Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2021 Volume 24 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 24 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review)

  • Authors:
    • Qingchun Lei
    • Tingting Wu
    • Jin Wu
    • Xiaogang Hu
    • Yingxia Guan
    • Ying Wang
    • Jinyuan Yan
    • Guolin Shi
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China, Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China, Department of Vasculocardiology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
    Copyright: © Lei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 734
    |
    Published online on: August 16, 2021
       https://doi.org/10.3892/mmr.2021.12374
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle‑aged and elderly populations. Several studies have confirmed that the microbiota‑gut‑brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α‑synuclein (α‑syn) in the intestine. Abnormal α‑syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α‑syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α‑syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α‑syn in the intestine caused by the GM changes and the increased levels of α‑syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α‑syn accumulation to relieve the symptoms and progression of PD are described.
View Figures

Figure 1

Figure 2

View References

1 

Wu S, Lei L, Song Y, Liu M, Lu S, Lou D, Shi Y, Wang Z and He D: Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: The role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol. 309:67–78. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Balestrino R and Schapira AHV: Parkinson disease. Eur J Neurol. 27:27–42. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Mahoney-Sanchez L, Bouchaoui H, Ayton S, Devos D, Duce JA and Devedjian JC: Ferroptosis and its potential role in the physiopathology of Parkinson's disease. Prog Neurobiol. 196:1018902021. View Article : Google Scholar : PubMed/NCBI

4 

Samii A, Nutt JG and Ransom BR: Parkinson's disease. Lancet. 363:1783–1793. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O'Brien JT, Brooks DJ, Barker RA and Burn DJ: The spectrum of nonmotor symptoms in early Parkinson disease. Neurology. 80:276–281. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Lopiano L, Modugno N, Marano P, Sensi M, Meco G, Cannas A, Gusmaroli G, Tamma F, Mancini F, Quatrale R, et al: Motor outcomes in patients with advanced Parkinson's disease treated with levodopa/carbidopa intestinal gel in Italy: An interim analysis from the GREENFIELD observational study. Neurol Sci. 37:1785–1792. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kalinderi K, Bostantjopoulou S and Fidani L: The genetic background of Parkinson's disease: Current progress and future prospects. Acta Neurol Scand. 134:314–326. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Malpartida AB, Williamson M, Narendra DP, Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy. Trends Biochem Sci. 46:329–343. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Tysnes OB and Storstein A: Epidemiology of Parkinson's disease. J Neural Transm (Vienna). 124:901–905. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Ascherio A and Schwarzschild MA: The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol. 15:1257–1272. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Ahier A, Dai CY, Kirmes I, Cummins N, Hung GCC, Götz J and Zuryn S: PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Rep. 35:1092032021. View Article : Google Scholar : PubMed/NCBI

12 

Tolosa E, Vila M, Klein C and Rascol O: LRRK2 in Parkinson disease: Challenges of clinical trials. Nat Rev Neurol. 16:97–107. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Wauters F, Cornelissen T, Imberechts D, Martin S, Koentjoro B, Sue C, Vangheluwe P and Vandenberghe W: LRRK2 mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy. 16:203–222. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Terbeek J, Martin S, Imberechts D, Kinnart I, Vangheluwe P, Nicholl D and Vandenberghe W: Increased superoxide in GCH1 mutant fibroblasts points to a dopamine-independent toxicity mechanism. Parkinsonism Relat Disord. 82:10–12. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Imai Y, Meng H, Shiba-Fukushima K and Hattori N: Twin CHCH proteins, CHCHD2, and CHCHD10: Key molecules of Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Int J Mol Sci. 20:9082019. View Article : Google Scholar : PubMed/NCBI

16 

Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT and Garavaglia B: The role of VPS35 in the pathobiology of Parkinson's disease. Cell Mol Neurobiol. 41:199–227. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA and Fenga C: Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med. 38:1012–1020. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Teodoro M, Briguglio G, Fenga C and Costa C: Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol Rep. 6:564–570. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambo F, Briguglio G and Fenga C: MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep. 7:759–767. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Srivastav S, Fatima M and Mondal AC: Important medicinal herbs in Parkinson's disease pharmacotherapy. Biomed Pharmacother. 92:856–863. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Titze-de-Almeida SS, Soto-Sanchez C, Fernandez E, Koprich JB, Brotchie JM and Titze-de-Almeida R: The promise and challenges of developing miRNA-Based therapeutics for Parkinson's disease. Cells. 9:8412020. View Article : Google Scholar : PubMed/NCBI

22 

Yu Y, Chen H, Hua X, Dang Y, Han Y, Yu Z, Chen X, Ding P and Li H: Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode caenorhabditis elegans. Sci Total Environ. 726:1386792020. View Article : Google Scholar : PubMed/NCBI

23 

Schirinzi T, Landi D and Liguori C: COVID-19: Dealing with a potential risk factor for chronic neurological disorders. J Neurol. 268:1171–1178. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Ribeiro DE, Oliveira-Giacomelli A, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Fasano A, Visanji NP, Liu LW, Lang AE and Pfeiffer RF: Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14:625–639. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Mayer EA, Tillisch K and Gupta A: Gut/brain axis and the microbiota. J Clin Invest. 125:926–938. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Ghaisas S, Maher J and Kanthasamy A: Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 158:52–62. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Felice VD, Quigley EM, Sullivan AM, O'Keeffe GW and O'Mahony SM: Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord. 27:1–8. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Pfeiffer R: Beyond here be dragons: SIBO in Parkinson's disease. Mov Disord. 28:1764–1765. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Nielsen HH, Qiu J, Friis S, Wermuth L and Ritz B: Treatment for helicobacter pylori infection and risk of Parkinson's disease in denmark. Eur J Neurol. 19:864–869. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, et al: Colonic inflammation in Parkinson's disease. Neurobiol Dis. 50:42–48. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Mehra S, Sahay S and Maji SK: α-synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. Biochim Biophys Acta Proteins Proteom. 1867:890–908. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Li X, Li YH, Han JY, Yu S and Chen B: cDNA cloning, prokaryotic expression and purification of rat alpha-synuclein. Neurosci Bull. 22:29–33. 2006.PubMed/NCBI

34 

Pogorelov VM, Kao HT, Augustine GJ and Wetsel WC: Postsynaptic mechanisms render Syn I/II/III mice highly responsive to psychostimulants. Int J Neuropsychopharmacol. 22:453–465. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Thiel G: Synapsin I, synapsin II, and synaptophysin: Marker proteins of synaptic vesicles. Brain Pathol. 3:87–95. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Zhang L, Zhang C, Zhu Y, Cai Q, Chan P, Uéda K, Yu S and Yang H: Semi-quantitative analysis of alpha-synuclein in subcellular pools of rat brain neurons: An immunogold electron microscopic study using a C-terminal specific monoclonal antibody. Brain Res. 1244:40–52. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Braak H, Rub U, Gai WP and Del Tredici K; Idiopathic Parkinson's disease, : Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 110:517–536. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ and Lee VM: Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 209:975–986. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Zheng H, Shi C, Luo H, Fan L, Yang Z, Hu X, Zhang Z, Zhang S, Hu Z, Fan Y, et al: alpha-synuclein in Parkinson's disease: Does a prion-like mechanism of propagation from periphery to the brain play a role? Neuroscientist. 27:367–387. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A and Kraneveld AD: The gut-brain axis in Parkinson's disease: Possibilities for food-based therapies. Eur J Pharmacol. 817:86–95. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Dogra N, Mani RJ and Katare DP: The gut-brain axis: Two ways signaling in Parkinson's disease. Cell Mol Neurobiol. 2:10072021.

42 

Kuo YM, Li Z, Jiao Y, Gaborit N, Pani AK, Orrison BM, Bruneau BG, Giasson BI, Smeyne RJ, Gershon MD and Nussbaum RL: Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet. 19:1633–1650. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Braak H, Del Tredici K, Rüb U, de Vos RA, Steur EN and Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 24:197–211. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Borghammer P and Van Den Berge N: Brain-first versus gut-first Parkinson's disease: A hypothesis. J Parkinsons Dis. 9:S281–S295. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F and Antonini A: Peripheral nervous system involvement in Parkinson's disease: Evidence and controversies. Parkinsonism Relat Disord. 20:1329–1334. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Nair AT, Ramachandran V, Joghee NM, Antony S and Ramalingam G: Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson's disease: A critical review. J Neurogastroenterol Motil. 24:30–42. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Rani L and Mondal AC: Unravelling the role of gut microbiota in Parkinson's disease progression: Pathogenic and therapeutic implications. Neurosci Res. 168:100–112. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, et al: Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 30:350–358. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Mulak A and Boaz B: Brain-gut-microbiota axis in Parkinson's disease. World J Gastroenterol. 21:10609–10620. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Cirstea MS, Yu AC, Golz E, Sundvick K, Kliger D, Radisavljevic N, Foulger LH, Mackenzie M, Huan T, Finlay BB and Appel-Cresswell S: Microbiota composition and metabolism are associated with gut function in Parkinson's disease. Mov Disord. 35:1208–1217. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Lee HS, Lobbestael E, Vermeire S, Sabino J and Cleynen I: Inflammatory bowel disease and Parkinson's disease: Common pathophysiological links. Gut. 70:408–417. 2021.PubMed/NCBI

52 

Gerhardt S and Mohajeri MH: Changes of colonic bacterial composition in Parkinson's disease and other neurodegenerative diseases. Nutrients. 10:7082018. View Article : Google Scholar : PubMed/NCBI

53 

Lubomski M, Tan AH, Lim SY, Holmes AJ, Davis RL and Sue CM: Parkinson's disease and the gastrointestinal microbiome. J Neurol. 267:2507–2523. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E and Shannon KM: Colonic bacterial composition in Parkinson's disease. Mov Disord. 30:1351–1360. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Baizabal-Carvallo JF and Alonso-Juarez M: The link between gut dysbiosis and neuroinflammation in Parkinson's disease. Neuroscience. 432:160–173. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Li F, Wang P, Chen Z, Sui X, Xie X and Zhang J: Alteration of the fecal microbiota in North-Eastern Han Chinese population with sporadic Parkinson's disease. Neurosci Lett. 707:1342972019. View Article : Google Scholar : PubMed/NCBI

57 

Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, et al: Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord. 32:739–749. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Elfil M, Kamel S, Kandil M, Koo BB and Schaefer SM: Implications of the gut microbiome in Parkinson's disease. Movement disorders: Mov Disord. 35:921–933. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Sorrentino ZA, Xia Y, Gorion KM, Hass E and Giasson BI: Carboxy-terminal truncations of mouse α-synuclein alter aggregation and prion-like seeding. FEBS Lett. 594:1271–1283. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, et al: The microbiota-gut-brain axis. Physiol Rev. 99:1877–2013. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Koszewicz M, Jaroch J, Brzecka A, Ejma M, Budrewicz S, Mikhaleva LM, Muresanu C, Schield P, Somasundaram SG, Kirkland CE, et al: Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment. Pharmacol Res. 164:1052772021. View Article : Google Scholar : PubMed/NCBI

62 

Tan AH, Lim SY, Chong KK, Manap AM, Hor JW, Lim JL, Low SC, Chong CW, Mahadeva S and Lang AE: Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study. Neurology. 96:e772–e782. 2021.PubMed/NCBI

63 

Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, Yang YY, et al: Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson's disease. Microbiome. 9:342021. View Article : Google Scholar : PubMed/NCBI

64 

Sun MF, Zhu YL, Zhou ZL, Jia XB, Xu YD, Yang Q, Cui C and Shen YQ: Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun. 70:48–60. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Kayisoglu O, Weiss F, Niklas C, Pierotti I, Pompaiah M, Wallaschek N, Germer CT, Wiegering A and Bartfeld S: Location-specific cell identity rather than exposure to GI microbiota defines many innate immune signalling cascades in the gut epithelium. Gut. 70:687–697. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA and Kordower JH: Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. Mov Disord. 29:999–1009. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H and Takahashi R: Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener. 13:212018. View Article : Google Scholar : PubMed/NCBI

68 

Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB and Keshavarzian A: Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One. 6:e280322011. View Article : Google Scholar : PubMed/NCBI

69 

George S and Brundin P: Immunotherapy in Parkinson's disease: Micromanaging alpha-synuclein aggregation. J Parkinsons Dis. 5:413–424. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Wang Y, Liu Y, Sidhu A, Ma Z, McClain C and Feng W: Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol. 303:G32–G41. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A and Wells JM: Intestinal permeability-a new target for disease prevention and therapy. BMC Gastroenterol. 14:1892014. View Article : Google Scholar : PubMed/NCBI

72 

Ploger S, Stumpff F, Penner GB, Schulzke JD, Gäbel G, Martens H, Shen Z, Günzel D and Aschenbach JR: Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 1258:52–59. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, Faßbender K, Schwiertz A and Schäfer KH: Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord. 32:66–72. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Zhou X, Zhang B, Zhao X, Lin Y, Wang J, Wang X, Hu N and Wang S: Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 12:5637–5649. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, Li XF and Gao BL: Association of Parkinson's disease with microbes and microbiological therapy. Front Cell Infect Microbiol. 11:6193542021. View Article : Google Scholar : PubMed/NCBI

76 

Watson AJ and Hughes KR: TNF-α-induced intestinal epithelial cell shedding: Implications for intestinal barrier function. Ann N Y Acad Sci. 1258:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Resnikoff H, Metzger JM, Lopez M, Bondarenko V, Mejia A, Simmons HA and Emborg ME: Colonic inflammation affects myenteric alpha-synuclein in nonhuman primates. J Inflamm Res. 12:113–126. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Choi JG, Kim N, Ju IG, Eo H, Lim SM, Jang SE, Kim DH and Oh MS: Oral administration of proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci Rep. 8:12752018. View Article : Google Scholar : PubMed/NCBI

79 

Brown GC: The endotoxin hypothesis of neurodegeneration. J Neuroinflammation. 16:1802019. View Article : Google Scholar : PubMed/NCBI

80 

Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A, Kotler SA, Ratha BN, Ghosh A, Kumar R, et al: Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci. 10:2229–2236. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Huang C, Zhu L, Li H, Shi FG, Wang GQ, Wei YZ, Liu J and Zhang F: Adulthood exposure to lipopolysaccharide exacerbates the neurotoxic and inflammatory effects of rotenone in the substantia nigra. Front Mol Neurosci. 10:1312017. View Article : Google Scholar : PubMed/NCBI

82 

Wang W, Nguyen LT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS, Miller DW, Datta D, et al: Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein alpha-synuclein. Proc Natl Acad Sci USA. 113:9587–9592. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Terada M, Suzuki G, Nonaka T, Kametani F, Tamaoka A and Hasegawa M: The effect of truncation on prion-like properties of α-synuclein. J Biol Chem. 293:13910–13920. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A, Mordes DA, Halliday GM, Middleton LT, Gentleman SM, et al: MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol. 135:49–63. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Davie CA: A review of Parkinson's disease. Br Med Bull. 86:109–127. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Prusiner SB: Cell biology. A unifying role for prions in neurodegenerative diseases. Science. 336:1511–1513. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Bhattacharyya D and Bhunia A: Gut-brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chem Phys Lipids. 235:1050292021. View Article : Google Scholar : PubMed/NCBI

88 

Lee SJ, Desplats P, Sigurdson C, Tsigelny I and Masliah E: Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol. 6:702–706. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ and Lee VM: Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338:949–953. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O'Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, et al: Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep. 2:8982012. View Article : Google Scholar : PubMed/NCBI

91 

Mezias C, Rey N, Brundin P and Raj A: Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models: Involvement of retrograde and anterograde axonal propagation. Neurobiol Dis. 134:1046232020. View Article : Google Scholar : PubMed/NCBI

92 

Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, Wang ZY, Roybon L, Melki R and Li JY: Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128:805–820. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, et al: Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson's disease. Neuron. 103:627–641. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Braak H, Sastre M, Bohl JR, de Vos RA and Del Tredici K: Parkinson's disease: Lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113:421–429. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M, Green SJ, Naqib A, Roy A, Kordower JH, et al: Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol Dis. 135:1043522020. View Article : Google Scholar : PubMed/NCBI

96 

Santos SF, de Oliveira HL, Yamada ES, Neves BC and Pereira A Jr: The gut and Parkinson's disease-a bidirectional pathway. Front Neurol. 10:5742019. View Article : Google Scholar : PubMed/NCBI

97 

Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M and Masliah E: alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol. 157:401–410. 2000. View Article : Google Scholar : PubMed/NCBI

98 

Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, Hong Y, Ford C, Luo Y and Qi X: Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 137:939–960. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Chong W, Jimenez J, Mc IM, Saito MA and Kwakye GF: α-Synuclein enhances cadmium uptake and neurotoxicity via oxidative stress and caspase activated cell death mechanisms in a dopaminergic cell model of Parkinson's disease. Neurotox Res. 32:231–246. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, Miller RJ, Schumacker PT and Surmeier DJ: Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci. 33:10154–10164. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Tapias V, Hu X, Luk KC, Sanders LH, Lee VM and Greenamyre JT: Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci. 74:2851–2874. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Musgrove RE, Helwig M, Bae EJ, Aboutalebi H, Lee SJ, Ulusoy A and Di Monte DA: Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular alpha-synuclein transfer. J Clin Invest. 129:3738–3753. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL and Lee MK: Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 26:41–50. 2006. View Article : Google Scholar : PubMed/NCBI

104 

Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S and Lübbert H: Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. Hum Mol Genet. 16:2377–2393. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Ding H, Xiong Y, Sun J, Chen C, Gao J and Xu H: Asiatic acid prevents oxidative stress and apoptosis by inhibiting the translocation of α-synuclein into mitochondria. Front Neurosci. 12:4312018. View Article : Google Scholar : PubMed/NCBI

106 

Ho MS: Microglia in Parkinson's disease. Adv Exp Med Biol. 1175:335–353. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Harms AS, Delic V, Thome AD, Bryant N, Liu Z, Chandra S, Jurkuvenaite A and West AB: α-synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Neuropathol Commun. 5:852017. View Article : Google Scholar : PubMed/NCBI

108 

Politis M, Su P and Piccini P: Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol. 3:962012. View Article : Google Scholar : PubMed/NCBI

109 

Joers V, Tansey MG, Mulas G and Carta AR: Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol. 155:57–75. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol. 150:963–976. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Zhang YN, Fan JK, Gu L, Yang HM, Zhan SQ and Zhang H: Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson's disease. J Neuroinflammation. 18:232021. View Article : Google Scholar : PubMed/NCBI

112 

Croisier E, Moran LB, Dexter DT, Pearce RK and Graeber MB: Microglial inflammation in the parkinsonian substantia nigra: Relationship to alpha-synuclein deposition. J Neuroinflammation. 2:142005. View Article : Google Scholar : PubMed/NCBI

113 

Williams GP, Marmion DJ, Schonhoff AM, Jurkuvenaite A, Won WJ, Standaert DG, Kordower JH and Harms AS: T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 139:855–874. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Fernandez-Montesinos R, Caro M, Lachaud CC, Waudby CA, Delgado M, Dobson CM and Pozo D: Glial innate immunity generated by non-aggregated alpha-synuclein in mouse: Differences between wild-type and Parkinson's disease-linked mutants. PLoS One. 5:e134812010. View Article : Google Scholar : PubMed/NCBI

115 

Vaure C and Liu Y: A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5:3162014. View Article : Google Scholar : PubMed/NCBI

116 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI

117 

Wardill HR, Van Sebille YZ, Mander KA, Gibson RJ, Logan RM, Bowen JM and Sonis ST: Toll-like receptor 4 signaling: A common biological mechanism of regimen-related toxicities: An emerging hypothesis for neuropathy and gastrointestinal toxicity. Cancer Treat Rev. 41:122–128. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM and Nabavi SF: Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 36:11–19. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK and Stefanova N: Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia. 61:349–360. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Mariucci G, Pagiotti R, Galli F, Romani L and Conte C: The potential role of toll-like receptor 4 in mediating dopaminergic cell loss and alpha-synuclein expression in the acute MPTP mouse model of Parkinson's disease. J Mol Neurosci. 64:611–618. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B and Yue Z: Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 11:13862020. View Article : Google Scholar : PubMed/NCBI

122 

Wilms H, Rosenstiel P, Romero-Ramos M, Arlt A, Schäfer H, Seegert D, Kahle PJ, Odoy S, Claasen JH, Holzknecht C, et al: Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol. 22:897–909. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E and Kim HS: Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol. 185:615–623. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, Miller DS, Chen B, Zhang W, McGeer PL, et al: Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia. 55:1178–1188. 2007. View Article : Google Scholar : PubMed/NCBI

125 

Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, Kirik D and Cuadrado A: α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum Mol Genet. 21:3173–3192. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Sanchez-Guajardo V, Tentillier N and Romero-Ramos M: The relation between α-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience. 302:47–58. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Shavali S, Combs CK and Ebadi M: Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: Relevance to Parkinson's disease. Neurochem Res. 31:85–94. 2006. View Article : Google Scholar : PubMed/NCBI

128 

Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W and Wenning GK: Toll-like receptor 4 promotes alpha-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol. 179:954–963. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Campos SS, Alza NP and Salvador GA: Lipid metabolism alterations in the neuronal response to A53T α-synuclein and Fe-induced injury. Arch Biochem Biophys. 655:43–54. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S and Tsai YC: Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain Behav Immun. 90:26–46. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Martin WRW, Miles M, Zhong Q, Hartlein J, Racette BA, Norris SA, Ushe M, Maiti B, Criswell S, Davis AA, et al: Is levodopa response a valid indicator of parkinson's disease? Mov Disord. 36:948–954. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Tomlinson CL, Stowe R, Patel S, Rick C, Gray R and Clarke CE: Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov Disord. 25:2649–2653. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Epprecht L, Schreglmann SR, Goetze O, Woitalla D, Baumann CR and Waldvogel D: Unchanged gastric emptying and visceral perception in early Parkinson's disease after a high caloric test meal. J Neurol. 262:1946–1953. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Schrag A and Quinn N: Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain. 123((Pt 11)): 2297–2305. 2000. View Article : Google Scholar : PubMed/NCBI

135 

Nonnekes J, Timmer MH, de Vries NM, Rascol O, Helmich RC and Bloem BR: Unmasking levodopa resistance in Parkinson's disease. Mov Disord. 31:1602–1609. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Zhu H, Xu G, Zhang K, Kong X, Han R, Zhou J and Ni Y: Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Sci Rep. 6:277792016. View Article : Google Scholar : PubMed/NCBI

137 

Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ and Balskus EP: Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science. 364:eaau63232019. View Article : Google Scholar

138 

van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G and El Aidy S: Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat Commun. 10:3102019. View Article : Google Scholar : PubMed/NCBI

139 

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, et al: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 167:1469–1480. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Varankovich NV, Nickerson MT and Korber DR: Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol. 6:6852015. View Article : Google Scholar : PubMed/NCBI

141 

Liu Y, Yin F, Huang L, Teng H, Shen T and Qin H: Long-term and continuous administration of Bacillus subtilis during remission effectively maintains the remission of inflammatory bowel disease by protecting intestinal integrity, regulating epithelial proliferation, and reshaping microbial structure and function. Food Funct. 12:2201–2210. 2021. View Article : Google Scholar : PubMed/NCBI

142 

Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L and Theodorou V: Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 37:1885–1895. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Evrensel A and Ceylan ME: Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharm Neu. 14:231–237. 2016.PubMed/NCBI

144 

Goya ME, Xue F, Sampedro-Torres-Quevedo C, Arnaouteli S, Riquelme-Dominguez L, Romanowski A, Brydon J, Ball KL, Stanley-Wall NR and Doitsidou M: Probiotic bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep. 30:367–380. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Metta V, Leta V, Mrudula KR, Prashanth LK, Goyal V, Borgohain R, Chung-Faye G and Chaudhuri KR: Gastrointestinal dysfunction in Parkinson's disease: Molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol. 21:10072021.

146 

Khoruts A: Faecal microbiota transplantation in 2013: Developing human gut microbiota as a class of therapeutics. Nat Rev Gastroenterol Hepatol. 11:79–80. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y and Jin F: Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 310:561–577. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, Ducarmon QR, Keller JJ, Kuijper EJ and Contarino MF: Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 10:982020. View Article : Google Scholar : PubMed/NCBI

149 

Fang X: Microbial treatment: The potential application for Parkinson's disease. Neurol Sci. 40:51–58. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al: Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 14:491–502. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr. 125:1401–1412. 1995. View Article : Google Scholar : PubMed/NCBI

152 

Kovacs Z, Benjamins E, Grau K, Ur Rehman A, Ebrahimi M and Czermak P: Recent developments in manufacturing oligosaccharides with prebiotic functions. Adv Biochem Eng Biotechnol. 143:257–295. 2014.PubMed/NCBI

153 

Savignac HM, Corona G, Mills H, Chen L, Spencer JP, Tzortzis G and Burnet PW: Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int. 63:756–764. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Armstrong MJ and Okun MS: Diagnosis and treatment of Parkinson disease: A review. JAMA. 323:548–560. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Emamzadeh FN and Surguchov A: Parkinson's disease: Biomarkers, treatment, and risk factors. Front Neurosci. 12:6122018. View Article : Google Scholar : PubMed/NCBI

156 

Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada K, Nagai Y and Hohjoh H: Normalization of overexpressed α-synuclein causing Parkinson's disease by a moderate gene silencing with RNA interference. Mol Ther Nucleic Acids. 4:e2412015. View Article : Google Scholar : PubMed/NCBI

157 

Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar : PubMed/NCBI

158 

Junn E, Lee KW, Jeong BS, Chan TW, Im JY and Mouradian MM: Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA. 106:13052–13057. 2009. View Article : Google Scholar : PubMed/NCBI

159 

Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, et al: Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease. Neuron. 46:857–868. 2005. View Article : Google Scholar : PubMed/NCBI

160 

Ghochikyan A, Petrushina I, Davtyan H, Hovakimyan A, Saing T, Davtyan A, Cribbs DH and Agadjanyan MG: Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human alpha-synuclein: Feasibility study. Neurosci Lett. 560:86–91. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Vaikath NN, Hmila I, Gupta V, Erskine D, Ingelsson M and El-Agnaf OMA: Antibodies against alpha-synuclein: Tools and therapies. J Neurochem. 150:612–625. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Rabenstein M, Agbo DB, Wolf E, Dams J, Nicolai M, Roeder A, Bacher M, Dodel RC and Noelker C: Effect of naturally occurring α-synuclein-antibodies on toxic alpha-synuclein-fragments. Neurosci Lett. 704:181–188. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Wang Z, Gao G, Duan C and Yang H: Progress of immunotherapy of anti-alpha-synuclein in Parkinson's disease. Biomed Pharmacother. 115:1088432019. View Article : Google Scholar : PubMed/NCBI

164 

Lashuel HA, Overk CR, Oueslati A and Masliah E: The many faces of alpha-synuclein: From structure and toxicity to therapeutic target. Nat Rev Neurosci. 14:38–48. 2013. View Article : Google Scholar : PubMed/NCBI

165 

Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, et al: T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature. 546:656–661. 2017. View Article : Google Scholar : PubMed/NCBI

166 

Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC and Lee VM: Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep. 7:2054–2065. 2014. View Article : Google Scholar : PubMed/NCBI

167 

Zhou C, Emadi S, Sierks MR and Messer A: A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther. 10:1023–1031. 2004. View Article : Google Scholar : PubMed/NCBI

168 

El-Agnaf O, Overk C, Rockenstein E, Mante M, Florio J, Adame A, Vaikath N, Majbour N, Lee SJ, Kim C, et al: Differential effects of immunotherapy with antibodies targeting alpha-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. Neurobiol Dis. 104:85–96. 2017. View Article : Google Scholar : PubMed/NCBI

169 

Rutherford NJ, Brooks M and Giasson BI: Novel antibodies to phosphorylated α-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol Commun. 4:802016. View Article : Google Scholar : PubMed/NCBI

170 

Wang N, Garcia J, Freeman R and Gibbons CH: Phosphorylated alpha-synuclein within cutaneous autonomic nerves of patients with Parkinson's disease: The implications of sample thickness on results. J Histochem Cytochem. 68:669–678. 2020. View Article : Google Scholar : PubMed/NCBI

171 

Ciesielska A, Matyjek M and Kwiatkowska K: TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 78:1233–1261. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, Voigt RM, Naqib A, Green SJ, Kordower JH, et al: Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice. Gut. 68:829–843. 2019. View Article : Google Scholar : PubMed/NCBI

173 

Brundin L, Bryleva EY and Rajamani KT: Role of inflammation in suicide: From mechanisms to treatment. Neuropsychopharmacology. 42:271–283. 2017. View Article : Google Scholar : PubMed/NCBI

174 

Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J and Bjorklund A: TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA. 110:E1817–E1826. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Maiese K, Chong ZZ, Shang YC and Wang S: mTOR: On target for novel therapeutic strategies in the nervous system. Trends Mol Med. 19:51–60. 2013. View Article : Google Scholar : PubMed/NCBI

176 

Sardi SP, Cedarbaum JM and Brundin P: Targeted therapies for Parkinson's Disease: From genetics to the clinic. Mov Disord. 33:684–696. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E, McDonald WG, Escobar Galvis ML, et al: Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Sci Transl Med. 8:368ra1742016. View Article : Google Scholar : PubMed/NCBI

178 

Erlich S, Shohami E and Pinkas-Kramarski R: Neurodegeneration induces upregulation of beclin 1. Autophagy. 2:49–51. 2006. View Article : Google Scholar : PubMed/NCBI

179 

Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T and Masliah E: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and lewy body diseases. J Neurosci. 29:13578–13588. 2009. View Article : Google Scholar : PubMed/NCBI

180 

Savitt D and Jankovic J: Targeting α-synuclein in Parkinson's disease: Progress towards the development of disease-modifying therapeutics. Drugs. 79:797–810. 2019. View Article : Google Scholar : PubMed/NCBI

181 

Hussain T, Zhao D, Shah SZA, Sabir N, Wang J, Liao Y, Song Y, Dong H, Mangi MH, Ni J, et al: Nilotinib: A tyrosine kinase inhibitor mediates resistance to intracellular mycobacterium via regulating autophagy. Cells. 8:5062019. View Article : Google Scholar : PubMed/NCBI

182 

Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, et al: Nilotinib effects in Parkinson's disease and dementia with lewy bodies. J Parkinsons Dis. 6:503–517. 2016. View Article : Google Scholar : PubMed/NCBI

183 

de Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, Hanssen N, Attaye I, Bakker G, Duinkerken G, et al: Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 70:92–105. 2021. View Article : Google Scholar : PubMed/NCBI

184 

Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A and Shulzhenko N: Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 51:1025902020. View Article : Google Scholar : PubMed/NCBI

185 

Horsager J, Andersen KB, Knudsen K, Skjærbæk C, Fedorova TD, Okkels N, Schaeffer E, Bonkat SK, Geday J, Otto M, et al: Brain-first versus body-first Parkinson's disease: A multimodal imaging case-control study. Brain. 143:3077–3088. 2020. View Article : Google Scholar : PubMed/NCBI

186 

Barbut D, Stolzenberg E and Zasloff M: Gastrointestinal immunity and alpha-synuclein. J Parkinsons Dis. 9:S313–S322. 2019. View Article : Google Scholar : PubMed/NCBI

187 

Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MB, Challa PK, Kirkegaard JB, Flagmeier P, Cohen SI, Cascella R, et al: A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci USA. 114:E1009–E1017. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Das T and Eliezer D: Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochim Biophys Acta Proteins Proteom. 1867:879–889. 2019. View Article : Google Scholar : PubMed/NCBI

189 

Abbott SK, Li H, Muñoz SS, Knoch B, Batterham M, Murphy KE, Halliday GM and Garner B: Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson's disease. Mov Disord. 29:518–526. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J and Shi G: Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Mol Med Rep 24: 734, 2021.
APA
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y. ... Shi, G. (2021). Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Molecular Medicine Reports, 24, 734. https://doi.org/10.3892/mmr.2021.12374
MLA
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y., Yan, J., Shi, G."Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review)". Molecular Medicine Reports 24.4 (2021): 734.
Chicago
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y., Yan, J., Shi, G."Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review)". Molecular Medicine Reports 24, no. 4 (2021): 734. https://doi.org/10.3892/mmr.2021.12374
Copy and paste a formatted citation
x
Spandidos Publications style
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J and Shi G: Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Mol Med Rep 24: 734, 2021.
APA
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y. ... Shi, G. (2021). Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Molecular Medicine Reports, 24, 734. https://doi.org/10.3892/mmr.2021.12374
MLA
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y., Yan, J., Shi, G."Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review)". Molecular Medicine Reports 24.4 (2021): 734.
Chicago
Lei, Q., Wu, T., Wu, J., Hu, X., Guan, Y., Wang, Y., Yan, J., Shi, G."Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review)". Molecular Medicine Reports 24, no. 4 (2021): 734. https://doi.org/10.3892/mmr.2021.12374
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team