Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)

  • Authors:
    • Zhichao Li
    • Haipeng Xue
    • Guoqing Tan
    • Zhanwang Xu
  • View Affiliations / Copyright

    Affiliations: First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China, Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 788
    |
    Published online on: September 9, 2021
       https://doi.org/10.3892/mmr.2021.12428
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis is a common metabolic bone disorder typically characterized by decreased bone mass and an increased risk of fracture. At present, the detailed molecular mechanism underlying the development of osteoporosis remains to be elucidated. Accumulating evidence shows that non‑coding (nc)RNAs, such as microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play significant roles in osteoporosis through the post‑transcriptional regulation of gene expression as regulatory factors. Previous studies have demonstrated that ncRNAs participate in maintaining bone homeostasis by regulating physiological and developmental processes in osteoblasts, osteoclasts and bone marrow stromal cells. In the present review, the latest research investigating the involvement of miRNAs, lncRNAs and circRNAs in regulating the differentiation, proliferation, apoptosis and autophagy of cells that maintain the bone microenvironment in osteoporosis is summarized. Deeper insight into the aspects of osteoporosis pathogenesis involving the deregulation of ncRNAs could facilitate the development of therapeutic approaches for osteoporosis.
View Figures
View References

1 

Li X, Xu J, Dai B, Wang X, Guo Q and Qin L: Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI

2 

de Paula FJA and Rosen CJ: Marrow adipocytes: Origin, structure, and function. Annu Rev Physiol. 82:461–484. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B and Kanis JA: Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 8:1362013. View Article : Google Scholar : PubMed/NCBI

4 

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A and Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 22:465–475. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Wan Y: PPARγ in bone homeostasis. Trends Endocrinol Metab. 21:722–728. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, et al: Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol. 233:9191–9208. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Infante A and Rodríguez CI: Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther. 9:2442018. View Article : Google Scholar : PubMed/NCBI

8 

Feng Q, Zheng S and Zheng J: The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. 38:BSR201804532018. View Article : Google Scholar : PubMed/NCBI

9 

Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 53:402020. View Article : Google Scholar : PubMed/NCBI

10 

Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X, Meng J, Wang L, Zhang M and Zhang Y: Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res. 10:1498–1510. 2018.PubMed/NCBI

11 

Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S and Kassem M: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA. 108:6139–6144. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Chen S, Li Y, Zhi S, Ding Z, Huang Y, Wang W, Zheng R, Yu H, Wang J, Hu M, et al: lncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging Dis. 11:1058–1068. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Meng YC, Lin T, Jiang H, Zhang Z, Shu L, Yin J, Ma X, Wang C, Gao R and Zhou XH: miR-122 exerts inhibitory effects on osteoblast proliferation/differentiation in osteoporosis by activating the PCP4-mediated JNK pathway. Mol Ther Nucleic Acids. 20:345–358. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Li J, Ayoub A, Xiu Y, Yin X, Sanders JO, Mesfin A, Xing L, Yao Z and Boyce BF: TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun. 10:27952019. View Article : Google Scholar : PubMed/NCBI

15 

Tang QQ and Lane MD: Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem. 81:715–736. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Trohatou O, Zagoura D, Orfanos NK, Pappa KI, Marinos E, Anagnou NP and Roubelakis MG: miR-26a mediates adipogenesis of amniotic fluid mesenchymal stem/stromal cells via PTEN, Cyclin E1, and CDK6. Stem Cells Dev. 26:482–494. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T, Fu Z, Zhang P, Cheng J and Jiang H: MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 17:e127942018. View Article : Google Scholar : PubMed/NCBI

18 

Moura SR, Bras JP, Freitas J, Osório H, Barbosa MA, Santos SG and Almeida MI: miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone. 134:1153032020. View Article : Google Scholar : PubMed/NCBI

19 

Zhou JG, Hua Y, Liu SW, Hu WQ, Qian R and Xiong L: MicroRNA-1286 inhibits osteogenic differentiation of mesenchymal stem cells to promote the progression of osteoporosis via regulating FZD4 expression. Eur Rev Med Pharmacol Sci. 24:1–10. 2020.PubMed/NCBI

20 

Hao L, Fu J, Tian Y and Wu J: Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int J Mol Med. 40:689–702. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang F, Wang X, Wen J, Xie K, Xu P, et al: miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol Cell Endocrinol. 476:155–164. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Chen HP, Wen J, Tan SR, Kang LM and Zhu GC: miR-199a-3p inhibition facilitates cardiomyocyte differentiation of embryonic stem cell through promotion of MEF2C. J Cell Physiol. 234:23315–23325. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Wu JC, Sun J, Xu JC, Zhou ZY and Zhang YF: Down-regulated microRNA-199a-3p enhances osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Kdm3a in ovariectomized rats. Biochem J. 478:721–734. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Jiang K, Teng GD and Chen YQ: MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. J Gene Med. 22:e32162020. View Article : Google Scholar : PubMed/NCBI

25 

Yin C, Tian Y, Yu Y, Yang C, Su P, Zhao Y, Wang X, Zhang K, Pei J, Li D, et al: miR-129-5p inhibits bone formation through TCF4. Front Cell Dev Biol. 8:6006412020. View Article : Google Scholar : PubMed/NCBI

26 

Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, et al: miR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 71:2381–2391. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI

28 

Kou J, Zheng X, Guo J, Liu Y and Liu X: MicroRNA-218-5p relieves postmenopausal osteoporosis through promoting the osteoblast differentiation of bone marrow mesenchymal stem cells. J Cell Biochem. 121:1216–1226. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Zhang Y, Liu Y, Wu M, Wang H, Wu L, Xu B, Zhou W, Fan X, Shao J and Yang T: MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem Biophys Res Commun. 521:9–14. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Qi XB, Jia B, Wang W, Xu GH, Guo JC, Li X and Liu JN: Role of miR-199a-5p in osteoblast differentiation by targeting TET2. Gene. 726:1441932020. View Article : Google Scholar : PubMed/NCBI

31 

Zhang M, Yuan SZ, Sun H, Sun L, Zhou D and Yan J: miR-199b-5p promoted chondrogenic differentiation of C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med. 14:1618–1629. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B and Weng X: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. 523:506–513. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Shen PF, Wang B, Qu YX, Zheng C, Xu JD, Xie ZK and Ma Y: MicroRNA-23c inhibits articular cartilage damage recovery by regulating MSCs differentiation to chondrocytes via reducing FGF2. Eur Rev Med Pharmacol Sci. 23:941–948. 2019.PubMed/NCBI

34 

Xu S and Wu X: miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep. 39:BSR201809212019. View Article : Google Scholar : PubMed/NCBI

35 

Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, et al: miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids. 17:590–600. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM and Hansmann G: PPARγ Links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab. 25:1118–1134.e7. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Li D, Zhang F, Zhang X, Xue C, Namwanje M, Fan L, Reilly MP, Hu F and Qiang L: Distinct functions of PPARγ isoforms in regulating adipocyte plasticity. Biochem Biophys Res Commun. 481:132–138. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Lin Z, He H, Wang M and Liang J: MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 52:e126882019. View Article : Google Scholar : PubMed/NCBI

39 

Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and Mirzaei H: Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Wang T, Zhong D, Qin Z, He S, Gong Y, Li W and Li X: miR-100-3p inhibits the adipogenic differentiation of hMSCs by targeting PIK3R1 via the PI3K/AKT signaling pathway. Aging (Albany NY). 12:25090–25100. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Zhu E, Zhang J, Zhou J, Yuan H, Zhao W and Wang B: miR-20a-5p promotes adipogenic differentiation of murine bone marrow stromal cells via targeting Kruppel-like factor 3. J Mol Endocrinol. 60:225–237. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Cui P, Zhao X, Liu J, Chen X, Gao Y, Tao K, Wang C and Zhang X: miR-146a interacting with lncRNA EPB41L4A-AS1 and lncRNA SNHG7 inhibits proliferation of bone marrow-derived mesenchymal stem cells. J Cell Physiol. 235:3292–3308. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Kong R, Gao J, Ji L and Zhao D: MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell Cycle. 19:2119–2138. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Tang L, Lu W, Huang J, Tang X, Zhang H and Liu S: miR-144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1. Mol Med Rep. 20:270–280. 2019.PubMed/NCBI

45 

Yang BC, Kuang MJ, Kang JY, Zhao J, Ma JX and Ma XL: Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochem Biophys Res Commun. 524:883–889. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Hernandez SL, Nelson M, Sampedro GR, Bagrodia N, Defnet AM, Lec B, Emolo J, Kirschner R, Wu L, Biermann H, et al: Staphylococcus aureus alpha toxin activates Notch in vascular cells. Angiogenesis. 22:197–209. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Man S, Sanchez Duffhues G, Ten Dijke P and Baker D: The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis. 22:3–13. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Fan L, Wang J and Ma C: miR125a attenuates BMSCs apoptosis via the MAPK-ERK pathways in the setting of craniofacial defect reconstruction. J Cell Physiol. 235:2857–2865. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Liu Z, Li T, Zhu F, Deng SN, Li X and He Y: Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury. Cell Death Dis. 10:2272019. View Article : Google Scholar : PubMed/NCBI

50 

Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI

51 

St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Chen LL: Linking long noncoding RNA localization and function. Trends Biochem Sci. 41:761–772. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Zhang L, Xie H and Li S: lncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis. J Bone Miner Metab. 38:794–805. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Che M, Gong W, Zhao Y and Liu M: Long noncoding RNA HCG18 inhibits the differentiation of human bone marrow-derived mesenchymal stem cells in osteoporosis by targeting miR-30a-5p/NOTCH1 axis. Mol Med. 26:1062020. View Article : Google Scholar : PubMed/NCBI

55 

Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, Tang S, Cen S, Ye G, Li Z, et al: GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. Elife. 9:e590792020. View Article : Google Scholar : PubMed/NCBI

56 

Zheng J, Guo H, Qin Y, Liu Z, Ding Z, Zhang L and Wang W: SNHG5/miR-582-5p/RUNX3 feedback loop regulates osteogenic differentiation and apoptosis of bone marrow mesenchymal stem cells. J Cell Physiol. Oct 28–2020.(Epub ahead of print). doi:10.1002/jcp.29527. View Article : Google Scholar

57 

Jin C, Jia L, Tang Z and Zheng Y: Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway. Cell Death Dis. 11:6012020. View Article : Google Scholar : PubMed/NCBI

58 

Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF and Zhang XL: lncRNA ADAMTS9-AS2 controls human mesenchymal stem cell chondrogenic differentiation and functions as a ceRNA. Mol Ther Nucleic Acids. 18:533–545. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Liu D, Wu K, Yang Y, Zhu D, Zhang C and Zhao S: Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 59:32–44. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Shu T, He L, Wang X, Pang M, Yang B, Feng F, Wu Z, Liu C, Zhang S, Liu B, et al: Long noncoding RNA UCA1 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells via miRNA-145-5p/SMAD5 and miRNA-124-3p/SMAD4 axis. Biochem Biophys Res Commun. 514:316–322. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Zhang RF, Liu JW, Yu SP, Sun D, Wang XH, Fu JS and Xie Z: lncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. Eur Rev Med Pharmacol Sci. 23:6774–6782. 2019.PubMed/NCBI

62 

Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, et al: Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med. 10:e2272020. View Article : Google Scholar : PubMed/NCBI

63 

Zhu E, Zhang J, Li Y, Yuan H, Zhou J and Wang B: Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. FASEB J. 33:2396–2408. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Fu D, Yang S, Lu J, Lian H and Qin K: lncRNA NORAD promotes bone marrow stem cell differentiation and proliferation by targeting miR-26a-5p in steroid-induced osteonecrosis of the femoral head. Stem Cell Res Ther. 12:182021. View Article : Google Scholar : PubMed/NCBI

65 

Soghli N, Yousefi T, Abolghasemi M and Qujeq D: NORAD, a critical long non-coding RNA in human cancers. Life Sci. 264:1186652021. View Article : Google Scholar : PubMed/NCBI

66 

Zhao Y, Chen Y, Hu X, Zhang N and Wang F: lncRNA LINC01535 upregulates BMP2 expression levels to promote osteogenic differentiation via sponging miR-3619-5p. Mol Med Rep. 22:5428–5435. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Gan X, Liu S and Liang K: MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet. 21:112020. View Article : Google Scholar : PubMed/NCBI

68 

Song G, Zhou J, Song R, Liu D, Yu W, Xie W, Ma Z, Gong J, Meng H, Yang T and Song Z: Long noncoding RNA H19 regulates the therapeutic efficacy of mesenchymal stem cells in rats with severe acute pancreatitis by sponging miR-138-5p and miR-141-3p. Stem Cell Res Ther. 11:4202020. View Article : Google Scholar : PubMed/NCBI

69 

Li M, Cong R, Yang L, Yang L, Zhang Y and Fu Q: A novel lncRNA LNC_000052 leads to the dysfunction of osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis. 11:7952020. View Article : Google Scholar : PubMed/NCBI

70 

Gao B, Li S and Li G: Long noncoding RNA (lncRNA) small nucleolar RNA Host Gene 5 (SNHG5) regulates proliferation, differentiation, and apoptosis of K562 cells in chronic Myeliod Leukemia. Med Sci Monit. 25:6812–6819. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI

72 

Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y and Liang H: CircNT5E acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Cancer Res. 78:4812–4825. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Wang XB, Li PB, Guo SF, Yang QS, Chen ZX, Wang D and Shi SB: circRNA_0006393 promotes osteogenesis in glucocorticoid-induced osteoporosis by sponging miR-145-5p and upregulating FOXO1. Mol Med Rep. 20:2851–2858. 2019.PubMed/NCBI

74 

Yu L and Liu Y: circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun. 516:546–550. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Wen J, Guan Z, Yu B, Guo J, Shi Y and Hu L: Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis. Int J Biochem Cell Biol. 122:1057192020. View Article : Google Scholar : PubMed/NCBI

76 

Shen W, Sun B, Zhou C, Ming W, Zhang S and Wu X: CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J Cell Mol Med. 24:12513–12524. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Cherubini A, Barilani M, Rossi RL, Jalal MMK, Rusconi F, Buono G, Ragni E, Cantarella G, Simpson HARW, Péault B and Lazzari L: FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res. 47:5325–5340. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Luo Y, Liu F, Ma J, Fu Y and Gui R: A novel epigenetic regulation of circFoxp1 on Foxp1 in colon cancer cells. Cell Death Dis. 11:7822020. View Article : Google Scholar : PubMed/NCBI

79 

Liu S, Wang C, Bai J, Li X, Yuan J, Shi Z and Mao N: Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis. Cell Biol Int. 45:447–455. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Gao S, Yu Y, Liu L, Meng J and Li G: Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 233:1166922019. View Article : Google Scholar : PubMed/NCBI

81 

Huang Y, Xiao D, Huang S, Zhuang J, Zheng X, Chang Y and Yin D: Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway. Biomed Pharmacother. 129:1103652020. View Article : Google Scholar : PubMed/NCBI

82 

Zhang M, Jia L and Zheng Y: circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Rev Rep. 15:126–138. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Chia W, Liu J, Huang YG and Zhang C: A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis. 11:3722020. View Article : Google Scholar : PubMed/NCBI

84 

Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G and Song Y: Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone. 133:1152582020. View Article : Google Scholar : PubMed/NCBI

85 

Zhang Y, Jia S, Wei Q, Zhuang Z, Li J, Fan Y, Zhang L, Hong Z, Ma X, Sun R, et al: circRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regen Ther. 16:23–31. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Kim KH and Lee MS: Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY). 10:3806–3820. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Garcia J and Delany AM: MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone. 143:1157912021. View Article : Google Scholar : PubMed/NCBI

89 

Chen Y and Yang C: miR-197-3p-induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol Med Rep. 17:3921–3927. 2018.PubMed/NCBI

90 

You M, Zhang L, Zhang X, Fu Y and Dong X: MicroRNA-197-3p inhibits the osteogenic differentiation in osteoporosis by down-regulating KLF 10. Clin Interv Aging. 16:107–117. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 29:1718–1728. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Gong B, Wang X, Li B and Li Y, Lu R, Zhang K, Li B, Ma Y and Li Y: miR-205-5p inhibits thymic epithelial cell proliferation via FA2H-TFAP2A feedback regulation in age-associated thymus involution. Mol Immunol. 122:173–185. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Oltra M, Vidal-Gil L, Maisto R, Sancho-Pelluz J and Barcia JM: Oxidative stress-induced angiogenesis is mediated by miR-205-5p. J Cell Mol Med. 24:1428–1436. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia C: lncRNA CYTOR promotes pancreatic cancer cell proliferation and migration by sponging miR-205-5p. Pancreatology. 20:1139–1148. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Huang M, Li X, Zhou C, Si M, Zheng H, Chen L and Ding H: Noncoding RNA miR-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem. 121:4196–4203. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N and Pegtel DM: Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015. View Article : Google Scholar : PubMed/NCBI

97 

Sundar IK, Li D and Rahman I: Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers. J Extracell Vesicles. 8:16848162019. View Article : Google Scholar : PubMed/NCBI

98 

Zhang X, Wang Y, Zhao H, Han X, Zhao T, Qu P, Li G and Wang W: Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res Ther. 11:2272020. View Article : Google Scholar : PubMed/NCBI

99 

Wang N, Zhou Z, Wu T, Liu W, Yin P, Pan C and Yu X: TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol. 6:1502582016. View Article : Google Scholar : PubMed/NCBI

100 

Qiu M, Zhai S, Fu Q and Liu D: Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther. 32:717–729. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Ma J, Lin X, Chen C, Li S, Zhang S, Chen Z, Li D, Zhao F, Yang C, Yin C, et al: Circulating miR-181c-5p and miR-497-5p are potential biomarkers for prognosis and diagnosis of osteoporosis. J Clin Endocrinol Metab. 105:dgz3002020. View Article : Google Scholar : PubMed/NCBI

102 

Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J and Fang L: miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 3:475–480. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Gu Z, Xie D, Huang C, Ding R, Zhang R, Li Q, Lin C and Qiu Y: MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-beta1/Smads signalling pathway. J Cell Mol Med. 24:12619–12632. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Mohamad N, Nabih ES, Zakaria ZM, Nagaty MM and Metwaly RG: Insight into the possible role of miR-214 in primary osteoporosis via osterix. J Cell Biochem. 120:15518–15526. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Lu XZ, Yang ZH, Zhang HJ, Zhu LL, Mao XL and Yuan Y: miR-214 protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress and targeting ATF4. Eur Rev Med Pharmacol Sci. 21:4762–4770. 2017.PubMed/NCBI

106 

Yang C, Gu Z, Ding R, Huang C, Li Q, Xie D, Zhang R and Qiu Y: Long non-coding RNA MEG3 silencing and microRNA-214 restoration elevate osteoprotegerin expression to ameliorate osteoporosis by limiting TXNIP. J Cell Mol Med. 25:2025–2039. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Vimalraj S, Saravanan S, Vairamani M, Gopalakrishnan C, Sastry TP and Selvamurugan N: A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol. 93:1457–1464. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Lu X, Zhang Y, Zheng Y and Chen B: The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy. J Cell Mol Med. 25:2069–2081. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Naseri Z, Oskuee RK, Jaafari MR and Forouzandeh Moghadam M: Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Lou Z, Peng Z, Wang B, Li X, Li X and Zhang X: miR-142-5p promotes the osteoclast differentiation of bone marrow-derived macrophages via PTEN/PI3K/AKT/FoxO1 pathway. J Bone Miner Metab. 37:815–824. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Luo B, Yang J, Yuan Y, Hao P and Cheng X: MicroRNA-142 regulates osteoblast differentiation and apoptosis of mouse pre-osteoblast cells by targeting bone morphogenetic protein 2. FEBS Open Bio. 10:1793–1801. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Hu WX, Li H and Jiang JZ: miR-491-3p is down-regulated in postmenopausal osteoporosis and affects growth, differentiation and apoptosis of hFOB1.19 cells through targeting CTSS. Folia Histochem Cytobiol. 58:9–16. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Zhang W, Cui SY, Yi H, Zhu XH, Liu W and Xu YJ: miR-708 inhibits MC3T3-E1 cells against HO-induced apoptosis through targeting PTEN. J Orthop Surg Res. 15:2552020. View Article : Google Scholar : PubMed/NCBI

114 

Yin C, Tian Y, Yu Y, Li D, Miao Z, Su P, Zhao Y, Wang X, Pei J, Zhang K and Qian A: Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res. 163:1052302021. View Article : Google Scholar : PubMed/NCBI

115 

Tong X, Gu PC, Xu SZ and Lin XJ: Long non-coding RNA-DANCR in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 79:732–737. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Wang CG, Hu YH, Su SL and Zhong D: lncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med. 52:1310–1325. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Wang Q, Li Y and Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P and Zhang Y: lncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother. 89:1178–1186. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Hu F, Jiang C, Bu G, Fu Y and Yu Y: Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis. Cancer Gene Ther. Jan 5–2021.(Epub ahead of print). doi: https://doi.org/10.1038/s41417-020-00264-7. View Article : Google Scholar

119 

Mulati M, Kobayashi Y, Takahashi A, Numata H, Saito M, Hiraoka Y, Ochi H, Sato S, Ezura Y, Yuasa M, et al: The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/β-catenin signaling pathway in mice. Bone. 130:1150762020. View Article : Google Scholar : PubMed/NCBI

120 

Liu H, Wang YW, Chen WD, Dong HH and Xu YJ: Iron accumulation regulates osteoblast apoptosis through lncRNA XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. IUBMB Life. 73:432–443. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Niu S, Xiang F and Jia H: Downregulation of lncRNA XIST promotes proliferation and differentiation, limits apoptosis of osteoblasts through regulating miR-203-3p/ZFPM2 axis. Connect Tissue Res. 62:381–392. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Mi B, Xiong Y, Chen L, Yan C, Endo Y, Liu Y, Liu J, Hu L, Hu Y, Sun Y, et al: circRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging (Albany NY). 11:11988–12001. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Zhai Q, Zhao Y, Wang L, Dai Y, Zhao P, Xiang X, Liu K, Du W, Tian W, Yang B, et al: circRNA hsa_circ_0008500 Acts as a miR-1301-3p sponge to promote osteoblast mineralization by upregulating PADI4. Front Cell Dev Biol. 8:6027312020. View Article : Google Scholar : PubMed/NCBI

124 

Ji F, Zhu L, Pan J, Shen Z, Yang Z, Wang J, Bai X, Lin Y and Tao J: hsa_circ_0026827 promotes osteoblast differentiation of human dental pulp stem cells through the Beclin1 and RUNX1 signaling pathways by sponging miR-188-3p. Front Cell Dev Biol. 8:4702020. View Article : Google Scholar : PubMed/NCBI

125 

Shen G, Ren H, Shang Q, Zhang Z, Zhao W, Yu X, Tang J, Yang Z, Liang D and Jiang X: miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss. Theranostics. 10:4334–4348. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Zhu J, Wang H and Liu H: Osteoclastic miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res Commun. 529:35–42. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Huang Y, Ren K, Yao T, Zhu H, Xu Y, Ye H, Chen Z, Lv J, Shen S and Ma J: MicroRNA-25-3p regulates osteoclasts through nuclear factor I X. Biochem Biophys Res Commun. 522:74–80. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Zhang Y, Chen XF, Li J, He F, Li X and Guo Y: lncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J Bone Miner Res. 35:1772–1781. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Chang Y, Yu D, Chu W, Liu Z, Li H and Zhai Z: lncRNA expression profiles and the negative regulation of lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone. 130:1150722020. View Article : Google Scholar : PubMed/NCBI

130 

Zhao W, Dong Y, Wu C, Ma Y, Jin Y and Ji Y: miR-21 overexpression improves osteoporosis by targeting RECK. Mol Cell Biochem. 405:125–133. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Cong C, Tian J, Gao T, Zhou C, Wang Y, Cui X and Zhu L: lncRNA GAS5 is upregulated in osteoporosis and downregulates miR-21 to promote apoptosis of osteoclasts. Clin Interv Aging. 15:1163–1169. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z, Xue H, Tan G and Xu Z: Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep 24: 788, 2021.
APA
Li, Z., Xue, H., Tan, G., & Xu, Z. (2021). Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Molecular Medicine Reports, 24, 788. https://doi.org/10.3892/mmr.2021.12428
MLA
Li, Z., Xue, H., Tan, G., Xu, Z."Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)". Molecular Medicine Reports 24.5 (2021): 788.
Chicago
Li, Z., Xue, H., Tan, G., Xu, Z."Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)". Molecular Medicine Reports 24, no. 5 (2021): 788. https://doi.org/10.3892/mmr.2021.12428
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z, Xue H, Tan G and Xu Z: Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep 24: 788, 2021.
APA
Li, Z., Xue, H., Tan, G., & Xu, Z. (2021). Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Molecular Medicine Reports, 24, 788. https://doi.org/10.3892/mmr.2021.12428
MLA
Li, Z., Xue, H., Tan, G., Xu, Z."Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)". Molecular Medicine Reports 24.5 (2021): 788.
Chicago
Li, Z., Xue, H., Tan, G., Xu, Z."Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review)". Molecular Medicine Reports 24, no. 5 (2021): 788. https://doi.org/10.3892/mmr.2021.12428
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team