|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pácha J: Development of intestinal
transport function in mammals. Physiol Rev. 80:1633–1667. 2000.
View Article : Google Scholar
|
|
3
|
Poulsen SB, Fenton RA and Rieg T:
Sodium-glucose cotransport. Curr Opin Nephrol Hypertens.
24:463–469. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Argenzio E and Moolenaar WH: Emerging
biological roles of Cl-intracellular channel proteins. J Cell Sci.
129:4165–4174. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kobayashi T, Shiozaki A, Nako Y, Ichikawa
D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, et
al: Chloride intracellular channel 1 as a switch among tumor
behaviors in human esophageal squamous cell carcinoma. Oncotarget.
9:23237–23252. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ma PF, Chen JQ, Wang Z, Liu JL and Li BP:
Function of chloride intracellular channel 1 in gastric cancer
cells. World J Gastroenterol. 18:3070–3080. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jiang X, Liu Y, Wang G, Yao Y, Mei C, Wu
X, Ma W and Yuan Y: Up-regulation of CLIC1 activates MYC signaling
and forms a positive feedback regulatory loop with MYC in
Hepatocellular carcinoma. Am J Cancer Res. 10:2355–2370.
2020.PubMed/NCBI
|
|
8
|
Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP,
Cheng Y, Cheng DQ, Weng WH, Wu XS, Fei XZ, et al: Identification of
metastasis-associated proteins involved in gallbladder carcinoma
metastasis by proteomic analysis and functional exploration of
chloride intracellular channel 1. Cancer Lett. 281:71–81. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lu J, Dong Q, Zhang B, Wang X, Ye B, Zhang
F, Song X, Gao G, Mu J, Wang Z, et al: Chloride intracellular
channel 1 (CLIC1) is activated and functions as an oncogene in
pancreatic cancer. Med Oncol. 32:6162015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Harrop SJ, DeMaere MZ, Fairlie WD,
Reztsova T, Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Jankova L,
Warton K, et al: Crystal structure of a soluble form of the
intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A
resolution. J Biol Chem. 276:44993–45000. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Littler DR, Harrop SJ, Goodchild SC, Phang
JM, Mynott AV, Jiang L, Valenzuela SM, Mazzanti M, Brown LJ, Breit
SN and Curmi PM: The enigma of the CLIC proteins: Ion channels,
redox proteins, enzymes, scaffolding proteins? FEBS Lett.
584:2093–2101. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dozynkiewicz MA, Jamieson NB, Macpherson
I, Grindlay J, van den Berghe PV, von Thun A, Morton JP, Gourley C,
Timpson P, Nixon C, et al: Rab25 and CLIC3 collaborate to promote
integrin recycling from late endosomes/lysosomes and drive cancer
progression. Dev Cell. 22:131–145. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chou SY, Hsu KS, Otsu W, Hsu YC, Luo YC,
Yeh C, Shehab SS, Chen J, Shieh V, He GA, et al: CLIC4 regulates
apical exocytosis and renal tube luminogenesis through retromer-
and actin-mediated endocytic trafficking. Nat Commun. 7:104122016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Al Khamici H, Brown LJ, Hossain KR, Hudson
AL, Sinclair-Burton AA, Ng JP, Daniel EL, Hare JE, Cornell BA,
Curmi PM, et al: Members of the chloride intracellular ion channel
protein family demonstrate glutaredoxin-like enzymatic activity.
PLoS One. 10:e1156992015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Board PG, Coggan M, Watson S, Gage PW and
Dulhunty AF: CLIC-2 modulates cardiac ryanodine receptor
Ca2+ release channels. Int J Biochem Cell Biol.
36:1599–1612. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Valenzuela SM, Mazzanti M, Tonini R, Qiu
MR, Warton K, Musgrove EA, Campbell TJ and Breit SN: The nuclear
chloride ion channel NCC27 is involved in regulation of the cell
cycle. J Physiol. 529:541–552. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang JY, Jung JY, Cho SW, Choi HJ, Kim SW,
Kim SY, Kim HJ, Jang CH, Lee MG, Han J and Shin CS: Chloride
intracellular channel 1 regulates osteoblast differentiation. Bone.
45:1175–1185. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fernández-Salas E, Sagar M, Cheng C, Yuspa
SH and Weinberg WC: p53 and tumor necrosis factor alpha regulate
the expression of a mitochondrial chloride channel protein. J Biol
Chem. 274:36488–36497. 1999. View Article : Google Scholar
|
|
19
|
Shanks RA, Larocca MC, Berryman M, Edwards
JC, Urushidani T, Navarre J and Goldenring JR: AKAP350 at the Golgi
apparatus. II. Association of AKAP350 with a novel chloride
intracellular channel (CLIC) family member. J Biol Chem.
277:40973–40980. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fan L, Yu W and Zhu X: Interaction of
Sedlin with chloride intracellular channel proteins. FEBS Lett.
540:77–80. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Qian Z, Okuhara D, Abe MK and Rosner MR:
Molecular cloning and characterization of a mitogen-activated
protein kinase-associated intracellular chloride channel. J Biol
Chem. 274:1621–1627. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Edwards JC, Cohen C, Xu W and Schlesinger
PH: c-Src control of chloride channel support for osteoclast HCl
transport and bone resorption. J Biol Chem. 281:28011–28022. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tung JJ and Kitajewski J: Chloride
intracellular channel 1 functions in endothelial cell growth and
migration. J Angiogenes Res. 2:232010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gaudet P, Livstone MS, Lewis SE and Thomas
PD: Phylogenetic-based propagation of functional annotations within
the Gene Ontology consortium. Brief Bioinform. 12:449–462. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tung JJ, Hobert O, Berryman M and
Kitajewski J: Chloride intracellular channel 4 is involved in
endothelial proliferation and morphogenesis in vitro. Angiogenesis.
12:209–220. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rønnov-Jessen L, Villadsen R, Edwards JC
and Petersen OW: Differential expression of a chloride
intracellular channel gene, CLIC4, in transforming growth
factor-beta1-mediated conversion of fibroblasts to myofibroblasts.
Am J Pathol. 161:471–480. 2002. View Article : Google Scholar
|
|
27
|
Fernández-Salas E, Suh KS, Speransky VV,
Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng
C, et al: mtCLIC/CLIC4, an organellular chloride channel protein,
is increased by DNA damage and participates in the apoptotic
response to p53. Mol Cell Biol. 22:3610–3620. 2002. View Article : Google Scholar
|
|
28
|
Salao K, Jiang L, Li H, Tsai VW, Husaini
Y, Curmi PM, Brown LJ, Brown DA and Breit SN: CLIC1 regulates
dendritic cell antigen processing and presentation by modulating
phagosome acidification and proteolysis. Biol Open. 5:620–630.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Qiu MR, Jiang L, Matthaei KI,
Schoenwaelder SM, Kuffner T, Mangin P, Joseph JE, Low J, Connor D,
Valenzuela SM, et al: Generation and characterization of mice with
null mutation of the chloride intracellular channel 1 gene.
Genesis. 48:127–136. 2010.PubMed/NCBI
|
|
30
|
Tang T, Lang X, Xu C, Wang X, Gong T, Yang
Y, Cui J, Bai L, Wang J, Jiang W and Zhou R: CLICs-dependent
chloride efflux is an essential and proximal upstream event for
NLRP3 inflammasome activation. Nat Commun. 8:2022017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Domingo-Fernández R, Coll RC, Kearney J,
Breit S and O'Neill LAJ: The intracellular chloride channel
proteins CLIC1 and CLIC4 induce IL-1β transcription and activate
the NLRP3 inflammasome. J Biol Chem. 292:12077–12087. 2017.
View Article : Google Scholar
|
|
32
|
Dulhunty AF, Pouliquin P, Coggan M, Gage
PW and Board PG: A recently identified member of the glutathione
transferase structural family modifies cardiac RyR2 substate
activity, coupled gating and activation by Ca2+ and ATP.
Biochem J. 390:333–343. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Suginta W, Karoulias N, Aitken A and
Ashley RH: Chloride intracellular channel protein CLIC4 (p64H1)
binds directly to brain dynamin I in a complex containing actin,
tubulin and 14-3-3 isoforms. Biochem J. 359:55–64. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Suh KS, Mutoh M, Mutoh T, Li L, Ryscavage
A, Crutchley JM, Dumont RA, Cheng C and Yuspa SH: CLIC4 mediates
and is required for Ca2+-induced keratinocyte
differentiation. J Cell Sci. 120:2631–2640. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Berryman MA and Goldenring JR: CLIC4 is
enriched at cell-cell junctions and colocalizes with AKAP350 at the
centrosome and midbody of cultured mammalian cells. Cell Motil
Cytoskeleton. 56:159–172. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Seco CZ, Oonk AM, Domínguez-Ruiz M,
Draaisma JM, Gandía M, Oostrik J, Neveling K, Kunst HP, Hoefsloot
LH, del Castillo I, et al: Progressive hearing loss and vestibular
dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur
J Hum Genet. 23:189–194. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ling CK, Santos LL, Zhou W and Dimitriadis
E: Chloride intracellular channel 4 is dysregulated in endometrium
of women with infertility and alters receptivity. Biochem Biophys
Res Commun. 531:490–496. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ulmasov B, Bruno J, Gordon N, Hartnett ME
and Edwards JC: Chloride intracellular channel protein-4 functions
in angiogenesis by supporting acidification of vacuoles along the
intracellular tubulogenic pathway. Am J Pathol. 174:1084–1096.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Berryman M and Bretscher A: Identification
of a novel member of the chloride intracellular channel gene family
(CLIC5) that associates with the actin cytoskeleton of placental
microvilli. Mol Biol Cell. 11:1509–1521. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pierchala BA, Muñoz MR and Tsui CC:
Proteomic analysis of the slit diaphragm complex: CLIC5 is a
protein critical for podocyte morphology and function. Kidney Int.
78:868–882. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ponnalagu D, Rao SG, Farber J, Xin W,
Hussain AT, Shah K, Tanda S, Berryman MA, Edwards JC and Singh H:
Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC
antibodies and localization of CLICs in endoplasmic reticulum of
cardiomyocytes. Data Brief. 7:1038–1044. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tavasoli M, Li L, Al-Momany A, Zhu LF,
Adam BA, Wang Z and Ballermann BJ: The chloride intracellular
channel 5A stimulates podocyte Rac1, protecting against
hypertension-induced glomerular injury. Kidney Int. 89:833–847.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Redhead C, Sullivan SK, Koseki C, Fujiwara
K and Edwards JC: Subcellular distribution and targeting of the
intracellular chloride channel p64. Mol Biol Cell. 8:691–704. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Griffon N, Jeanneteau F, Prieur F, Diaz J
and Sokoloff P: CLIC6, a member of the intracellular chloride
channel family, interacts with dopamine D(2)-like receptors. Brain
Res Mol Brain Res. 117:47–57. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rojo de la Vega M, Chapman E and Zhang DD:
NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Prevarskaya N, Skryma R and Shuba Y: Ion
channels in cancer: Are cancer hallmarks oncochannelopathies?
Physiol Rev. 98:559–621. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Leanza L, Romio M, Becker KA, Azzolini M,
Trentin L, Managò A, Venturini E, Zaccagnino A, Mattarei A,
Carraretto L, et al: Direct pharmacological targeting of a
mitochondrial ion channel selectively kills tumor cells in vivo.
Cancer Cell. 31:516–531.e10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Valenzuela SM, Martin DK, Por SB, Robbins
JM, Warton K, Bootcov MR, Schofield PR, Campbell TJ and Breit SN:
Molecular cloning and expression of a chloride ion channel of cell
nuclei. J Biol Chem. 272:12575–12582. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cromer BA, Gorman MA, Hansen G, Adams JJ,
Coggan M, Littler DR, Brown LJ, Mazzanti M, Breit SN, Curmi PM, et
al: Structure of the Janus protein human CLIC2. J Mol Biol.
374:719–731. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Edwards JC: A novel p64-related
Cl-channel: Subcellular distribution and nephron segment-specific
expression. Am J Physiol. 276:F398–F408. 1999.PubMed/NCBI
|
|
51
|
Sachs G, Shin JM, Vagin O, Lambrecht N,
Yakubov I and Munson K: The gastric H,K ATPase as a drug target:
Past, present, and future. J Clin Gastroenterol. 41 (Suppl
2):S226–S242. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Edwards JC, Tulk B and Schlesinger PH:
Functional expression of p64, an intracellular chloride channel
protein. J Membr Biol. 163:119–127. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tulk BM, Schlesinger PH, Kapadia SA and
Edwards JC: CLIC-1 functions as a chloride channel when expressed
and purified from bacteria. J Biol Chem. 275:26986–26993. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Valdivieso ÁG and Santa-Coloma TA: The
chloride anion as a signalling effector. Biol Rev Camb Philos Soc.
94:1839–1856. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bortner CD, Sifre MI and Cidlowski JA:
Cationic gradient reversal and cytoskeleton-independent volume
regulatory pathways define an early stage of apoptosis. J Biol
Chem. 283:7219–7229. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kunzelmann K: Ion channels in regulated
cell death. Cell Mol Life Sci. 73:2387–2403. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Miyazaki H, Shiozaki A, Niisato N, Ohsawa
R, Itoi H, Ueda Y, Otsuji E, Yamagishi H, Iwasaki Y, Nakano T, et
al: Chloride ions control the G1/S cell-cycle checkpoint by
regulating the expression of p21 through a p53-independent pathway
in human gastric cancer cells. Biochem Biophys Res Commun.
366:506–512. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lai ZF, Chen YZ and Nishi K: Modulation of
intracellular Cl-homeostasis by lectin-stimulation in Jurkat T
lymphocytes. Eur J Pharmacol. 482:1–8. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hiraoka K, Miyazaki H, Niisato N, Iwasaki
Y, Kawauchi A, Miki T and Marunaka Y: Chloride ion modulates cell
proliferation of human androgen-independent prostatic cancer cell.
Cell Physiol Biochem. 25:379–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nakajima KI and Marunaka Y: Intracellular
chloride ion concentration in differentiating neuronal cell and its
role in growing neurite. Biochem Biophys Res Commun. 479:338–342.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Heimlich G and Cidlowski JA: Selective
role of intracellular chloride in the regulation of the intrinsic
but not extrinsic pathway of apoptosis in Jurkat T-cells. J Biol
Chem. 281:2232–2241. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Francisco MA, Wanggou S, Fan JJ, Dong W,
Chen X, Momin A, Abeysundara N, Min HK, Chan J, McAdam R, et al:
Chloride intracellular channel 1 cooperates with potassium channel
EAG2 to promote medulloblastoma growth. J Exp Med.
217:e201909712020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Neurohr GE, Terry RL, Lengefeld J, Bonney
M, Brittingham GP, Moretto F, Miettinen TP, Vaites LP, Soares LM,
Paulo JA, et al: Excessive cell growth causes cytoplasm dilution
and contributes to senescence. Cell. 176:1083–1097.e18. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhong J, Kong X, Zhang H, Yu C, Xu Y, Kang
J, Yu H, Yi H, Yang X and Sun L: Inhibition of CLIC4 enhances
autophagy and triggers mitochondrial and ER stress-induced
apoptosis in human glioma U251 cells under starvation. PLoS One.
7:e393782012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Suh KS, Mutoh M, Nagashima K,
Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG,
Dumont RA, Levy JM, et al: The organellular chloride channel
protein CLIC4/mtCLIC translocates to the nucleus in response to
cellular stress and accelerates apoptosis. J Biol Chem.
279:4632–4641. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ponnalagu D, Gururaja Rao S, Farber J, Xin
W, Hussain AT, Shah K, Tanda S, Berryman M, Edwards JC and Singh H:
Molecular identity of cardiac mitochondrial chloride intracellular
channel proteins. Mitochondrion. 27:6–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kim R, Emi M and Tanabe K: Role of
mitochondria as the gardens of cell death. Cancer Chemother
Pharmacol. 57:545–553. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Neveu B, Spinella JF, Richer C, Lagacé K,
Cassart P, Lajoie M, Jananji S, Drouin S, Healy J, Hickson GR, et
al: CLIC5: A novel ETV6 target gene in childhood acute
lymphoblastic leukemia. Haematologica. 101:1534–1543. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sales A, Ende K, Diemer J, Kyvik AR,
Veciana J, Ratera I, Kemkemer R, Spatz JP and Guasch J: Cell
Type-dependent integrin distribution in adhesion and migration
responses on protein-coated microgrooved substrates. ACS Omega.
4:1791–1800. 2019. View Article : Google Scholar
|
|
70
|
Jin J, Mao Y, Thomas D, Kim S, Daniel JL
and Kunapuli SP: RhoA downstream of G(q) and G(12/13) pathways
regulates protease-activated receptor-mediated dense granule
release in platelets. Biochem Pharmacol. 77:835–844. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chalothorn D, Zhang H, Smith JE, Edwards
JC and Faber JE: Chloride intracellular channel-4 is a determinant
of native collateral formation in skeletal muscle and brain. Circ
Res. 105:89–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bohman S, Matsumoto T, Suh K, Dimberg A,
Jakobsson L, Yuspa S and Claesson-Welsh L: Proteomic analysis of
vascular endothelial growth factor-induced endothelial cell
differentiation reveals a role for chloride intracellular channel 4
(CLIC4) in tubular morphogenesis. J Biol Chem. 280:42397–42404.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lucitti JL, Tarte NJ and Faber JE:
Chloride intracellular channel 4 is required for maturation of the
cerebral collateral circulation. Am J Physiol Heart Circ Physiol.
309:H1141–H1150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Edwards JC, Bruno J, Key P and Cheng YW:
Absence of chloride intracellular channel 4 (CLIC4) predisposes to
acute kidney injury but has minimal impact on recovery. BMC
Nephrol. 15:542014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tavasoli M, Al-Momany A, Wang X, Li L,
Edwards JC and Ballermann BJ: Both CLIC4 and CLIC5A activate ERM
proteins in glomerular endothelium. Am J Physiol Renal Physiol.
311:F945–F957. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Uretmen Kagiali ZC, Saner N, Akdag M,
Sanal E, Degirmenci BS, Mollaoglu G and Ozlu N: CLIC4 and CLIC1
bridge plasma membrane and cortical actin network for a successful
cytokinesis. Life Sci Alliance. 3:e2019005582019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ueno Y, Ozaki S, Umakoshi A, Yano H,
Choudhury ME, Abe N, Sumida Y, Kuwabara J, Uchida R, Islam A, et
al: Chloride intracellular channel protein 2 in cancer and
non-cancer human tissues: Relationship with tight junctions. Tissue
Barriers. 7:15937752019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Argenzio E, Klarenbeek J, Kedziora KM,
Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH and
Innocenti M: Profilin binding couples chloride intracellular
channel protein CLIC4 to RhoA-mDia2 signaling and filopodium
formation. J Biol Chem. 293:19161–19176. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Al-Momany A, Li L, Alexander RT and
Ballermann BJ: Clustered PI(4,5)P2 accumulation and
ezrin phosphorylation in response to CLIC5A. J Cell Sci.
127:5164–5178. 2014.PubMed/NCBI
|
|
80
|
Oh ES, Seiki M, Gotte M and Chung J: Cell
adhesion in cancer. Int J Cell Biol. 2012:9656182012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Conway JRW and Jacquemet G: Cell matrix
adhesion in cell migration. Essays Biochem. 63:535–551. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Argenzio E, Margadant C, Leyton-Puig D,
Janssen H, Jalink K, Sonnenberg A and Moolenaar WH: CLIC4 regulates
cell adhesion and β1 integrin trafficking. J Cell Sci.
127:5189–5203. 2014.PubMed/NCBI
|
|
83
|
Berryman M, Bruno J, Price J and Edwards
JC: CLIC-5A functions as a chloride channel in vitro and associates
with the cortical actin cytoskeleton in vitro and in vivo. J Biol
Chem. 279:34794–34801. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao W, Lu M and Zhang Q: Chloride
intracellular channel 1 regulates migration and invasion in gastric
cancer by triggering the ROS-mediated p38 MAPK signaling pathway.
Mol Med Rep. 12:8041–8047. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen CD, Wang CS, Huang YH, Chien KY,
Liang Y, Chen WJ and Lin KH: Overexpression of CLIC1 in human
gastric carcinoma and its clinicopathological significance.
Proteomics. 7:155–167. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li BP, Mao YT, Wang Z, Chen YY, Wang Y,
Zhai CY, Shi B, Liu SY, Liu JL and Chen JQ: CLIC1 promotes the
progression of gastric cancer by regulating the MAPK/AKT pathways.
Cell Physiol Biochem. 46:907–924. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zheng DL, Huang QL, Zhou F, Huang QJ, Lin
JY and Lin X: PA28β regulates cell invasion of gastric cancer via
modulating the expression of chloride intracellular channel 1. J
Cell Biochem. 113:1537–1546. 2012.PubMed/NCBI
|
|
88
|
Krock BL, Skuli N and Simon MC:
Hypoxia-induced angiogenesis: Good and evil. Genes Cancer.
2:1117–1133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ponnalagu D and Singh H: Anion channels of
mitochondria. Handb Exp Pharmacol. 240:71–101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhao K, Wang Z, Li X, Liu JL, Tian L and
Chen JQ: Exosome-mediated transfer of CLIC1 contributes to the
vincristine-resistance in gastric cancer. Mol Cell Biochem.
462:97–105. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kawai S and Fujii T, Shimizu T, Sukegawa
K, Hashimoto I, Okumura T, Nagata T, Sakai H and Fujii T:
Pathophysiological properties of CLIC3 chloride channel in human
gastric cancer cells. J Physiol Sci. 70:152020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li WH, Miao XH, Qi ZT, Ni W, Zhu SY and
Fang F: Proteomic analysis of differently expressed proteins in
human hepatocellular carcinoma cell lines HepG2 with transfecting
hepatitis B virus X gene. Chin Med J (Engl). 122:15–23.
2009.PubMed/NCBI
|
|
93
|
Zhang S, Wang XM, Yin ZY, Zhao WX, Zhou
JY, Zhao BX and Liu PG: Chloride intracellular channel 1 is
overexpression in hepatic tumor and correlates with a poor
prognosis. APMIS. 121:1047–1053. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Song MY, Tang JW, Sun MZ, Liu SQ and Wang
B: Localization and expression of CLIC1 in hepatocarcinoma ascites
cell lines with high or low potentials of lymphatic spread.
Zhonghua Bing Li Xue Za Zhi. 39:463–466. 2010.(In Chinese).
PubMed/NCBI
|
|
95
|
Li RK, Zhang J, Zhang YH, Li ML, Wang M
and Tang JW: Chloride intracellular channel 1 is an important
factor in the lymphatic metastasis of hepatocarcinoma. Biomed
Pharmacother. 66:167–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wei X, Li J, Xie H, Wang H, Wang J, Zhang
X, Zhuang R, Lu D, Ling Q, Zhou L, et al: Chloride intracellular
channel 1 participates in migration and invasion of hepatocellular
carcinoma by targeting maspin. J Gastroenterol Hepatol. 30:208–216.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang J, Li M, Song M, Chen W, Mao J, Song
L, Wei Y, Huang Y and Tang J: Clic1 plays a role in mouse
hepatocarcinoma via modulating Annexin A7 and Gelsolin in vitro and
in vivo. Biomed Pharmacother. 69:416–419. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yue X, Cui Y, You Q, Lu Y and Zhang J:
MicroRNA-124 negatively regulates chloride intracellular channel 1
to suppress the migration and invasion of liver cancer cells. Oncol
Rep. 42:1380–1390. 2019.PubMed/NCBI
|
|
99
|
Wang R, Kang B, Hu R, Huang Y, Qin Z, Du J
and Lin X: ClC-3 chloride channel protein induces G1 arrest in
hepatocellular carcinoma Hep3B cells. Oncol Rep. 40:472–478.
2018.PubMed/NCBI
|
|
100
|
Li X and Weinman SA: Chloride channels and
hepatocellular function: Prospects for molecular identification.
Annu Rev Physiol. 64:609–633. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chernet BT and Levin M: Transmembrane
voltage potential of somatic cells controls oncogene-mediated
tumorigenesis at long-range. Oncotarget. 5:3287–3306. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu Z, Lee SJ, Park S, Konstantopoulos K,
Glunde K, Chen Y and Barman I: Cancer cells display increased
migration and deformability in pace with metastatic progression.
FASEB J. 34:9307–9315. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Flores-Téllez TN, Lopez TV, Vásquez Garzón
VR and Villa-Treviño S: Co-Expression of Ezrin-CLIC5-podocalyxin is
associated with migration and invasiveness in hepatocellular
carcinoma. PLoS One. 10:e01316052015. View Article : Google Scholar
|
|
104
|
Ding Q, Li M, Wu X, Zhang L, Wu W, Ding Q,
Weng H, Wang X and Liu Y: CLIC1 overexpression is associated with
poor prognosis in gallbladder cancer. Tumour Biol. 36:193–198.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
He YM, Zhang ZL, Liu QY, Xiao YS, Wei L,
Xi C and Nan X: Effect of CLIC1 gene silencing on proliferation,
migration, invasion and apoptosis of human gallbladder cancer
cells. J Cell Mol Med. 22:2569–2579. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhou N, Cheng W, Peng C, Liu Y and Jiang
B: Decreased expression of hsa-miR-372 predicts poor prognosis in
patients with gallbladder cancer by affecting chloride
intracellular channel 1. Mol Med Rep. 16:7848–7854. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kong L, Wu Q, Zhao L, Ye J, Li N and Yang
H: Upregulated lncRNA-UCA1 contributes to metastasis of bile duct
carcinoma through regulation of miR-122/CLIC1 and activation of the
ERK/MAPK signaling pathway. Cell Cycle. 18:1212–1228. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Guo Z, Neilson LJ, Zhong H, Murray PS,
Zanivan S and Zaidel-Bar R: E-cadherin interactome complexity and
robustness resolved by quantitative proteomics. Sci Signal.
7:rs72014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gu X, Li B, Jiang M, Fang M, Ji J, Wang A,
Wang M, Jiang X and Gao C: RNA sequencing reveals differentially
expressed genes as potential diagnostic and prognostic indicators
of gallbladder carcinoma. Oncotarget. 6:20661–20671. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu Y, Wang Z, Li M, Ye Y, Xu Y, Zhang Y,
Yuan R, Jin Y, Hao Y, Jiang L, et al: Chloride intracellular
channel 1 regulates the antineoplastic effects of metformin in
gallbladder cancer cells. Cancer Sci. 108:1240–1252. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Patel D, Ythier D, Brozzi F, Eizirik DL
and Thorens B: Clic4, a novel protein that sensitizes β-cells to
apoptosis. Mol Metab. 4:253–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Magouliotis DE, Sakellaridis N, Dimas K,
Tasiopoulou VS, Svokos KA, Svokos AA and Zacharoulis D: In silico
Transcriptomic analysis of the chloride intracellular channels
(CLIC) interactome identifies a molecular panel of seven prognostic
markers in patients with pancreatic ductal adenocarcinoma. Curr
Genomics. 21:119–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jia N, Dong S, Zhao G, Gao H, Li X and
Zhang H: CLIC1 overexpression is associated with poor prognosis in
pancreatic ductal adenocarcinomas. J Cancer Res Ther. 12:892–896.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Macpherson IR, Rainero E, Mitchell LE, van
den Berghe PV, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G,
Edwards J, Timpson P, et al: CLIC3 controls recycling of late
endosomal MT1-MMP and dictates invasion and metastasis in breast
cancer. J Cell Sci. 127:3893–3901. 2014.PubMed/NCBI
|
|
115
|
Zou Q, Yang Z, Li D, Liu Z and Yuan Y:
Association of chloride intracellular channel 4 and Indian hedgehog
proteins with survival of patients with pancreatic ductal
adenocarcinoma. Int J Exp Pathol. 97:422–429. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wong CH, Li CH, He Q, Chan SL, Tong JH, To
KF, Lin LZ and Chen Y: Ectopic HOTTIP expression induces
noncanonical transactivation pathways to promote growth and
invasiveness in pancreatic ductal adenocarcinoma. Cancer Lett.
477:1–9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang P, Zhang C, Yu P, Tang B, Liu T, Cui
H and Xu J: Regulation of colon cancer cell migration and invasion
by CLIC1-mediated RVD. Mol Cell Biochem. 365:313–321. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Petrova DT, Asif AR, Armstrong VW, Dimova
I, Toshev S, Yaramov N, Oellerich M and Toncheva D: Expression of
chloride intracellular channel protein 1 (CLIC1) and tumor protein
D52 (TPD52) as potential biomarkers for colorectal cancer. Clin
Biochem. 41:1224–1236. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang P, Zeng Y, Liu T, Zhang C, Yu PW, Hao
YX, Luo HX and Liu G: Chloride intracellular channel 1 regulates
colon cancer cell migration and invasion through ROS/ERK pathway.
World J Gastroenterol. 20:2071–2078. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Milton RH, Abeti R, Averaimo S, DeBiasi S,
Vitellaro L, Jiang L, Curmi PM, Breit SN, Duchen MR and Mazzanti M:
CLIC1 function is required for beta-amyloid-induced generation of
reactive oxygen species by microglia. J Neurosci. 28:11488–11499.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Deng YJ, Tang N, Liu C, Zhang JY, An SL,
Peng YL, Ma LL, Li GQ, Jiang Q, Hu CT, et al: CLIC4, ERp29, and
Smac/DIABLO derived from metastatic cancer stem-like cells stratify
prognostic risks of colorectal cancer. Clin Cancer Res.
20:3809–3817. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chiang PC, Chou RH, Chien HF, Tsai T and
Chen CT: Chloride intracellular channel 4 involves in the reduced
invasiveness of cancer cells treated by photodynamic therapy.
Lasers Surg Med. 45:38–47. 2013. View Article : Google Scholar : PubMed/NCBI
|