|
1
|
Li X, Xu J, Dai B, Wang X, Guo Q and Qin
L: Targeting autophagy in osteoporosis: From pathophysiology to
potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
de Paula FJA and Rosen CJ: Marrow
adipocytes: Origin, structure, and function. Annu Rev Physiol.
82:461–484. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hernlund E, Svedbom A, Ivergård M,
Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B and Kanis
JA: Osteoporosis in the European Union: Medical management,
epidemiology and economic burden. A report prepared in
collaboration with the International Osteoporosis Foundation (IOF)
and the European Federation of Pharmaceutical Industry Associations
(EFPIA). Arch Osteoporos. 8:1362013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Burge R, Dawson-Hughes B, Solomon DH, Wong
JB, King A and Tosteson A: Incidence and economic burden of
osteoporosis-related fractures in the United States, 2005–2025. J
Bone Miner Res. 22:465–475. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wan Y: PPARγ in bone homeostasis. Trends
Endocrinol Metab. 21:722–728. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhao W, Shen G, Ren H, Liang D, Yu X,
Zhang Z, Huang J, Qiu T, Tang J, Shang Q, et al: Therapeutic
potential of microRNAs in osteoporosis function by regulating the
biology of cells related to bone homeostasis. J Cell Physiol.
233:9191–9208. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Infante A and Rodríguez CI: Osteogenesis
and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther.
9:2442018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Feng Q, Zheng S and Zheng J: The emerging
role of microRNAs in bone remodeling and its therapeutic
implications for osteoporosis. Biosci Rep. 38:BSR201804532018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi
G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA
and circRNA in the development of osteoporosis. Biol Res.
53:402020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X,
Meng J, Wang L, Zhang M and Zhang Y: Systematic analysis of
lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal
osteoporosis. Am J Transl Res. 10:1498–1510. 2018.PubMed/NCBI
|
|
11
|
Eskildsen T, Taipaleenmäki H, Stenvang J,
Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S and Kassem M:
MicroRNA-138 regulates osteogenic differentiation of human stromal
(mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA.
108:6139–6144. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen S, Li Y, Zhi S, Ding Z, Huang Y, Wang
W, Zheng R, Yu H, Wang J, Hu M, et al: lncRNA Xist regulates
osteoblast differentiation by sponging miR-19a-3p in aging-induced
osteoporosis. Aging Dis. 11:1058–1068. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meng YC, Lin T, Jiang H, Zhang Z, Shu L,
Yin J, Ma X, Wang C, Gao R and Zhou XH: miR-122 exerts inhibitory
effects on osteoblast proliferation/differentiation in osteoporosis
by activating the PCP4-mediated JNK pathway. Mol Ther Nucleic
Acids. 20:345–358. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li J, Ayoub A, Xiu Y, Yin X, Sanders JO,
Mesfin A, Xing L, Yao Z and Boyce BF: TGFβ-induced degradation of
TRAF3 in mesenchymal progenitor cells causes age-related
osteoporosis. Nat Commun. 10:27952019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tang QQ and Lane MD: Adipogenesis: From
stem cell to adipocyte. Annu Rev Biochem. 81:715–736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Trohatou O, Zagoura D, Orfanos NK, Pappa
KI, Marinos E, Anagnou NP and Roubelakis MG: miR-26a mediates
adipogenesis of amniotic fluid mesenchymal stem/stromal cells via
PTEN, Cyclin E1, and CDK6. Stem Cells Dev. 26:482–494. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T,
Fu Z, Zhang P, Cheng J and Jiang H: MicroRNA-31a-5p from aging
BMSCs links bone formation and resorption in the aged bone marrow
microenvironment. Aging Cell. 17:e127942018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Moura SR, Bras JP, Freitas J, Osório H,
Barbosa MA, Santos SG and Almeida MI: miR-99a in bone homeostasis:
Regulating osteogenic lineage commitment and osteoclast
differentiation. Bone. 134:1153032020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhou JG, Hua Y, Liu SW, Hu WQ, Qian R and
Xiong L: MicroRNA-1286 inhibits osteogenic differentiation of
mesenchymal stem cells to promote the progression of osteoporosis
via regulating FZD4 expression. Eur Rev Med Pharmacol Sci. 24:1–10.
2020.PubMed/NCBI
|
|
20
|
Hao L, Fu J, Tian Y and Wu J: Systematic
analysis of lncRNAs, miRNAs and mRNAs for the identification of
biomarkers for osteoporosis in the mandible of ovariectomized mice.
Int J Mol Med. 40:689–702. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang
F, Wang X, Wen J, Xie K, Xu P, et al: miR-199a-3p regulates brown
adipocyte differentiation through mTOR signaling pathway. Mol Cell
Endocrinol. 476:155–164. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen HP, Wen J, Tan SR, Kang LM and Zhu
GC: miR-199a-3p inhibition facilitates cardiomyocyte
differentiation of embryonic stem cell through promotion of MEF2C.
J Cell Physiol. 234:23315–23325. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu JC, Sun J, Xu JC, Zhou ZY and Zhang YF:
Down-regulated microRNA-199a-3p enhances osteogenic differentiation
of bone marrow mesenchymal stem cells by targeting Kdm3a in
ovariectomized rats. Biochem J. 478:721–734. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jiang K, Teng GD and Chen YQ: MicroRNA-23
suppresses osteogenic differentiation of human bone marrow
mesenchymal stem cells by targeting the MEF2C-mediated MAPK
signaling pathway. J Gene Med. 22:e32162020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yin C, Tian Y, Yu Y, Yang C, Su P, Zhao Y,
Wang X, Zhang K, Pei J, Li D, et al: miR-129-5p inhibits bone
formation through TCF4. Front Cell Dev Biol. 8:6006412020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Alajez NM, Lenarduzzi M, Ito E, Hui AB,
Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, et al: miR-218
suppresses nasopharyngeal cancer progression through downregulation
of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 71:2381–2391.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu T, Zhang X, Du L, Wang Y, Liu X, Tian
H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted
miR-128-3p increase chemosensitivity of oxaliplatin-resistant
colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kou J, Zheng X, Guo J, Liu Y and Liu X:
MicroRNA-218-5p relieves postmenopausal osteoporosis through
promoting the osteoblast differentiation of bone marrow mesenchymal
stem cells. J Cell Biochem. 121:1216–1226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang Y, Liu Y, Wu M, Wang H, Wu L, Xu B,
Zhou W, Fan X, Shao J and Yang T: MicroRNA-664a-5p promotes
osteogenic differentiation of human bone marrow-derived mesenchymal
stem cells by directly downregulating HMGA2. Biochem Biophys Res
Commun. 521:9–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Qi XB, Jia B, Wang W, Xu GH, Guo JC, Li X
and Liu JN: Role of miR-199a-5p in osteoblast differentiation by
targeting TET2. Gene. 726:1441932020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang M, Yuan SZ, Sun H, Sun L, Zhou D and
Yan J: miR-199b-5p promoted chondrogenic differentiation of
C3H10T1/2 cells by regulating JAG1. J Tissue Eng Regen Med.
14:1618–1629. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Z, Wang Y, Xiang S, Zheng Z, Bian Y,
Feng B and Weng X: Chondrocytes-derived exosomal miR-8485 regulated
the Wnt/β-catenin pathways to promote chondrogenic differentiation
of BMSCs. Biochem Biophys Res Commun. 523:506–513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shen PF, Wang B, Qu YX, Zheng C, Xu JD,
Xie ZK and Ma Y: MicroRNA-23c inhibits articular cartilage damage
recovery by regulating MSCs differentiation to chondrocytes via
reducing FGF2. Eur Rev Med Pharmacol Sci. 23:941–948.
2019.PubMed/NCBI
|
|
34
|
Xu S and Wu X: miR-134 inhibits
chondrogenic differentiation of bone marrow mesenchymal stem cells
by targetting SMAD6. Biosci Rep. 39:BSR201809212019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Y, Yang F, Gao M, Gong R, Jin M, Liu T,
Sun Y, Fu Y, Huang Q, Zhang W, et al: miR-149-3p regulates the
switch between adipogenic and osteogenic differentiation of BMSCs
by targeting FTO. Mol Ther Nucleic Acids. 17:590–600. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Calvier L, Chouvarine P, Legchenko E,
Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM and Hansmann
G: PPARγ Links BMP2 and TGFβ1 pathways in vascular smooth muscle
cells, regulating cell proliferation and glucose metabolism. Cell
Metab. 25:1118–1134.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li D, Zhang F, Zhang X, Xue C, Namwanje M,
Fan L, Reilly MP, Hu F and Qiang L: Distinct functions of PPARγ
isoforms in regulating adipocyte plasticity. Biochem Biophys Res
Commun. 481:132–138. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lin Z, He H, Wang M and Liang J:
MicroRNA-130a controls bone marrow mesenchymal stem cell
differentiation towards the osteoblastic and adipogenic fate. Cell
Prolif. 52:e126882019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jamali L, Tofigh R, Tutunchi S, Panahi G,
Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SMH, Rasouli M and
Mirzaei H: Circulating microRNAs as diagnostic and therapeutic
biomarkers in gastric and esophageal cancers. J Cell Physiol.
233:8538–8550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang T, Zhong D, Qin Z, He S, Gong Y, Li W
and Li X: miR-100-3p inhibits the adipogenic differentiation of
hMSCs by targeting PIK3R1 via the PI3K/AKT signaling pathway. Aging
(Albany NY). 12:25090–25100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhu E, Zhang J, Zhou J, Yuan H, Zhao W and
Wang B: miR-20a-5p promotes adipogenic differentiation of murine
bone marrow stromal cells via targeting Kruppel-like factor 3. J
Mol Endocrinol. 60:225–237. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cui P, Zhao X, Liu J, Chen X, Gao Y, Tao
K, Wang C and Zhang X: miR-146a interacting with lncRNA
EPB41L4A-AS1 and lncRNA SNHG7 inhibits proliferation of bone
marrow-derived mesenchymal stem cells. J Cell Physiol.
235:3292–3308. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kong R, Gao J, Ji L and Zhao D:
MicroRNA-126 promotes proliferation, migration, invasion and
endothelial differentiation while inhibits apoptosis and osteogenic
differentiation of bone marrow-derived mesenchymal stem cells. Cell
Cycle. 19:2119–2138. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tang L, Lu W, Huang J, Tang X, Zhang H and
Liu S: miR-144 promotes the proliferation and differentiation of
bone mesenchymal stem cells by downregulating the expression of
SFRP1. Mol Med Rep. 20:270–280. 2019.PubMed/NCBI
|
|
45
|
Yang BC, Kuang MJ, Kang JY, Zhao J, Ma JX
and Ma XL: Human umbilical cord mesenchymal stem cell-derived
exosomes act via the miR-1263/Mob1/Hippo signaling pathway to
prevent apoptosis in disuse osteoporosis. Biochem Biophys Res
Commun. 524:883–889. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hernandez SL, Nelson M, Sampedro GR,
Bagrodia N, Defnet AM, Lec B, Emolo J, Kirschner R, Wu L, Biermann
H, et al: Staphylococcus aureus alpha toxin activates Notch in
vascular cells. Angiogenesis. 22:197–209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Man S, Sanchez Duffhues G, Ten Dijke P and
Baker D: The therapeutic potential of targeting the
endothelial-to-mesenchymal transition. Angiogenesis. 22:3–13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fan L, Wang J and Ma C: miR125a attenuates
BMSCs apoptosis via the MAPK-ERK pathways in the setting of
craniofacial defect reconstruction. J Cell Physiol. 235:2857–2865.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu Z, Li T, Zhu F, Deng SN, Li X and He
Y: Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and
cellular autophagy in ionizing radiation-induced BMSC injury. Cell
Death Dis. 10:2272019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yao RW, Wang Y and Chen LL: Cellular
functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
St Laurent G, Wahlestedt C and Kapranov P:
The landscape of long noncoding RNA classification. Trends Genet.
31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen LL: Linking long noncoding RNA
localization and function. Trends Biochem Sci. 41:761–772. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang L, Xie H and Li S: lncRNA LOXL1-AS1
controls osteogenic and adipocytic differentiation of bone marrow
mesenchymal stem cells in postmenopausal osteoporosis through
regulating the miR-196a-5p/Hmga2 axis. J Bone Miner Metab.
38:794–805. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Che M, Gong W, Zhao Y and Liu M: Long
noncoding RNA HCG18 inhibits the differentiation of human bone
marrow-derived mesenchymal stem cells in osteoporosis by targeting
miR-30a-5p/NOTCH1 axis. Mol Med. 26:1062020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li M, Xie Z, Li J, Lin J, Zheng G, Liu W,
Tang S, Cen S, Ye G, Li Z, et al: GAS5 protects against
osteoporosis by targeting UPF1/SMAD7 axis in osteoblast
differentiation. Elife. 9:e590792020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zheng J, Guo H, Qin Y, Liu Z, Ding Z,
Zhang L and Wang W: SNHG5/miR-582-5p/RUNX3 feedback loop regulates
osteogenic differentiation and apoptosis of bone marrow mesenchymal
stem cells. J Cell Physiol. Oct 28–2020.(Epub ahead of print).
doi:10.1002/jcp.29527. View Article : Google Scholar
|
|
57
|
Jin C, Jia L, Tang Z and Zheng Y: Long
non-coding RNA MIR22HG promotes osteogenic differentiation of bone
marrow mesenchymal stem cells via PTEN/AKT pathway. Cell Death Dis.
11:6012020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF
and Zhang XL: lncRNA ADAMTS9-AS2 controls human mesenchymal stem
cell chondrogenic differentiation and functions as a ceRNA. Mol
Ther Nucleic Acids. 18:533–545. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu D, Wu K, Yang Y, Zhu D, Zhang C and
Zhao S: Long noncoding RNA ADAMTS9-AS2 suppresses the progression
of esophageal cancer by mediating CDH3 promoter methylation. Mol
Carcinog. 59:32–44. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shu T, He L, Wang X, Pang M, Yang B, Feng
F, Wu Z, Liu C, Zhang S, Liu B, et al: Long noncoding RNA UCA1
promotes chondrogenic differentiation of human bone marrow
mesenchymal stem cells via miRNA-145-5p/SMAD5 and
miRNA-124-3p/SMAD4 axis. Biochem Biophys Res Commun. 514:316–322.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang RF, Liu JW, Yu SP, Sun D, Wang XH,
Fu JS and Xie Z: lncRNA UCA1 affects osteoblast proliferation and
differentiation by regulating BMP-2 expression. Eur Rev Med
Pharmacol Sci. 23:6774–6782. 2019.PubMed/NCBI
|
|
62
|
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S,
Ye G, Li J, Zheng G, Li Z, et al: Long noncoding RNA repressor of
adipogenesis negatively regulates the adipogenic differentiation of
mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin
Transl Med. 10:e2272020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhu E, Zhang J, Li Y, Yuan H, Zhou J and
Wang B: Long noncoding RNA Plnc1 controls adipocyte differentiation
by regulating peroxisome proliferator-activated receptor γ. FASEB
J. 33:2396–2408. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fu D, Yang S, Lu J, Lian H and Qin K:
lncRNA NORAD promotes bone marrow stem cell differentiation and
proliferation by targeting miR-26a-5p in steroid-induced
osteonecrosis of the femoral head. Stem Cell Res Ther. 12:182021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Soghli N, Yousefi T, Abolghasemi M and
Qujeq D: NORAD, a critical long non-coding RNA in human cancers.
Life Sci. 264:1186652021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao Y, Chen Y, Hu X, Zhang N and Wang F:
lncRNA LINC01535 upregulates BMP2 expression levels to promote
osteogenic differentiation via sponging miR-3619-5p. Mol Med Rep.
22:5428–5435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gan X, Liu S and Liang K: MicroRNA-19b-3p
promotes cell proliferation and osteogenic differentiation of BMSCs
by interacting with lncRNA H19. BMC Med Genet. 21:112020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Song G, Zhou J, Song R, Liu D, Yu W, Xie
W, Ma Z, Gong J, Meng H, Yang T and Song Z: Long noncoding RNA H19
regulates the therapeutic efficacy of mesenchymal stem cells in
rats with severe acute pancreatitis by sponging miR-138-5p and
miR-141-3p. Stem Cell Res Ther. 11:4202020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li M, Cong R, Yang L, Yang L, Zhang Y and
Fu Q: A novel lncRNA LNC_000052 leads to the dysfunction of
osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis.
11:7952020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gao B, Li S and Li G: Long noncoding RNA
(lncRNA) small nucleolar RNA Host Gene 5 (SNHG5) regulates
proliferation, differentiation, and apoptosis of K562 cells in
chronic Myeliod Leukemia. Med Sci Monit. 25:6812–6819. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang J, Liu H, Hou L, Wang G, Zhang R,
Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell
proliferation and invasion of gastric cancer by sponging miR-424-5p
and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang R, Zhang S, Chen X, Li N, Li J, Jia
R, Pan Y and Liang H: CircNT5E acts as a sponge of miR-422a to
promote glioblastoma tumorigenesis. Cancer Res. 78:4812–4825. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang XB, Li PB, Guo SF, Yang QS, Chen ZX,
Wang D and Shi SB: circRNA_0006393 promotes osteogenesis in
glucocorticoid-induced osteoporosis by sponging miR-145-5p and
upregulating FOXO1. Mol Med Rep. 20:2851–2858. 2019.PubMed/NCBI
|
|
74
|
Yu L and Liu Y: circRNA_0016624 could
sponge miR-98 to regulate BMP2 expression in postmenopausal
osteoporosis. Biochem Biophys Res Commun. 516:546–550. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wen J, Guan Z, Yu B, Guo J, Shi Y and Hu
L: Circular RNA hsa_circ_0076906 competes with OGN for miR-1305
biding site to alleviate the progression of osteoporosis. Int J
Biochem Cell Biol. 122:1057192020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shen W, Sun B, Zhou C, Ming W, Zhang S and
Wu X: CircFOXP1/FOXP1 promotes osteogenic differentiation in
adipose-derived mesenchymal stem cells and bone regeneration in
osteoporosis via miR-33a-5p. J Cell Mol Med. 24:12513–12524. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cherubini A, Barilani M, Rossi RL, Jalal
MMK, Rusconi F, Buono G, Ragni E, Cantarella G, Simpson HARW,
Péault B and Lazzari L: FOXP1 circular RNA sustains mesenchymal
stem cell identity via microRNA inhibition. Nucleic Acids Res.
47:5325–5340. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo Y, Liu F, Ma J, Fu Y and Gui R: A
novel epigenetic regulation of circFoxp1 on Foxp1 in colon cancer
cells. Cell Death Dis. 11:7822020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu S, Wang C, Bai J, Li X, Yuan J, Shi Z
and Mao N: Involvement of circRNA_0007059 in the regulation of
postmenopausal osteoporosis by promoting the microRNA-378/BMP-2
axis. Cell Biol Int. 45:447–455. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gao S, Yu Y, Liu L, Meng J and Li G:
Circular RNA hsa_circ_0007059 restrains proliferation and
epithelial-mesenchymal transition in lung cancer cells via
inhibiting microRNA-378. Life Sci. 233:1166922019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Huang Y, Xiao D, Huang S, Zhuang J, Zheng
X, Chang Y and Yin D: Circular RNA YAP1 attenuates osteoporosis
through up-regulation of YAP1 and activation of Wnt/β-catenin
pathway. Biomed Pharmacother. 129:1103652020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang M, Jia L and Zheng Y: circRNA
expression profiles in human bone marrow stem cells undergoing
osteoblast differentiation. Stem Cell Rev Rep. 15:126–138. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chia W, Liu J, Huang YG and Zhang C: A
circular RNA derived from DAB1 promotes cell proliferation and
osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death
Dis. 11:3722020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z,
Zhang G and Song Y: Circular RNA CDR1as promotes adipogenic and
suppresses osteogenic differentiation of BMSCs in steroid-induced
osteonecrosis of the femoral head. Bone. 133:1152582020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang Y, Jia S, Wei Q, Zhuang Z, Li J, Fan
Y, Zhang L, Hong Z, Ma X, Sun R, et al: circRNA_25487 inhibits bone
repair in trauma-induced osteonecrosis of femoral head by sponging
miR-134-3p through p21. Regen Ther. 16:23–31. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kim KH and Lee MS: Autophagy-a key player
in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu F, Zhang J, Qin L, Yang Z, Xiong J,
Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6
(Hsa_circ_0060060) sponges miR-144-3p to promote the
cisplatin-resistance of human thyroid carcinoma cells by autophagy
regulation. Aging (Albany NY). 10:3806–3820. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Garcia J and Delany AM: MicroRNAs
regulating TGFβ and BMP signaling in the osteoblast lineage. Bone.
143:1157912021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen Y and Yang C: miR-197-3p-induced
downregulation of lysine 63 deubiquitinase promotes cell
proliferation and inhibits cell apoptosis in lung adenocarcinoma
cell lines. Mol Med Rep. 17:3921–3927. 2018.PubMed/NCBI
|
|
90
|
You M, Zhang L, Zhang X, Fu Y and Dong X:
MicroRNA-197-3p inhibits the osteogenic differentiation in
osteoporosis by down-regulating KLF 10. Clin Interv Aging.
16:107–117. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Seeliger C, Karpinski K, Haug AT, Vester
H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating
miRNAs and bone tissue miRNAs are associated with osteoporotic
fractures. J Bone Miner Res. 29:1718–1728. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gong B, Wang X, Li B and Li Y, Lu R, Zhang
K, Li B, Ma Y and Li Y: miR-205-5p inhibits thymic epithelial cell
proliferation via FA2H-TFAP2A feedback regulation in age-associated
thymus involution. Mol Immunol. 122:173–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Oltra M, Vidal-Gil L, Maisto R,
Sancho-Pelluz J and Barcia JM: Oxidative stress-induced
angiogenesis is mediated by miR-205-5p. J Cell Mol Med.
24:1428–1436. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia
C: lncRNA CYTOR promotes pancreatic cancer cell proliferation and
migration by sponging miR-205-5p. Pancreatology. 20:1139–1148.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang M, Li X, Zhou C, Si M, Zheng H, Chen
L and Ding H: Noncoding RNA miR-205-5p mediates osteoporosis
pathogenesis and osteoblast differentiation by regulating RUNX2. J
Cell Biochem. 121:4196–4203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Baglio SR, Rooijers K, Koppers-Lalic D,
Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen
HW, Baldini N and Pegtel DM: Human bone marrow- and
adipose-mesenchymal stem cells secrete exosomes enriched in
distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sundar IK, Li D and Rahman I: Small
RNA-sequence analysis of plasma-derived extracellular vesicle
miRNAs in smokers and patients with chronic obstructive pulmonary
disease as circulating biomarkers. J Extracell Vesicles.
8:16848162019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang X, Wang Y, Zhao H, Han X, Zhao T, Qu
P, Li G and Wang W: Extracellular vesicle-encapsulated miR-22-3p
from bone marrow mesenchymal stem cell promotes osteogenic
differentiation via FTO inhibition. Stem Cell Res Ther. 11:2272020.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang N, Zhou Z, Wu T, Liu W, Yin P, Pan C
and Yu X: TNF-α-induced NF-κB activation upregulates
microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells
by targeting β-catenin. Open Biol. 6:1502582016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Qiu M, Zhai S, Fu Q and Liu D: Bone marrow
mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes
osteoblast proliferation and differentiation in osteoporosis. Hum
Gene Ther. 32:717–729. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ma J, Lin X, Chen C, Li S, Zhang S, Chen
Z, Li D, Zhao F, Yang C, Yin C, et al: Circulating miR-181c-5p and
miR-497-5p are potential biomarkers for prognosis and diagnosis of
osteoporosis. J Clin Endocrinol Metab. 105:dgz3002020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shen L, Li J, Xu L, Ma J, Li H, Xiao X,
Zhao J and Fang L: miR-497 induces apoptosis of breast cancer cells
by targeting Bcl-w. Exp Ther Med. 3:475–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gu Z, Xie D, Huang C, Ding R, Zhang R, Li
Q, Lin C and Qiu Y: MicroRNA-497 elevation or LRG1 knockdown
promotes osteoblast proliferation and collagen synthesis in
osteoporosis via TGF-beta1/Smads signalling pathway. J Cell Mol
Med. 24:12619–12632. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mohamad N, Nabih ES, Zakaria ZM, Nagaty MM
and Metwaly RG: Insight into the possible role of miR-214 in
primary osteoporosis via osterix. J Cell Biochem. 120:15518–15526.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lu XZ, Yang ZH, Zhang HJ, Zhu LL, Mao XL
and Yuan Y: miR-214 protects MC3T3-E1 osteoblasts against
H2O2-induced apoptosis by suppressing
oxidative stress and targeting ATF4. Eur Rev Med Pharmacol Sci.
21:4762–4770. 2017.PubMed/NCBI
|
|
106
|
Yang C, Gu Z, Ding R, Huang C, Li Q, Xie
D, Zhang R and Qiu Y: Long non-coding RNA MEG3 silencing and
microRNA-214 restoration elevate osteoprotegerin expression to
ameliorate osteoporosis by limiting TXNIP. J Cell Mol Med.
25:2025–2039. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Vimalraj S, Saravanan S, Vairamani M,
Gopalakrishnan C, Sastry TP and Selvamurugan N: A Combinatorial
effect of carboxymethyl cellulose based scaffold and microRNA-15b
on osteoblast differentiation. Int J Biol Macromol. 93:1457–1464.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lu X, Zhang Y, Zheng Y and Chen B: The
miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis
by modulating osteoblast differentiation and autophagy. J Cell Mol
Med. 25:2069–2081. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Naseri Z, Oskuee RK, Jaafari MR and
Forouzandeh Moghadam M: Exosome-mediated delivery of functionally
active miRNA-142-3p inhibitor reduces tumorigenicity of breast
cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lou Z, Peng Z, Wang B, Li X, Li X and
Zhang X: miR-142-5p promotes the osteoclast differentiation of bone
marrow-derived macrophages via PTEN/PI3K/AKT/FoxO1 pathway. J Bone
Miner Metab. 37:815–824. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Luo B, Yang J, Yuan Y, Hao P and Cheng X:
MicroRNA-142 regulates osteoblast differentiation and apoptosis of
mouse pre-osteoblast cells by targeting bone morphogenetic protein
2. FEBS Open Bio. 10:1793–1801. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hu WX, Li H and Jiang JZ: miR-491-3p is
down-regulated in postmenopausal osteoporosis and affects growth,
differentiation and apoptosis of hFOB1.19 cells through targeting
CTSS. Folia Histochem Cytobiol. 58:9–16. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang W, Cui SY, Yi H, Zhu XH, Liu W and
Xu YJ: miR-708 inhibits MC3T3-E1 cells against HO-induced apoptosis
through targeting PTEN. J Orthop Surg Res. 15:2552020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yin C, Tian Y, Yu Y, Li D, Miao Z, Su P,
Zhao Y, Wang X, Pei J, Zhang K and Qian A: Long noncoding RNA
AK039312 and AK079370 inhibits bone formation via miR-199b-5p.
Pharmacol Res. 163:1052302021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tong X, Gu PC, Xu SZ and Lin XJ: Long
non-coding RNA-DANCR in human circulating monocytes: A potential
biomarker associated with postmenopausal osteoporosis. Biosci
Biotechnol Biochem. 79:732–737. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang CG, Hu YH, Su SL and Zhong D: lncRNA
DANCR and miR-320a suppressed osteogenic differentiation in
osteoporosis by directly inhibiting the Wnt/β-catenin signaling
pathway. Exp Mol Med. 52:1310–1325. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang Q, Li Y and Zhang Y, Ma L, Lin L,
Meng J, Jiang L, Wang L, Zhou P and Zhang Y: lncRNA MEG3 inhibited
osteogenic differentiation of bone marrow mesenchymal stem cells
from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed
Pharmacother. 89:1178–1186. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hu F, Jiang C, Bu G, Fu Y and Yu Y:
Silencing long noncoding RNA colon cancer-associated transcript-1
upregulates microRNA-34a-5p to promote proliferation and
differentiation of osteoblasts in osteoporosis. Cancer Gene Ther.
Jan 5–2021.(Epub ahead of print). doi:
https://doi.org/10.1038/s41417-020-00264-7. View Article : Google Scholar
|
|
119
|
Mulati M, Kobayashi Y, Takahashi A, Numata
H, Saito M, Hiraoka Y, Ochi H, Sato S, Ezura Y, Yuasa M, et al: The
long noncoding RNA Crnde regulates osteoblast proliferation through
the Wnt/β-catenin signaling pathway in mice. Bone. 130:1150762020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liu H, Wang YW, Chen WD, Dong HH and Xu
YJ: Iron accumulation regulates osteoblast apoptosis through lncRNA
XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. IUBMB Life.
73:432–443. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Niu S, Xiang F and Jia H: Downregulation
of lncRNA XIST promotes proliferation and differentiation, limits
apoptosis of osteoblasts through regulating miR-203-3p/ZFPM2 axis.
Connect Tissue Res. 62:381–392. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Mi B, Xiong Y, Chen L, Yan C, Endo Y, Liu
Y, Liu J, Hu L, Hu Y, Sun Y, et al: circRNA AFF4 promotes
osteoblast cells proliferation and inhibits apoptosis via the
Mir-7223-5p/PIK3R1 axis. Aging (Albany NY). 11:11988–12001. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhai Q, Zhao Y, Wang L, Dai Y, Zhao P,
Xiang X, Liu K, Du W, Tian W, Yang B, et al: circRNA
hsa_circ_0008500 Acts as a miR-1301-3p sponge to promote osteoblast
mineralization by upregulating PADI4. Front Cell Dev Biol.
8:6027312020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ji F, Zhu L, Pan J, Shen Z, Yang Z, Wang
J, Bai X, Lin Y and Tao J: hsa_circ_0026827 promotes osteoblast
differentiation of human dental pulp stem cells through the Beclin1
and RUNX1 signaling pathways by sponging miR-188-3p. Front Cell Dev
Biol. 8:4702020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shen G, Ren H, Shang Q, Zhang Z, Zhao W,
Yu X, Tang J, Yang Z, Liang D and Jiang X: miR-128 plays a critical
role in murine osteoclastogenesis and estrogen deficiency-induced
bone loss. Theranostics. 10:4334–4348. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhu J, Wang H and Liu H: Osteoclastic
miR-301-b knockout reduces ovariectomy (OVX)-induced bone loss by
regulating CYDR/NF-κB signaling pathway. Biochem Biophys Res
Commun. 529:35–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Huang Y, Ren K, Yao T, Zhu H, Xu Y, Ye H,
Chen Z, Lv J, Shen S and Ma J: MicroRNA-25-3p regulates osteoclasts
through nuclear factor I X. Biochem Biophys Res Commun. 522:74–80.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang Y, Chen XF, Li J, He F, Li X and Guo
Y: lncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J
Bone Miner Res. 35:1772–1781. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chang Y, Yu D, Chu W, Liu Z, Li H and Zhai
Z: lncRNA expression profiles and the negative regulation of
lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone. 130:1150722020.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhao W, Dong Y, Wu C, Ma Y, Jin Y and Ji
Y: miR-21 overexpression improves osteoporosis by targeting RECK.
Mol Cell Biochem. 405:125–133. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Cong C, Tian J, Gao T, Zhou C, Wang Y, Cui
X and Zhu L: lncRNA GAS5 is upregulated in osteoporosis and
downregulates miR-21 to promote apoptosis of osteoclasts. Clin
Interv Aging. 15:1163–1169. 2020. View Article : Google Scholar : PubMed/NCBI
|