|
1
|
Klionsky DJ and Codogno P: The mechanism
and physiological function of macroautophagy. J Innate Immun.
5:427–433. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ravikumar B, Sarkar S, Davies JE, Futter
M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M,
Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian
autophagy in physiology and pathophysiology. Physiol Rev.
90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kroemer G, Mariño G and Levine B:
Autophagy and the integrated stress response. Mol Cell. 40:280–293.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li WW, Li J and Bao JK: Microautophagy:
Lesser-known self-eating. Cell Mol Life Sci. 69:1125–1136. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cuervo AM and Wong E: Chaperone-mediated
autophagy: Roles in disease and aging. Cell Res. 24:92–104. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yin Z, Pascual C and Klionsky DJ:
Autophagy: Machinery and regulation. Microb Cell. 3:588–596. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Choi AM, Ryter SW and Levine B: Autophagy
in human health and disease. N Engl J Med. 368:651–662. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mizushima N, Yoshimori T and Ohsumi Y: The
role of Atg proteins in autophagosome formation. Annu Rev Cell Dev
Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mizushima N: Autophagy: Process and
function. Genes Dev. 21:2861–2873. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Behrends C, Sowa ME, Gygi SP and Harper
JW: Network organization of the human autophagy system. Nature.
466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Alexander SP, Kelly E, Marrion N, Peters
JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C,
Buneman OP, et al: The concise guide to PHARMACOLOGY 2015/16:
Overview. Br J Pharmacol. 172:5729–5743. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rizzuto R, De Stefani D, Raffaello A and
Mammucari C: Mitochondria as sensors and regulators of calcium
signalling. Nat Rev Mol Cell Biol. 13:566–578. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Berridge MJ, Bootman MD and Roderick HL:
Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev
Mol Cell Biol. 4:517–529. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ramsey IS, Delling M and Clapham DE: An
introduction to TRP channels. Annual Rev Physiol. 68:619–647. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pedersen SF, Owsianik G and Nilius B: TRP
channels: An overview. Cell Calcium. 38:233–252. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Catterall WA: Voltage-gated calcium
channels. Cold Spring Harb Perspect Biol. 3:a0039472011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bernardi P and von Stockum S: The
permeability transition pore as a Ca(2+) release channel: New
answers to an old question. Cell Calcium. 52:22–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yu FH and Catterall WA: Overview of the
voltage-gated sodium channel family. Genome Biol. 4:2072003.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kellenberger S and Schild L: Epithelial
sodium channel/degenerin family of ion channels: A variety of
functions for a shared structure. Physiol Rev. 82:735–767. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kuang Q, Purhonen P and Hebert H:
Structure of potassium channels. Cell Mol Sci. 72:3677–3693. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nilius B and Droogmans G: Amazing chloride
channels: An overview. Acta Physiol Scand. 177:119–147. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kondratskyi A, Yassine M, Kondratska K,
Skryma R, Slomianny C and Prevarskaya N: Calcium-permeable ion
channels in control of autophagy and cancer. Front Physiol.
4:2722013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Berridge MJ, Lipp P and Bootman MD: The
versatility and universality of calcium signaling. Nature reviews.
Mol Cell Biol. 1:11–21. 2000.
|
|
25
|
Gordon PB, Holen I, Fosse M, Røtnes JS and
Seglen PO: Dependence of hepatocytic autophagy on intracellularly
sequestered calcium. J Biol Chem. 268:26107–26112. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Høyer-Hansen M, Bastholm L, Szyniarowski
P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N,
Elling F, Rizzuto R, et al: Control of macroautophagy by calcium,
calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell.
25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Grotemeier A, Alers S, Pfisterer SG,
Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S,
Proikas-Cezanne T and Stork B: AMPK-independent induction of
autophagy by cytosolic Ca2+ increase. Cell Signal.
22:914–925. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gao W, Ding WX, Stolz DB and Yin XM:
Induction of macroautophagy by exogenously introduced calcium.
Autophagy. 4:754–761. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Decuypere JP, Bultynck G and Parys JB: A
dual role for Ca(2+) in autophagy regulation. Cell Calcium.
50:242–250. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
East DA and Campanella M: Ca2+
in quality control: An unresolved riddle critical to autophagy and
mitophagy. Autophagy. 9:1710–1719. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Parys JB, Decuypere JP and Bultynck G:
Role of the inositol 1,4,5-trisphosphate
receptor/Ca2+-release channel in autophagy. Cell Commun
Signal. 10:172012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Decuypere JP, Parys JB and Bultynck G:
ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From
enemy to ally. Autophagy. 11:1944–1948. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kania E, Roest G, Vervliet T, Parys JB and
Bultynck G: IP3 receptor-mediated calcium signaling and
its role in autophagy in cancer. Front Oncol. 7:1402017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Khan MT and Joseph SK: Role of inositol
trisphosphate receptors in autophagy in DT40 cells. J Biol Chem.
285:16912–16920. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cárdenas C, Miller RA, Smith I, Bui T,
Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, et al:
Essential regulation of cell bioenergetics by constitutive InsP3
receptor Ca2+ transfer to mitochondria. Cell.
142:270–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tomar D, Dong Z, Shanmughapriya S, Koch
DA, Thomas T, Hoffman NE, Timbalia SA, Goldman SJ, Breves SL,
Corbally DP, et al: MCUR1 Is a scaffold factor for the MCU complex
function and promotes mitochondrial bioenergetics. Cell Rep.
15:1673–1685. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tian X, Gala U, Zhang Y, Shang W, Nagarkar
Jaiswal S, di Ronza A, Jaiswal M, Yamamoto S, Sandoval H, Duraine
L, et al: A voltage-gated calcium channel regulates lysosomal
fusion with endosomes and autophagosomes and is required for
neuronal homeostasis. PLoS Biol. 13:e10021032015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bround MJ, Wambolt R, Luciani DS, Kulpa
JE, Rodrigues B, Brownsey RW, Allard MF and Johnson JD:
Cardiomyocyte ATP production, metabolic flexibility, and survival
require calcium flux through cardiac ryanodine receptors in vivo. J
Biol Chem. 288:18975–18986. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pereira GJ, Hirata H, Fimia GM, do Carmo
LG, Bincoletto C, Han SW, Stilhano RS, Ureshino RP, Bloor-Young D,
Churchill G, et al: Nicotinic acid adenine dinucleotide phosphate
(NAADP) regulates autophagy in cultured astrocytes. J Biol Chem.
286:27875–27881. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Abdelmohsen K, Srikantan S, Tominaga K,
Kang MJ, Yaniv Y, Martindale JL, Yang X, Park SS, Becker KG,
Subramanian M, et al: Growth inhibition by miR-519 via multiple
p21-inducing pathways. Mol Cell Biol. 32:2530–2548. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Guo Y, Meng Y, Liu H, Wang B, Ding C, Rong
X, Yang Y and Hong Y: Acid-sensing ion channels mediate the
degeneration of intervertebral disc via various pathways-A
systematic review. Channels (Austin). 13:367–373. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang D, Zhu H, Cheng W, Lin S, Shao R and
Pan H: Effects of hypoxia and ASIC3 on nucleus pulposus cells: From
cell behavior to molecular mechanism. Biomed Pharmacother.
117:1090612019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Williams A, Sarkar S, Cuddon P, Ttofi EK,
Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et
al: Novel targets for Huntington's disease in an mTOR-independent
autophagy pathway. Nat Chem Biol. 4:295–305. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Perez-Neut M, Haar L, Rao V, Santha S,
Lansu K, Rana B, Jones WK and Gentile S: Activation of hERG3
channel stimulates autophagy and promotes cellular senescence in
melanoma. Oncotarget. 7:21991–22004. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhong J, Kong X, Zhang H, Yu C, Xu Y, Kang
J, Yu H, Yi H, Yang X and Sun L: Inhibition of CLIC4 enhances
autophagy and triggers mitochondrial and ER stress-induced
apoptosis in human glioma U251 cells under starvation. PLoS One.
7:e393782012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang L, Shen M, Guo X, Wang B, Xia Y, Wang
N, Zhang Q, Jia L and Wang X: Volume-sensitive outwardly rectifying
chloride channel blockers protect against high glucose-induced
apoptosis of cardiomyocytes via autophagy activation. Sci Rep.
7:442652017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ruan HB, Ma Y, Torres S, Zhang B, Feriod
C, Heck RM, Qian K, Fu M, Li X, Nathanson MH, et al:
Calcium-dependent O-GlcNAc signaling drives liver autophagy in
adaptation to starvation. Genes Dev. 31:1655–1665. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang Y, Ma F, Liu Z, Su Q, Liu Y, Liu Z
and Li Y: The ER-localized Ca2+-binding protein
calreticulin couples ER stress to autophagy by associating with
microtubule-associated protein 1A/1B light chain 3. J Biol Chem.
294:772–782. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cusi K: Role of obesity and lipotoxicity
in the development of nonalcoholic steatohepatitis: Pathophysiology
and clinical implications. Gastroenterology. 142:711–725.e6. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
González-Rodríguez A, Mayoral R, Agra N,
Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J,
Lo Iacono O, Corazzari M, Fimia GM, et al: Impaired autophagic flux
is associated with increased endoplasmic reticulum stress during
the development of NAFLD. Cell Death Dis. 5:e11792014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Miyagawa K, Oe S, Honma Y, Izumi H, Baba R
and Harada M: Lipid-induced endoplasmic reticulum stress impairs
selective autophagy at the step of autophagosome-lysosome fusion in
hepatocytes. Am J Pathol. 186:1861–1873. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Park HW, Park H, Semple IA, Jang I, Ro SH,
Kim M, Cazares VA, Stuenkel EL, Kim JJ, Kim JS and Lee JH:
Pharmacological correction of obesity-induced autophagy arrest
using calcium channel blockers. Nat Commun. 5:48342014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Czaja MJ: A new mechanism of lipotoxicity:
Calcium channel blockers as a treatment for nonalcoholic
steatohepatitis? Hepatology. 62:312–314. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wei CC, Luo Z, Hogstrand C, Xu YH, Wu LX,
Chen GH, Pan YX and Song YF: Zinc reduces hepatic lipid deposition
and activates lipophagy via Zn2+/MTF-1/PPARα and
Ca2+/CaMKKβ/AMPK pathways. FASEB J. fj2018004632018.doi:
10.1096/fj.201800463. PubMed/NCBI
|
|
55
|
Lalazar G, Ilyas G, Malik SA, Liu K, Zhao
E, Amir M, Lin Y, Tanaka KE and Czaja MJ: Autophagy confers
resistance to lipopolysaccharide-induced mouse hepatocyte injury.
Am J Physiol Gastrointest Liver Physiol. 311:G377–G386. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Guse AH and Lee HC: NAADP: A universal
Ca2+ trigger. Sci Signal. 1:re102008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rah SY, Lee YH and Kim UH: NAADP-mediated
Ca2+ signaling promotes autophagy and protects against
LPS-induced liver injury. FASEB J. 31:3126–3137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shi M, Wang HN, Xie ST, Luo Y, Sun CY,
Chen XL and Zhang YZ: Antimicrobial peptaibols, novel suppressors
of tumor cells, targeted calcium-mediated apoptosis and autophagy
in human hepatocellular carcinoma cells. Mol Cancer. 9:262010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sui X, Kong N, Wang X, Fang Y, Hu X, Xu Y,
Chen W, Wang K, Li D, Jin W, et al: JNK confers 5-fluorouracil
resistance in p53-deficient and mutant p53-expressing colon cancer
cells by inducing survival autophagy. Sci Rep. 4:46942014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Suzuki R, Kang Y, Li X, Roife D, Zhang R
and Fleming JB: Genistein potentiates the antitumor effect of
5-Fluorouracil by inducing apoptosis and autophagy in human
pancreatic cancer cells. Anticancer Res. 34:4685–4692.
2014.PubMed/NCBI
|
|
61
|
Li LQ, Xie WJ, Pan D, Chen H and Zhang L:
Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity
of gastric cancer cells. Tumour Biol. 37:653–659. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yang N, Tang Y, Wang F, Zhang H, Xu D,
Shen Y, Sun S and Yang G: Blockade of store-operated Ca(2+) entry
inhibits hepatocarcinoma cell migration and invasion by regulating
focal adhesion turnover. Cancer Lett. 330:163–169. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kondratska K, Kondratskyi A, Yassine M,
Lemonnier L, Lepage G, Morabito A, Skryma R and Prevarskaya N:
Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance
of pancreatic adenocarcinoma. Biochim Biophys Acta. 1843:2263–2269.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Guéguinou M, Harnois T, Crottes D, Uguen
A, Deliot N, Gambade A, Chantôme A, Haelters JP, Jaffrès PA,
Jourdan ML, et al: SK3/TRPC1/Orai1 complex regulates SOCE-dependent
colon cancer cell migration: A novel opportunity to modulate
anti-EGFR mAb action by the alkyl-lipid Ohmline. Oncotarget.
7:36168–36184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Selli C, Erac Y, Kosova B, Erdal ES and
Tosun M: Silencing of TRPC1 regulates store-operated calcium entry
and proliferation in Huh7 hepatocellular carcinoma cells. Biomed
Pharmacother. 71:194–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Selli C, Pearce DA, Sims AH and Tosun M:
Differential expression of store-operated calcium- and
proliferation-related genes in hepatocellular carcinoma cells
following TRPC1 ion channel silencing. Mol Cell Biochem.
420:129–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, Mai
XY, Shang JY, Zhou JG, Liang SJ and Pang RP: Inhibition of
Orai1-mediated Ca2+ entry enhances chemosensitivity of
HepG2 hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med.
21:904–915. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang Q, Cao H, Zhan L, Sun X, Wang G, Li
J, Guo X, Ren T, Wang Z, Lyu Y, et al: Mitochondrial fission forms
a positive feedback loop with cytosolic calcium signaling pathway
to promote autophagy in hepatocellular carcinoma cells. Cancer
Lett. 403:108–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Pandol SJ, Saluja AK, Imrie CW and Banks
PA: Acute pancreatitis: Bench to the bedside. Gastroenterology.
132:1127–1151. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lankisch PG, Apte M and Banks PA: Acute
pancreatitis. Lancet. 386:85–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Banks PA, Bollen TL, Dervenis C, Gooszen
HG, Johnson CD, Sarr MG, Tsiotos GG and Vege SS; Acute Pancreatitis
Classification Working Group, : Classification of acute
pancreatitis-2012: Revision of the Atlanta classification and
definitions by international consensus. Gut. 62:102–111. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ward JB, Petersen OH, Jenkins SA and
Sutton R: Is an elevated concentration of acinar cytosolic free
ionised calcium the trigger for acute pancreatitis? Lancet.
346:1016–1019. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Petersen OH and Tepikin AV: Polarized
calcium signaling in exocrine gland cells. Ann Rev Physiol.
70:273–299. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Petersen OH and Sutton R: Ca2+
signalling and pancreatitis: Effects of alcohol, bile and coffee.
Trends Pharmacol Scie. 27:113–120. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gerasimenko JV, Gerasimenko OV and
Petersen OH: The role of Ca2+ in the pathophysiology of
pancreatitis. J Physiol. 592:269–280. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lur G, Haynes LP, Prior IA, Gerasimenko
OV, Feske S, Petersen OH, Burgoyne RD and Tepikin AV: Ribosome-free
terminals of rough ER allow formation of STIM1 puncta and
segregation of STIM1 from IP(3) receptors. Curr Biol. 19:1648–1653.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gerasimenko JV, Gryshchenko O, Ferdek PE,
Stapleton E, Hébert TO, Bychkova S, Peng S, Begg M, Gerasimenko OV
and Petersen OH: Ca2+ release-activated Ca2+
channel blockade as a potential tool in antipancreatitis therapy.
Proc Natl Acad Sci USA. 110:13186–13191. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Petersen OH, Courjaret R and Machaca K:
Ca2+ tunnelling through the ER lumen as a mechanism for
delivering Ca2+ entering via store-operated
Ca2+ channels to specific target sites. J Physiol.
595:2999–3014. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhu ZD, Yu T, Liu HJ, Jin J and He J: SOCE
induced calcium overload regulates autophagy in acute pancreatitis
via calcineurin activation. Cell Death Dis. 9:502018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Biczo G, Vegh ET, Shalbueva N, Mareninova
OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D,
et al: Mitochondrial dysfunction, through impaired autophagy, leads
to endoplasmic reticulum stress, deregulated lipid metabolism, and
pancreatitis in animal models. Gastroenterology. 154:689–703. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Marrache F, Tu SP, Bhagat G, Pendyala S,
Osterreicher CH, Gordon S, Ramanathan V, Penz-Osterreicher M, Betz
KS, Song Z and Wang TC: Overexpression of interleukin-1beta in the
murine pancreas results in chronic pancreatitis. Gastroenterology.
135:1277–1287. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gukovsky I, Li N, Todoric J, Gukovskaya A
and Karin M: Inflammation, autophagy, and obesity: Common features
in the pathogenesis of pancreatitis and pancreatic cancer.
Gastroenterology. 144:1199–1209.e1194. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Harris J: Autophagy and cytokines.
Cytokine. 56:140–144. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Levine B, Mizushima N and Virgin HW:
Autophagy in immunity and inflammation. Nature. 469:323–335. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shi CS and Kehrl JH: MyD88 and Trif target
Beclin 1 to trigger autophagy in macrophages. J Biol Chemistry.
283:33175–33182. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
O'Neill CM, Lu C, Corbin KL, Sharma PR,
Dula SB, Carter JD, Ramadan JW, Xin W, Lee JK and Nunemaker CS:
Circulating levels of IL-1B + IL-6 cause ER stress and dysfunction
in islets from prediabetic male mice. Endocrinology. 154:3077–3088.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Berridge MJ: The endoplasmic reticulum: A
multifunctional signaling organelle. Cell Calcium. 32:235–249.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Frick TW: The role of calcium in acute
pancreatitis. Surgery. 152 (Suppl 1):S157–S163. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen X, Li M, Chen D, Gao W, Guan JL,
Komatsu M and Yin XM: Autophagy induced by calcium phosphate
precipitates involves endoplasmic reticulum membranes in
autophagosome biogenesis. PLoS One. 7:e523472012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Smaili SS, Pereira GJ, Costa MM, Rocha KK,
Rodrigues L, do Carmo LG, Hirata H and Hsu YT: The role of calcium
stores in apoptosis and autophagy. Curr Mol Med. 13:252–265. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xu B, Bai B, Sha S, Yu P, An Y, Wang S,
Kong X, Liu C, Wei N, Feng Q and Zhao Q: Interleukin-1β induces
autophagy by affecting calcium homeostasis and trypsinogen
activation in pancreatic acinar cells. Int J Clin Exp Pathol.
7:3620–3631. 2014.PubMed/NCBI
|
|
92
|
Díaz-Laviada I and Rodríguez-Henche N: The
potential antitumor effects of capsaicin. Prog Drug Res.
68:181–208. 2014.PubMed/NCBI
|
|
93
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Röcken C: Molecular classification of
gastric cancer. Expert Rev Mol Diagn. 17:293–301. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Almasi S, Kennedy BE, El-Aghil M, Sterea
AM, Gujar S, Partida-Sánchez S and El Hiani Y: TRPM2
channel-mediated regulation of autophagy maintains mitochondrial
function and promotes gastric cancer cell survival via the
JNK-signaling pathway. J Biol Chem. 293:3637–3650. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wemmie JA, Taugher RJ and Kreple CJ:
Acid-sensing ion channels in pain and disease. Nat Rev
Neuroscience. 14:461–471. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Du J, Reznikov LR, Price MP, Zha XM, Lu Y,
Moninger TO, Wemmie JA and Welsh MJ: Protons are a neurotransmitter
that regulates synaptic plasticity in the lateral amygdala. Proc
Natl Acad Sci USA. 111:8961–8966. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang
F and Liu CF: ASICs mediate the modulatory effect by paeoniflorin
on α-synuclein autophagic degradation. Brain Res. 1396:77–87. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhou RP, Wu XS, Wang ZS, Xie YY, Ge JF and
Chen FH: Novel insights into acid-sensing ion channels:
Implications for degenerative diseases. Aging Dis. 7:491–501. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang Q, Wu S, Zhu J, Chai D and Gan H:
Down-regulation of ASIC1 suppressed gastric cancer via inhibiting
autophagy. Gene. 608:79–85. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Fukase K, Kato M, Kikuchi S, Inoue K,
Uemura N, Okamoto S, Terao S, Amagai K, Hayashi S and Asaka M;
Japan Gast Study Group, : Effect of eradication of Helicobacter
pylori on incidence of metachronous gastric carcinoma after
endoscopic resection of early gastric cancer: An open-label,
randomised controlled trial. Lancet. 372:392–397. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Foegeding NJ, Caston RR, McClain MS, Ohi
MD and Cover TL: An overview of Helicobacter pylori VacA
Toxin Biology. Toxins. 8:1732016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Rassow J and Meinecke M: Helicobacter
pylori VacA: A new perspective on an invasive chloride channel.
Microbes Infection. 14:1026–1033. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Capurro MI, Greenfield LK, Prashar A, Xia
S, Abdullah M, Wong H, Zhong XZ, Bertaux-Skeirik N, Chakrabarti J,
Siddiqui I, et al: VacA generates a protective intracellular
reservoir for Helicobacter pylori that is eliminated by
activation of the lysosomal calcium channel TRPML1. Nat Microbiol.
4:1411–1423. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Capurro MI, Prashar A and Jones NL:
MCOLN1/TRPML1 inhibition-a novel strategy used by Helicobacter
pylori to escape autophagic killing and antibiotic eradication
therapy in vivo. Autophagy. 16:169–170. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hu W, Zhang L, Li MX, Shen J, Liu XD, Xiao
ZG, Wu DL, Ho IHT, Wu JCY, Cheung CKY, et al: Vitamin D3 activates
the autolysosomal degradation function against Helicobacter
pylori through the PDIA3 receptor in gastric epithelial cells.
Autophagy. 15:707–725. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jing Z, Sui X, Yao J, Xie J, Jiang L, Zhou
Y, Pan H and Han W: SKF-96365 activates cytoprotective autophagy to
delay apoptosis in colorectal cancer cells through inhibition of
the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett. 372:226–238.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Crociani O, Zanieri F, Pillozzi S,
Lastraioli E, Stefanini M, Fiore A, Fortunato A, D'Amico M,
Masselli M, De Lorenzo E, et al: hERG1 channels modulate integrin
signaling to trigger angiogenesis and tumor progression in
colorectal cancer. Sci Rep. 3:33082013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Petroni G, Bagni G, Iorio J, Duranti C,
Lottini T, Stefanini M, Kragol G, Becchetti A and Arcangeli A:
Clarithromycin inhibits autophagy in colorectal cancer by
regulating the hERG1 potassium channel interaction with PI3K. Cell
Death Dis. 11:1612020. View Article : Google Scholar : PubMed/NCBI
|