Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300

  • Authors:
    • Fang Li
    • Ying Liang
    • Pian Ying
  • View Affiliations / Copyright

    Affiliations: Gynaecology Department, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China, Gynecology Department, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 748
    |
    Published online on: August 31, 2021
       https://doi.org/10.3892/mmr.2021.12388
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical cancer is a serious gynecological cancer and one of the primary causes of mortality in female patients with cancer. Despite advances in cancer research, the molecular mechanism underlying cancer remains poorly understood. High levels of MIR9‑3 host gene (HG) are associated with the occurrence and development of cervical cancer. However, the specific role of MIR9‑3HG during the development of cervical cancer is unclear. In the present study, the expression of MIR9‑3HG was silenced in C33A and SiHa cervical cancer cell lines. Proliferation and apoptosis were measured in these cells using 5‑ethynyl‑2'‑deoxyuridine assay and flow cytometry, respectively. In addition, targeting microRNAs (miRs) of MIR9‑3HG and mRNAs of miR‑498 were predicted using public databases. The predicted interactions between these molecules were validated using RNA immunoprecipitation, RNA pull‑down and luciferase reporter assays. Lastly, C33A cells transfected with short hairpin MIR‑3HG alone or in combination with miR‑498 inhibitor or PC‑EP300 were subcutaneously injected into mice. The levels of miR‑498, EP300 and Ki67 in tumor tissue were measured via reverse transcription‑quantitative PCR or western blotting. MIR9‑3HG knockdown inhibited the proliferation of cervical cancer cells, whilst promoting apoptosis. MIR9‑3HG sponged miR‑498 and inhibited its expression. Additionally, miR‑498 interacted with EP300 and inhibited its expression. Transfection with miR‑498 inhibitor significantly decreased apoptosis levels; this effect was abolished following EP300 silencing in vitro. In vivo, both miR‑498 inhibition and EP300 overexpression reversed the inhibition of tumor growth mediated by MIR‑3HG knockdown. MIR9‑3HG promoted the proliferation cervical cancer cells via EP300 and miR‑498. These in vitro and in vivo findings demonstrate the regulatory role of the MIR9‑3HG/miR‑498/EP300 axis in cervical cancer cell growth. Thus, the present study identified novel molecular targets for the diagnosis and treatment of cervical cancer and provided new insight into the pathogenesis of cervical cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M and May E: Tissue and cell-specific expression of the p53-target genes: Bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene. 19:649–660. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Yang L, Yi K, Wang H, Zhao Y and Xi M: Comprehensive analysis of lncRNAs microarray profile and mRNA-lncRNA co-expression in oncogenic HPV-positive cervical cancer cell lines. Oncotarget. 7:49917–49929. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Naga Ch P, Gurram L, Chopra S and Mahantshetty U: The management of locally advanced cervical cancer. Curr Opin Oncol. 30:323–329. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Klingenberg M, Matsuda A, Diederichs S and Patel T: Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol. 67:603–618. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao Q, Zheng L, Wang J, Han X, Zhang Y, et al: SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics. 9:3622–3638. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Lang HL, Hu GW, Zhang B, Kuang W, Chen Y, Wu L and Xu GH: Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep. 38:785–798. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H and Rameshwar P: Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. Adv Exp Med Biol. 1056:137–152. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Van Roosbroeck K and Calin GA: Cancer Hallmarks and MicroRNAs: The Therapeutic Connection. Adv Cancer Res. 135:119–149. 2017. View Article : Google Scholar : PubMed/NCBI

9 

López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C and Campos-Parra AD: Crosstalk Between Long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering Molecular Mechanisms of Master Regulators in Cancer. Front Oncol. 9:6692019. View Article : Google Scholar : PubMed/NCBI

10 

Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, Yang H, Chen Q, Chen M, Ye L, et al: Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 121:1096272020. View Article : Google Scholar : PubMed/NCBI

11 

Zhang B, Yu L, Han N, Hu Z, Wang S, Ding L and Jiang J: LINC01116 targets miR-520a-3p and affects IL6R to promote the proliferation and migration of osteosarcoma cells through the Jak-stat signaling pathway. Biomed Pharmacother. 107:270–282. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Wu WJ, Shen Y, Sui J, Li CY, Yang S, Xu SY, Zhang M, Yin LH, Pu YP and Liang GY: Integrated analysis of long non coding RNA competing interactions revealed potential biomarkers in cervical cancer: Based on a public database. Mol Med Rep. 17:7845–7858. 2018.PubMed/NCBI

13 

Hu Y, Guo G, Li J, Chen J and Tan P: Screening key lncRNAs with diagnostic and prognostic value for head and neck squamous cell carcinoma based on machine learning and mRNA-lncRNA co-expression network analysis. Cancer Biomark. 27:195–206. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Δ Δ C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Lee YY, Choi CH, Kim TJ, Lee JW, Kim BG, Lee JH and Bae DS: A comparison of pure adenocarcinoma and squamous cell carcinoma of the cervix after radical hysterectomy in stage IB-IIA. Gynecol Oncol. 120:439–443. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Park JY, Kim DY, Kim JH, Kim YM, Kim YT and Nam JH: Outcomes after radical hysterectomy in patients with early-stage adenocarcinoma of uterine cervix. Br J Cancer. 102:1692–1698. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Gupta S, Kumar P and Das BC: HPV: Molecular pathways and targets. Curr Probl Cancer. 42:161–174. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Huang HW, Xie H, Ma X, Zhao F and Gao Y: Upregulation of lncRNA PANDAR predicts poor prognosis and promotes cell proliferation in cervical cancer. Eur Rev Med Pharmacol Sci. 21:4529–4535. 2017.PubMed/NCBI

20 

Zhao LP, Li RH, Han DM, Zhang XQ, Nian GX, Wu MX, Feng Y, Zhang L and Sun ZG: Independent prognostic Factor of low-expressed lncRNA ZNF667-AS1 for cervical cancer and inhibitory function on the proliferation of cervical cancer. Eur Rev Med Pharmacol Sci. 21:5353–5360. 2017.PubMed/NCBI

21 

Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, Sato S, Takahashi S, Kimura H, Totoki Y, et al: Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 7:136162016. View Article : Google Scholar : PubMed/NCBI

23 

Li W and Jiang H: Up-regulation of miR-498 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting FOXO3. Clin Res Hepatol Gastroenterol. 44:29–37. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Lu M, Liu B, Xiong H, Wu F, Hu C and Liu P: Trans−3,5,4´-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498. J Cell Mol Med. 23:2431–2441. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Zhang X, Xu X, Ge G, Zang X, Shao M, Zou S, Zhang Y, Mao Z, Zhang J, Mao F, et al: miR 498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncol Rep. 41:1638–1648. 2019.PubMed/NCBI

26 

Chai Q, Zheng M, Wang L, Wei M, Yin Y, Ma F, Li X, Zhang H and Liu G: Circ_0068655 Promotes Cardiomyocyte Apoptosis via miR-498/PAWR Axis. Tissue Eng Regen Med. 17:659–670. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Li G, Tan W, Fang Y, Wu X, Zhou W, Zhang C, Zhang Y, Liu Y, Jiu G and Liu D: circFADS2 protects LPS-treated chondrocytes from apoptosis acting as an interceptor of miR-498/mTOR cross-talking. Aging (Albany NY). 11:3348–3361. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Rong X, Gao W, Yang X and Guo J: Downregulation of hsa_circ_0007534 restricts the proliferation and invasion of cervical cancer through regulating miR-498/BMI-1 signaling. Life Sci. 235:1167852019. View Article : Google Scholar : PubMed/NCBI

29 

Zhao F, Han Y, Liu Z, Zhao Z, Li Z and Jia K: circFADS2 regulates lung cancer cells proliferation and invasion via acting as a sponge of miR-498. Biosci Rep. 38:382018. View Article : Google Scholar

30 

Duan XM, Liu XN, Li YX, Cao YQ, Silayiding A, Zhang RK and Wang JP: MicroRNA-498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN. Kaohsiung J Med Sci. 35:659–671. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Liu R, Liu F, Li L, Sun M and Chen K: miR-498 regulated FOXO3 expression and inhibited the proliferation of human ovarian cancer cells. Biomed Pharmacother. 72:52–57. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wang Y, Li Y, He H and Wang F: Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498. Gene. 720:1440992019. View Article : Google Scholar : PubMed/NCBI

33 

Asaduzzaman M, Constantinou S, Min H, Gallon J, Lin ML, Singh P, Raguz S, Ali S, Shousha S, Coombes RC, et al: Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res Treat. 163:461–474. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Attar N and Kurdistani SK: Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med. 7:72017. View Article : Google Scholar : PubMed/NCBI

35 

Sobczak M, Pitt AR, Spickett CM and Robaszkiewicz A: PARP1 Co-Regulates EP300-BRG1-Dependent Transcription of Genes Involved in Breast Cancer Cell Proliferation and DNA Repair. Cancers (Basel). 11:112019. View Article : Google Scholar

36 

Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 389:349–352. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Bemanian V, Noone JC, Sauer T, Touma J, Vetvik K, Søderberg-Naucler C, Lindstrøm JC, Bukholm IR, Kristensen VN and Geisler J: Somatic EP300-G211S mutations are associated with overall somatic mutational patterns and breast cancer specific survival in triple-negative breast cancer. Breast Cancer Res Treat. 172:339–351. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li F, Liang Y and Ying P: Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300. Mol Med Rep 24: 748, 2021.
APA
Li, F., Liang, Y., & Ying, P. (2021). Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300. Molecular Medicine Reports, 24, 748. https://doi.org/10.3892/mmr.2021.12388
MLA
Li, F., Liang, Y., Ying, P."Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300". Molecular Medicine Reports 24.5 (2021): 748.
Chicago
Li, F., Liang, Y., Ying, P."Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300". Molecular Medicine Reports 24, no. 5 (2021): 748. https://doi.org/10.3892/mmr.2021.12388
Copy and paste a formatted citation
x
Spandidos Publications style
Li F, Liang Y and Ying P: Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300. Mol Med Rep 24: 748, 2021.
APA
Li, F., Liang, Y., & Ying, P. (2021). Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300. Molecular Medicine Reports, 24, 748. https://doi.org/10.3892/mmr.2021.12388
MLA
Li, F., Liang, Y., Ying, P."Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300". Molecular Medicine Reports 24.5 (2021): 748.
Chicago
Li, F., Liang, Y., Ying, P."Knockdown of MIR9‑3HG inhibits proliferation and promotes apoptosis of cervical cancer cells by miR‑498 via EP300". Molecular Medicine Reports 24, no. 5 (2021): 748. https://doi.org/10.3892/mmr.2021.12388
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team