S, Scheele C, Yfanti C, Åkerström
T, Nielsen AR, Pedersen BK and Laye MJ: Muscle specific microRNAs
are regulated by endurance exercise in human skeletal muscle. J
Physiol. 588:4029–4037. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Backes C, Leidinger P, Keller A, Hart M,
Meyer T, Meese E and Hecksteden A: Blood born miRNAs signatures
that can serve as disease specific biomarkers are not significantly
affected by overall fitness and exercise. PLoS One. 9:e1021832014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tonevitsky AG, Maltseva DV, Abbasi A,
Samatov TR, Sakharov DA, Shkurnikov MU, Lebedev AE, Galatenko VV,
Grigoriev AI and Northoff H: Dynamically regulated miRNA-mRNA
networks revealed by exercise. BMC Physiol. 13:92013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mooren FC, Viereck J, Kruger K and Thum T:
Circulating microRNAs as potential biomarkers of aerobic exercise
capacity. Am J Physiol Heart Circ Physiol. 4:H557–H563. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Baggish AL, Hale A, Weiner RB, Lewis GD,
Systrom D, Wang F, Wang TJ and Chan SY: Dynamic regulation of
circulating MicroRNA during acute exhaustive exercise and sustained
aerobic exercise training. J Physiol. 589:3983–3994. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cui SF, Li W, Niu J, Zhang CY, Chen X and
Ma JZ: Acute responses of circulating microRNAs to low-volume
sprint interval cycling. Front Physiol. 6:3112015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cui SF, Wang C, Yin X, Tian D, Lu QJ,
Zhang CY, Chen X and Ma JZ: Similar responses of circulating
microRNAs to acute high-intensity interval exercise and
vigorous-intensity continuous exercise. Front Physiol. 7:1022016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zacharewicz E, Della Gatta P, Reynolds J,
Garnham A, Crowley T, Russell AP and Lamon S: Identification of
microRNAs linked to regulators of muscle protein synthesis and
regeneration in young and old skeletal muscle. PLoS One.
9:e1140092014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mueller M, Breil FA, Lurman G, Klossner S,
Fluck M, Billeter R, Dapp C and Hoppeler H: Different molecular and
structural adaptations with eccentric and conventional strength
training in elderly men and women. Gerontology. 57:528–538. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Drummond MJ, McCarthy JJ, Fry CS, Esser KA
and Rasmussen BB: Aging differentially affects human skeletal
muscle microRNA expression at rest and after an anabolic stimulus
of resistance exercise and essential amino acids. Am J Physiol
Endocrinol Metab. 295:E1333–E1340. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Davidsen PK, Gallagher IJ, Hartman JW,
Tarnopolsky MA, Dela F, Helge JW, Timmons JA and Phillips SM: High
responders to resistance exercise training demonstrate differential
regulation of skeletal muscle microRNA expression. J Appl Physio
(1985). 110:309–317. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nielsen S, Hvid T, Kelly M, Lindegaard B,
Dethlefsen C, Winding K, Mathur N, Scheele C, Pedersen BK and Laye
MJ: Muscle specific miRNAs are induced by testosterone and
independently upregulated by age. Front Physiol. 4:3942014.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang T, Birbrair A, Wang ZM, Messi ML,
Marsh AP, Leng I, Nicklas BJ and Delbono O: Improved knee extensor
strength with resistance training associates with muscle specific
miRNAs in older adults. Exp Gerontol. 62:7–13. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Aoi W, Ichikawa H, Mune K, Tanimura Y,
Mizushima K, Naito Y and Yoshikawa T: Muscle-enriched microRNA
miR-486 decreases in circulation in response to exercise in young
men. Front Physiol. 4:802013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Margolis LM, Lessard SJ, Ezzyat Y,
Fielding RA and Rivas DA: Circulating MicroRNA are predictive of
aging and acute adaptive response to resistance exercise in men. J
Gerontol A Biol Sci Med Sci. 72:1319–1326. 2017.PubMed/NCBI
|
|
51
|
Xu T, Liu Q, Yao J, Dai Y, Wang H and Xiao
J: Circulating microRNAs in response to exercise. Scand J Med Sci
Sports. 25:e149–e154. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Riedel S, Radzanowski S, Bowen TS, Werner
S, Erbs S, Schuler G and Adams V: Exercise training improves
high-density lipoprotein-mediated transcription of proangiogenic
microRNA in endothelial cells. Eur J Prev Cardiol. 22:899–903.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Van Craenenbroeck AH, Ledeganck KJ, Van
Ackeren K, Jürgens A, Hoymans VY, Fransen E, Adams V, De Winter BY,
Verpooten GA, Vrints CJ, et al: Plasma levels of microRNA in
chronic kidney disease: Patterns in acute and chronic exercise. Am
J Physiol Heart Circ Physiol. 309:H2008–H2016. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rowlands DS, Page RA, Sukala WR, Giri M,
Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, et
al: Multi-omic integrated networks connect DNA methylation and
miRNA with skeletal muscle plasticity to chronic exercise in Type 2
diabetic obesity. Physiol Genomics. 46:747–765. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Parrizas M, Brugnara L, Esteban Y,
Gonzalez-Franquesa A, Canivell S, Murillo S, Gordillo-Bastidas E,
Cusso R, Cadefau JA, Garcia-Roves PM, et al: Circulating miR-192
and miR-193b are markers of prediabetes and are modulated by an
exercise intervention. J Clin Endocrinol Metab. 100:E407–E415.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
da Silva ND Jr, Roseguini BT, Chehuen M,
Fernandes T, Mota GF, Martin PK, Han SW, Forjaz CL, Wolosker N and
de Oliveira EM: Effects of oral N-acetylcysteine on walking
capacity, leg reactive hyperemia, and inflammatory and angiogenic
mediators in patients with intermittent claudication. Am J Physiol
Heart Circ Physiol. 309:H897–H905. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nowak WN, Mika P, Nowobilski R, Kusinska
K, Bukowska-Strakova K, Nizankowski R, Józkowicz A, Szczeklik A and
Dulak J: Exercise training in intermittent claudication: Effects on
antioxidant genes, inflammatory mediators and proangiogenic
progenitor cells. Thromb Haemost. 108:824–831. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shen JJ, Wang YF and Yang W:
Sex-interacting mRNA- and miRNA-eQTLs and their implications in
gene expression regulation and disease. Front Genet. 10:3132019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sharma S and Eghbali M: Influence of sex
differences on microRNA gene regulation in disease. Biol Sex
Differ. 5:32014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hoehn MM and Yahr MD: Parkinsonism: Onset,
progression and mortality. Neurology. 17:427–442. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fahn S and Elton R: Members of the UPDRS
Development Committee. Recent Developments in Parkinson's Disease.
2. Fahn S, Marsden CD, Calne DB and Goldstein M: Macmillan Health
Care Information; Florham park, NJ: pp. 153–163, 293-304. 1987
|
|
62
|
Folstein MF, Folstein SE and McHugh PR:
‘Mini-mental state’. A practical method for grading the cognitive
state of patients for the clinician. J Psychiatr Res. 12:189–198.
1975. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nasreddine ZS, Phillips NA, Bédirian V,
Charbonneau S, Whitehead V, Collin I, Cummings JL and Chertkow H:
The montreal cognitive assessment, MoCA: A brief screening tool for
mild cognitive impairment. J Am Geriatr Soc. 53:695–699. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Britto RR and Sousa LAP: Teste de
caminhada de seis minutos-uma normatização brasileira. Fisioter
Mov. 19:49–54. 2006.
|
|
65
|
Kobayashi E, Himuro N and Takahashi M:
Clinical utility of the 6-min walk test for patients with moderate
Parkinson's disease. Int J Rehabil Res. 40:66–70. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sociedade Brasileira de Patologia
Clínica/Medicina Laboratorial. Recomendações da Sociedade
Brasileira de Patologia Clínica/Medicina Laboratorial para coleta
de sangue venoso. 2nd edition. Minha Editora; Barueri, SP: 2010
|
|
67
|
ANVISA, . Agência Nacional de Vigilância
Sanitária. Guia para transportes de sangue e componentes. 2013.
|
|
68
|
Ramakers C, Ruijter JM, Deprez RH and
Moorman AF: Assumption-free analysis of quantitative real-time
polymerase chain reaction (PCR) data. Neurosci Lett. 339:62–66.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:e050052015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wong N and Wang X: miRDB: An online
resource for microRNA target prediction and functional annotations.
Nucleic Acids Res. 43((Database Issue)): D146–D152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Supek F, Bošnjak M, Škunca N and Šmuc T:
REVIGO summarizes and visualizes long lists of gene ontology terms.
PLoS One. 6:e218002011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Uygur M, Bellumori M and Knight CA:
Effects of a low-resistance, interval bicycling intervention in
Parkinson's disease. Physiother Theory Pract. 33:897–904. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Eacker SM, Dawson TM and Dawson VL:
Understanding microRNAs in neurodegeneration. Nat Rev Neurosci.
10:837–841. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Margis R, Margis R and Rieder CR:
Identification of blood microRNAs associated to Parkinsonis
disease. J Biotechnol. 152:96–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Martins M, Rosa A, Guedes LC, Fonseca BV,
Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, et
al: Convergence of miRNA expression profiling, α-synuclein
interacton and GWAS in Parkinson's disease. PLoS One. 6:e254432011.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Alvarez-Erviti L, Seow Y, Schapira AH,
Rodriguez-Oroz MC, Obeso JA and Cooper JM: Influence of microRNA
deregulation on chaperone-mediated autophagy and α-synuclein
pathology in Parkinson's disease. Cell Death Dis. 4:e5452013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Serafin A, Foco L, Zanigni S, Blankenburg
H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli
P, et al: Overexpression of blood microRNAs 103a, 30b, and 29a in
L-dopa-treated patients with PD. Neurology. 84:645–653. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Roshan R, Ghosh T, Scaria V and Pillai B:
MicroRNAs: Novel therapeutic targets in neurodegenerative diseases.
Drug Discov Today. 14:1123–1129. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ragusa M, Bosco P, Tamburello L,
Barbagallo C, Condorelli AG, Tornitore M, Spada RS, Barbagallo D,
Scalia M, Elia M, et al: miRNAs plasma profiles in vascular
dementia: Biomolecular data and biomedical implications. Front Cell
Neurosci. 10:512016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kondo M, Yamada H, Munetsuna E, Yamazaki
M, Hatta T, Iwahara A, Ohashi K, Ishikawa H, Tsuboi Y, Inoue T, et
al: Associations of serum microRNA-20a, −27a, and −103a with
cognitive function in a Japanese population: The Yakumo study. Arch
Gerontol Geriatr. 82:155–160. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang M, Ye Y, Cong J, Pu D, Liu J, Hu G
and Wu J: Regulation of STAT3 by miR-106a is linked to cognitive
impairment in ovariectomized mice. Brain Res. 1503:43–52. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hao H, Xia G, Wang C, Zhong F, Liu L and
Zhang D: miR-106a suppresses tumor cells death in colorectal cancer
through targeting ATG7. Med Mol Morphol. 50:76–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ahmed I, Liang Y, Schools S, Dawson VL,
Dawson TM and Savitt JM: Development and characterization of a new
Parkinson's disease model resulting from impaired autophagy. J
Neurosci. 32:16503–16509. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Zhang J, Sun X and Li M: EMMPRIN
Down-regulating miR-106a/b modifies breast cancer stem-like cell
properties via interaction with fibroblasts through STAT3 and
HIF-1α. Sci Rep. 6:283292016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li X, Zhu Y, Zhang H, Ma G, Wu G, Xiang A,
Shi X, Yang GS and Sun S: MicroRNA-106a-5p Inhibited C2C12
myogenesis via targeting PIK3R1 and modulating the PI3K/AKT
signaling. Genes (Basel). 9:3332018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nielsen S, Åkerström T, Rinnov A, Yfanti
C, Scheele C, Pedersen BK and Laye MJ: The miRNA plasma signature
in response to acute aerobic exercise and endurance training. PLoS
One. 9:e873082014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Berwick DC and Harvey K: The importance of
Wnt signalling for neurodegeneration in Parkinson's disease.
Biochem Soc Trans. 40:1123–1128. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Stephano F, Nolte S, Hoffmann J, El-Kholy
S, von Frieling J, Bruchhaus I, Fink C and Roeder T: Impaired Wnt
signaling in dopamine containing neurons is associated with
pathogenesis in a rotenone triggered Drosophila Parkinson's disease
model. Sci Rep. 8:23722018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu J, Wu M, Feng G, Li R, Wang Y and Jiao
J: Downregulation of LINC00707 promotes osteogenic differentiation
of human bone marrow-derived mesenchymal stem cells by regulating
DKK1 via targeting miR-103a-3p. Int J Mol Med. 46:1029–1038. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dun Y, Yang Y, Xiong Z, Feng M, Zhang Y,
Wang M, Xiang J, Li G and Ma R: Induction of dickkopf-1 contributes
to the neurotoxicity of MPP+ in PC12 cells via
inhibition of the canonical Wnt signaling pathway.
Neuropharmacology. 67:168–175. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Scott EL and Brann DW: Estrogen regulation
of Dkk1 and Wnt/β-catenin signaling in neurodegenerative disease.
Brain Res. 1514:63–74. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li M, Liu Z, Zhang Z, Liu G, Sun S and Sun
C: miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR
signal pathway with its target being MEF2D. Biol Chem. 396:235–244.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gao L, She H, Li W, Zeng J, Zhu J, Jones
DP, Mao Z, Gao G and Yang Q: Oxidation of survival factor MEF2D in
neuronal death and Parkinson's disease. Antioxid Redox Signal.
20:2936–2948. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Herrera BM, Lockstone HE, Taylor JM, Ria
M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers
ME, et al: Global microRNA expression profiles in insulin target
tissues in a spontaneous rat model of type 2 diabetes.
Diabetologia. 53:1099–1109. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Trajkovski M, Hausser J, Soutschek J, Bhat
B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107
regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Aviles-Olmos I, Limousin P, Lees A and
Foltynie T: Parkinson's disease, insulin resistance and novel
agents of neuroprotection. Brain. 136:374–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Mandillo S, Golini E, Marazziti D, Di
Pietro C, Matteoni R and Tocchini-Valentini GP: Mice lacking the
Parkinson's related GPR37/PAEL receptor show non-motor behavioral
phenotypes: Age and gender effect. Genes Brain Behav. 12:465–477.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Karic A, Terzic R, Karic A and Peterlin B:
Identifying candidate genes for Parkinson's disease by integrative
genomics method. Biochem Med (Zagreb). 21:174–181. 2011. View Article : Google Scholar : PubMed/NCBI
|