|
1
|
Wang R: Gasotransmitters: Growing pains
and joys. Trends Biochem Sci. 39:227–232. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Szabo C: A timeline of hydrogen sulfide
(H2S) research: From environmental toxin to biological
mediator. Biochem Pharmacol. 149:5–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH,
Khattak S, Zhang X, Li T, Duan SF, Ji XY and Wu DD: Roles of
hydrogen sulfide donors in common kidney diseases. Front Pharmacol.
11:5642812020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mao YG, Chen X, Zhang Y and Chen G:
Hydrogen sulfide therapy: A narrative overview of current research
and possible therapeutic implications in future. Med Gas Res.
10:185–188. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Paul BD and Snyder SH: Gasotransmitter
hydrogen sulfide signaling in neuronal health and disease. Biochem
Pharmacol. 149:101–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wen YD, Wang H and Zhu YZ: The drug
developments of hydrogen sulfide on cardiovascular disease. Oxid
Med Cell Longev. 2018:40103952018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kumar M and Sandhir R: Hydrogen sulfide in
physiological and pathological mechanisms in brain. CNS Neurol
Disord Drug Targets. 17:654–670. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yadav PK, Vitvitsky V, Carballal S,
Seravalli J and Banerjee R: Thioredoxin regulates human
mercaptopyruvate sulfurtransferase at physiologically-relevant
concentrations. J Biol Chem. 295:6299–6311. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang R: Two's company, three's a crowd:
Can H2S be the third endogenous gaseous transmitter? FASEB J.
16:1792–1798. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li Q and Lancaster JR Jr: Chemical
foundations of hydrogen sulfide biology. Nitric Oxide. 35:21–34.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mathai JC, Missner A, Kügler P, Saparov
SM, Zeidel ML, Lee JK and Pohl P: No facilitator required for
membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA.
106:16633–16638. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Singh S, Padovani D, Leslie RA, Chiku T
and Banerjee R: Relative contributions of cystathionine
beta-synthase and gamma-cystathionase to H2S biogenesis via
alternative trans-sulfuration reactions. J Biol Chem.
284:22457–22466. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Módis K, Coletta C, Erdélyi K,
Papapetropoulos A and Szabo C: Intramitochondrial hydrogen sulfide
production by 3-mercaptopyruvate sulfurtransferase maintains
mitochondrial electron flow and supports cellular bioenergetics.
FASEB J. 27:601–611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen X, Jhee KH and Kruger WD: Production
of the neuromodulator H2S by cystathionine beta-synthase via the
condensation of cysteine and homocysteine. J Biol Chem.
279:52082–52086. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chiku T, Padovani D, Zhu W, Singh S,
Vitvitsky V and Banerjee R: H2S biogenesis by human cystathionine
gamma-lyase leads to the novel sulfur metabolites lanthionine and
homolanthionine and is responsive to the grade of
hyperhomocysteinemia. J Biol Chem. 284:11601–11612. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li L, Hsu A and Moore PK: Actions and
interactions of nitric oxide, carbon monoxide and hydrogen sulphide
in the cardiovascular system and in inflammation-a tale of three
gases! Pharmacol Ther. 123:386–400. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Whiteman M, Le Trionnaire S, Chopra M, Fox
B and Whatmore J: Emerging role of hydrogen sulfide in health and
disease: Critical appraisal of biomarkers and pharmacological
tools. Clin Sci (Lond). 121:459–488. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schumann U and Subramani S: Special
delivery from mitochondria to peroxisomes. Trends Cell Biol.
18:253–256. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kuang Q, Xue N, Chen J, Shen Z, Cui X,
Fang Y and Ding X: Low plasma hydrogen sulfide is associated with
impaired renal function and cardiac dysfunction. Am J Nephrol.
47:361–371. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lagoutte E, Mimoun S, Andriamihaja M,
Chaumontet C, Blachier F and Bouillaud F: Oxidation of hydrogen
sulfide remains a priority in mammalian cells and causes reverse
electron transfer in colonocytes. Biochim Biophys Acta.
1797:1500–1511. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hildebrandt TM and Grieshaber MK: Three
enzymatic activities catalyze the oxidation of sulfide to
thiosulfate in mammalian and invertebrate mitochondria. FEBS J.
275:3352–3361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Libiad M, Yadav PK, Vitvitsky V, Martinov
M and Banerjee R: Organization of the human mitochondrial hydrogen
sulfide oxidation pathway. J Biol Chem. 289:30901–30910. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ziosi M, Di Meo I, Kleiner G, Gao XH,
Barca E, Sanchez-Quintero MJ, Tadesse S, Jiang H, Qiao C, Rodenburg
RJ, et al: Coenzyme Q deficiency causes impairment of the sulfide
oxidation pathway. EMBO Mol Med. 9:96–111. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kleiner G, Barca E, Ziosi M, Emmanuele V,
Xu Y, Hidalgo-Gutierrez A, Qiao C, Tadesse S, Area-Gomez E, Lopez
LC and Quinzii CM: CoQ10 supplementation rescues
nephrotic syndrome through normalization of H2S
oxidation pathway. Biochim Biophys Acta Mol Basis Dis.
1864:3708–3722. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Maldonato BJ, Russell DA and Totah RA:
Human METTL7B is an alkyl thiol methyltransferase that metabolizes
hydrogen sulfide and captopril. Sci Rep. 11:48572021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kabil O and Banerjee R: Redox biochemistry
of hydrogen sulfide. J Biol Chem. 285:21903–21907. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pushpakumar S, Kundu S and Sen U: Hydrogen
sulfide protects hyperhomocysteinemia-induced renal damage by
modulation of caveolin and eNOS interaction. Sci Rep. 9:22232019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xia M, Chen L, Muh RW, Li PL and Li N:
Production and actions of hydrogen sulfide, a novel gaseous
bioactive substance, in the kidneys. J Pharmacol Exp Ther.
329:1056–1062. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang J, Chen S, Liu H, Zhang B, Zhao Y,
Ma K, Zhao D, Wang Q, Ma H and Zhang Z: Hydrogen sulfide prevents
hydrogen peroxide-induced activation of epithelial sodium channel
through a PTEN/PI(3,4,5)P3 dependent pathway. PLoS One.
8:e643042013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Luo R, Hu S, Liu Q, Han M, Wang F, Qiu M,
Li S, Li X, Yang T, Fu X, et al: Hydrogen sulfide upregulates renal
AQP-2 protein expression and promotes urine concentration. FASEB J.
33:469–483. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu
JH, Cai WJ, Zhu YZ and Zhu YC: Hydrogen sulfide targets EGFR
Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and
inhibition in renal tubular epithelial cells and increase sodium
excretion in chronic salt-loaded rats. Antioxid Redox Signal.
21:2061–2082. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Z, Li Y, Overstreet JM, Chung S, Niu A,
Fan X, Wang S, Wang Y, Zhang MZ and Harris RC: Inhibition of
epidermal growth factor receptor activation is associated with
improved diabetic nephropathy and insulin resistance in type 2
diabetes. Diabetes. 67:1847–1857. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang ZJ, Chang LL, Wu J, Pan HM, Zhang QY,
Wang MJ, Xin XM, Luo SS, Chen JA, Gu XF, et al: A novel
rhynchophylline analog, Y396, inhibits endothelial dysfunction
induced by oxidative stress in diabetes through epidermal growth
factor receptor. Antioxid Redox Signal. 32:743–765. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Izzedine H and Perazella MA: Adverse
kidney effects of epidermal growth factor receptor inhibitors.
Nephrol Dial Transplant. 32:1089–1097. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Prieto-Lloret J and Aaronson PI: Hydrogen
sulfide as an O2 sensor: A critical analysis. Adv Exp
Med Biol. 967:261–276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Olson KR: Hydrogen sulfide is an oxygen
sensor in the carotid body. Respir Physiol Neurobiol. 179:103–110.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Olson KR: Hydrogen sulfide as an oxygen
sensor. Antioxid Redox Signal. 22:377–397. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Olson KR: Hydrogen sulfide as an oxygen
sensor. Clin Chem Lab Med. 51:623–632. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Evans RG, Smith DW, Khan Z, Ngo JP and
Gardiner BS: Letter to the editor: ‘The plausibility of
arterial-to-venous oxygen shunting in the kidney: It all depends on
radial geometry’. Am J Physiol Renal Physiol. 309:F179–F180. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hirakawa Y, Tanaka T and Nangaku M: Renal
hypoxia in CKD; pathophysiology and detecting methods. Front
Physiol. 8:992017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Koning AM, Frenay AR, Leuvenink HG and van
Goor H: Hydrogen sulfide in renal physiology, disease and
transplantation-the smell of renal protection. Nitric Oxide.
46:37–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen Q, Yu S, Zhang K, Zhang Z, Li C, Gao
B, Zhang W and Wang Y: Exogenous H2S inhibits autophagy in
unilateral ureteral obstruction mouse renal tubule cells by
regulating the ROS-AMPK signaling pathway. Cell Physiol Biochem.
49:2200–2213. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lobb I, Sonke E, Aboalsamh G and Sener A:
Hydrogen sulphide and the kidney: Important roles in renal
physiology and pathogenesis and treatment of kidney injury and
disease. Nitric Oxide. 46:55–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sekijima M, Sahara H, Miki K, Villani V,
Ariyoshi Y, Iwanaga T, Tomita Y and Yamada K: Hydrogen sulfide
prevents renal ischemia-reperfusion injury in CLAWN miniature
swine. J Surg Res. 219:165–172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Du Y, Liu XH, Zhu HC, Wang L, Wang ZS,
Ning JZ and Xiao CC: Hydrogen sulfide treatment protects against
renal ischemia-reperfusion injury via induction of heat shock
proteins in rats. Iran J Basic Med Sci. 22:99–105. 2019.PubMed/NCBI
|
|
46
|
Tan Z, Shi Y, Yan Y, Liu W, Li G and Li R:
Impact of endogenous hydrogen sulfide on toll-like receptor pathway
in renal ischemia/reperfusion injury in rats. Ren Fail. 37:727–733.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lobb I, Jiang J, Lian D, Liu W, Haig A,
Saha MN, Torregrossa R, Wood ME, Whiteman M and Sener A: Hydrogen
sulfide protects renal grafts against prolonged cold
ischemia-reperfusion injury via specific mitochondrial actions. Am
J Transplant. 17:341–352. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ahmad A, Olah G, Szczesny B, Wood ME,
Whiteman M and Szabo C: AP39, a mitochondrially targeted hydrogen
sulfide donor, exerts protective effects in renal epithelial cells
subjected to oxidative stress in vitro and in acute renal injury in
vivo. Shock. 45:88–97. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ling Q, Yu X, Wang T, Wang SG, Ye ZQ and
Liu JH: Roles of the exogenous H2S-mediated SR-A signaling pathway
in renal ischemia/reperfusion injury in regulating endoplasmic
reticulum stress-induced autophagy in a rat model. Cell Physiol
Biochem. 41:2461–2474. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Juriasingani S, Akbari M, Chan JY,
Whiteman M and Sener A: H2S supplementation: A novel
method for successful organ preservation at subnormothermic
temperatures. Nitric Oxide. 81:57–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hosgood SA, van Heurn E and Nicholson ML:
Normothermic machine perfusion of the kidney: Better conditioning
and repair? Transpl Int. 28:657–664. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bagul A, Hosgood SA, Kaushik M, Kay MD,
Waller HL and Nicholson ML: Experimental renal preservation by
normothermic resuscitation perfusion with autologous blood. Br J
Surg. 95:111–118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nicholson ML and Hosgood SA: Renal
transplantation after ex vivo normothermic perfusion: The first
clinical study. Am J Transplant. 13:1246–1252. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hoyer DP, Gallinat A, Swoboda S,
Wohlschläger J, Rauen U, Paul A and Minor T: Subnormothermic
machine perfusion for preservation of porcine kidneys in a donation
after circulatory death model. Transpl Int. 27:1097–1106. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu
Y, Wood ME, Whiteman M, Moore PK and Bian JS: Renal protective
effect of hydrogen sulfide in cisplatin-induced nephrotoxicity.
Antioxid Redox Signal. 29:455–470. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng
J, Peng T and Lu Y: S-sulfhydration of SIRT3 by hydrogen sulfide
attenuates mitochondrial dysfunction in cisplatin-induced acute
kidney injury. Antioxid Redox Signal. 31:1302–1319. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore
PK and Bian JS: Renal protective effect of polysulfide in
cisplatin-induced nephrotoxicity. Redox Biol. 15:513–521. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Koike S, Ogasawara Y, Shibuya N, Kimura H
and Ishii K: Polysulfide exerts a protective effect against
cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling
in neuroblastoma cells. FEBS Lett. 587:3548–3555. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Waz S, Heeba GH, Hassanin SO and
Abdel-Latif RG: Nephroprotective effect of exogenous hydrogen
sulfide donor against cyclophosphamide-induced toxicity is mediated
by Nrf2/HO-1/NF-κB signaling pathway. Life Sci. 264:1186302021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Karimi A, Absalan F, Khorsandi L,
Valizadeh A and Mansouri E: Sodium hydrogen sulfide (NaHS)
ameliorates alterations caused by cisplatin in filtration slit
diaphragm and podocyte cytoskeletal in rat kidney. J Nephropathol.
6:150–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Aziz NM, Elbassuoni EA, Kamel MY and Ahmed
SM: Hydrogen sulfide renal protective effects: Possible link
between hydrogen sulfide and endogenous carbon monoxide in a rat
model of renal injury. Cell Stress Chaperones. 25:211–221. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Elbassuoni EA, Аziz NM and Habeeb WN: The
role of activation of KАTP channels on hydrogen sulfide
induced renoprotective effect on diabetic nephropathy. J Cell
Physiol. 235:5223–5228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ahmed HH, Taha FM, Omar HS, Elwi HM and
Abdelnasser M: Hydrogen sulfide modulates SIRT1 and suppresses
oxidative stress in diabetic nephropathy. Mol Cell Biochem.
457:1–9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Papu John AS, Kundu S, Pushpakumar S, Amin
M, Tyagi SC and Sen U: Hydrogen sulfide inhibits
Ca2+-induced mitochondrial permeability transition pore
opening in type-1 diabetes. Am J Physiol Endocrinol Metab.
317:E269–E283. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li L, Xiao T, Li F, Li Y, Zeng O, Liu M,
Liang B, Li Z, Chu C and Yang J: Hydrogen sulfide reduced renal
tissue fibrosis by regulating autophagy in diabetic rats. Mol Med
Rep. 16:1715–1722. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li Y, Li L, Zeng O, Liu JM and Yang J:
H2S improves renal fibrosis in STZ-induced diabetic rats
by ameliorating TGF-β1 expression. Ren Fail. 39:265–272. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Qian X, Li X, Ma F, Luo S, Ge R and Zhu Y:
Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine,
prevents STZ-induced diabetic nephropathy. Biochem Biophys Res
Commun. 473:931–938. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lin S, Visram F, Liu W, Haig A, Jiang J,
Mok A, Lian D, Wood ME, Torregrossa R, Whiteman M, et al: GYY4137,
a slow-releasing hydrogen sulfide donor, ameliorates renal damage
associated with chronic obstructive uropathy. J Urol.
196:1778–1787. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lin S, Lian D, Liu W, Haig A, Lobb I,
Hijazi A, Razvi H, Burton J, Whiteman M and Sener A: Daily therapy
with a slow-releasing H2S donor GYY4137 enables early
functional recovery and ameliorates renal injury associated with
urinary obstruction. Nitric Oxide. 76:16–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yan X, Liao H, Cheng M, Shi X, Lin X, Feng
XH and Chen YG: Smad7 protein interacts with receptor-regulated
Smads (R-Smads) to inhibit transforming growth factor-β
(TGF-β)/Smad signaling. J Biol Chem. 291:382–392. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yan X and Chen YG: Smad7: Not only a
regulator, but also a cross-talk mediator of TGF-β signalling.
Biochem J. 434:1–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang Y, Zhang Z, Huang Y, Mao Z, Yang X,
Nakamura Y, Sawada N, Mitsui T, Takeda M and Yao J: Induction of
inactive TGF-β1 monomer formation by hydrogen sulfide contributes
to its suppressive effects on Ang II- and TGF-β1-induced EMT in
renal tubular epithelial cells. Biochem Biophys Res Commun.
501:534–540. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Guo L, Peng W, Tao J, Lan Z, Hei H, Tian
L, Pan W, Wang L and Zhang X: Hydrogen sulfide inhibits
transforming growth factor-β1-induced EMT via Wnt/catenin pathway.
PLoS One. 11:e01470182016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
John AMSP, Kundu S, Pushpakumar S, Fordham
M, Weber G, Mukhopadhyay M and Sen U: GYY4137, a hydrogen sulfide
donor modulates miR194-dependent collagen realignment in diabetic
kidney. Sci Rep. 7:109242017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shevalye H, Maksimchyk Y, Watcho P and
Obrosova IG: Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency
alleviates diabetic kidney disease. Biochim Biophys Acta.
1802:1020–1027. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nayak BK, Shanmugasundaram K, Friedrichs
WE, Cavaglierii RC, Patel M, Barnes J and Block K: HIF-1 mediates
renal fibrosis in OVE26 type 1 diabetic mice. Diabetes.
65:1387–1397. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee HJ, Feliers D, Barnes JL, Oh S,
Choudhury GG, Diaz V, Galvan V, Strong R, Nelson J, Salmon A, et
al: Hydrogen sulfide ameliorates aging-associated changes in the
kidney. Geroscience. 40:163–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee HJ, Lee DY, Mariappan MM, Feliers D,
Ghosh-Choudhury G, Abboud HE, Gorin Y and Kasinath BS: Hydrogen
sulfide inhibits high glucose-induced NADPH oxidase 4 expression
and matrix increase by recruiting inducible nitric oxide synthase
in kidney proximal tubular epithelial cells. J Biol Chem.
292:5665–5675. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gu Y, Chen J, Zhang H, Shen Z, Liu H, Lv
S, Yu X, Zhang D, Ding X and Zhang X: Hydrogen sulfide attenuates
renal fibrosis by inducing TET-dependent DNA demethylation on
Klotho promoter. FASEB J. 34:11474–11487. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin
H, Yang H, Ni X and Zhang W: H2S alleviates renal injury
and fibrosis in response to unilateral ureteral obstruction by
regulating macrophage infiltration via inhibition of NLRP3
signaling. Exp Cell Res. 387:1117792020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu
ZY and Bian JS: Polysulfide-mediated sulfhydration of SIRT1
prevents diabetic nephropathy by suppressing phosphorylation and
acetylation of p65 NF-κB and STAT3. Redox Biol. 38:1018132021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pushpakumar S, Kundu S, Weber G and Sen U:
Exogenous hydrogen sulfide and miR-21 antagonism attenuates
macrophage-mediated inflammation in ischemia reperfusion injury of
the aged kidney. Geroscience. 43:1349–1367. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lee HJ, Mariappan MM, Norton L, Bakewell
T, Feliers D, Oh SB, Donati A, Rubannelsonkumar CS, Venkatachalam
MA, Harris SE, et al: Proximal tubular epithelial insulin receptor
mediates high-fat diet-induced kidney injury. JCI Insight.
6:e1436192021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu D, Gao B, Li M, Yao L, Wang S, Chen M,
Li H, Ma C, Ji A and Li Y: Hydrogen sulfide mitigates kidney injury
in high fat diet-induced obese mice. Oxid Med Cell Longev.
2016:27157182016. View Article : Google Scholar : PubMed/NCBI
|