Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

DNA barcode to trace the development and differentiation of cord blood stem cells (Review)

  • Authors:
    • Mo-Yu Wang
    • Yang Zhou
    • Guang-Shun Lai
    • Qi Huang
    • Wen-Qi Cai
    • Zi-Wen Han
    • Yingying Wang
    • Zhaowu Ma
    • Xian-Wang Wang
    • Ying Xiang
    • Shu-Xian Fang
    • Xiao-Chun Peng
    • Hong-Wu Xin
  • View Affiliations / Copyright

    Affiliations: Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China, Department of Digestive Medicine, People's Hospital of Lianjiang, Lianjiang, Guangdong 524400, P.R. China, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 849
    |
    Published online on: October 12, 2021
       https://doi.org/10.3892/mmr.2021.12489
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Umbilical cord blood transplantation was first reported in 1980. Since then, additional research has indicated that umbilical cord blood stem cells (UCBSCs) have various advantages, such as multi‑lineage differentiation potential and potent renewal activity, which may be induced to promote their differentiation into a variety of seed cells for tissue engineering and the treatment of clinical and metabolic diseases. Recent studies suggested that UCBSCs are able to differentiate into nerve cells, chondrocytes, hepatocyte‑like cells, fat cells and osteoblasts. The culture of UCBSCs has developed from feeder‑layer to feeder‑free culture systems. The classical techniques of cell labeling and tracing by gene transfection and fluorescent dye and nucleic acid analogs have evolved to DNA barcode technology mediated by transposon/retrovirus, cyclization recombination‑recombinase and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9 strategies. DNA barcoding for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications.
View Figures

Figure 1

Figure 2

View References

1 

Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L and Boyse EA: Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 86:3828–3832. 1989. View Article : Google Scholar

2 

Buzańska L, Jurga M and Domańska-Janik K: Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegener Dis. 3:19–26. 2006. View Article : Google Scholar

3 

Zhang J, Huang X, Guo B, Cooper S, Capitano ML, Johnson TC, Siegel DR and Broxmeyer HE: Effects of eupalinilide E and UM171, alone and in combination on cytokine stimulated ex-vivo expansion of human cord blood hematopoietic stem cells. Blood Cells Mol Dis. 84:1024572020. View Article : Google Scholar

4 

Sunitha MM, Srikanth L, Kumar PS, Chandrasekhar C and Sarma P: Down-regulation of PAX2 promotes in vitro differentiation of podocytes from human CD34+ cells. Cell Tissue Res. 370:477–488. 2017. View Article : Google Scholar

5 

Alatyyat SM, Alasmari HM, Aleid OA, Abdel-Maksoud MS and Elsherbiny N: Umbilical cord stem cells: Background, processing and applications. Tissue Cell. 65:1013512020. View Article : Google Scholar

6 

Francese R and Fiorina P: Immunological and regenerative properties of cord blood stem cells. Clin Immunol. 136:309–322. 2010. View Article : Google Scholar

7 

Fatrai S, Schepers H, Tadema H, Vellenga E, Daenen SM and Schuringa JJ: Mucin1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Exp Hematol. 36:1254–1265. 2008. View Article : Google Scholar

8 

Castillo-Melendez M, Yawno T, Jenkin G and Miller SL: Stem cell therapy to protect and repair the developing brain: A review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci. 7:1942013. View Article : Google Scholar

9 

Cairo MS and Wagner JE: Placental and/or umbilical cord blood: An alternative source of hematopoietic stem cells for transplantation. Blood. 90:4665–4678. 1997. View Article : Google Scholar

10 

Mayani H and Lansdorp PM: Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells. 16:153–165. 1998. View Article : Google Scholar

11 

Liu G, Ye X, Zhu Y, Li Y, Sun J, Cui L and Cao Y: Osteogenic differentiation of GFP-labeled human umbilical cord blood derived mesenchymal stem cells after cryopreservation. Cryobiology. 63:125–128. 2011. View Article : Google Scholar

12 

Zheng JH, Zhang JK, Kong DS, Song YB, Zhao SD, Qi WB, Li YN, Zhang ML and Huang XH: Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat. Stem Cell Res Ther. 11:2802020. View Article : Google Scholar

13 

Kebschull JM and Zador AM: Cellular barcoding: Lineage tracing, screening and beyond. Nat Methods. 15:871–879. 2018. View Article : Google Scholar

14 

Wagner DE and Klein AM: Lineage tracing meets single-cell omics: Opportunities and challenges. Nat Rev Genet. 21:410–427. 2020. View Article : Google Scholar

15 

Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, et al: Matrix cells from Wharton's jelly form neurons and glia. Stem Cells. 21:50–60. 2003. View Article : Google Scholar

16 

Fu YS, Shih YT, Cheng YC and Min MY: Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci. 11:652–660. 2004. View Article : Google Scholar

17 

Rodrigues LP, Iglesias D, Nicola FC, Steffens D, Valentim L, Witczak A, Zanatta G, Achaval M, Pranke P and Netto CA: Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats. Braz J Med Biol Res. 45:49–57. 2012. View Article : Google Scholar

18 

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC and Chen CC: Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 22:1330–1337. 2004. View Article : Google Scholar

19 

Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y, Teramoto K, Arii S, Sato C, Takase K, et al: Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells. 21:217–227. 2003. View Article : Google Scholar

20 

Tang XP, Zhang M, Yang X, Chen LM and Zeng Y: Differentiation of human umbilical cord blood stem cells into hepatocytes in vivo and in vitro. World J Gastroenterol. 12:4014–4019. 2006. View Article : Google Scholar

21 

Mayani H, Wagner JE and Broxmeyer HE: Cord blood research, banking, and transplantation: Achievements, challenges, and perspectives. Bone Marrow Transplant. 55:48–61. 2020. View Article : Google Scholar

22 

Shetty P, Cooper K and Viswanathan C: Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci. 4:14–24. 2010. View Article : Google Scholar

23 

Han JY, Goh RY, Seo SY, Hwang TH, Kwon HC, Kim SH, Kim JS, Kim HJ and Lee YH: Cotransplantation of cord blood hematopoietic stem cells and culture-expanded and GM-CSF-/SCF-transfected mesenchymal stem cells in SCID mice. J Korean Med Sci. 22:242–247. 2007. View Article : Google Scholar

24 

Hutton JF, D'Andrea RJ and Lewis ID: Potential for clinical ex vivo expansion of cord blood haemopoietic stem cells using non-haemopoietic factor supplements. Curr Stem Cell Res Ther. 2:229–237. 2007. View Article : Google Scholar

25 

Demerdash Z, El-Baz HG, Maher K, Hassan S, Salah F, Hassan M, Elzallat M, El-Shafei M and Taha T: Effect of repeated passaging and cell density on proliferation and differentiation potential of cord blood unrestricted somatic stem cells. New Horiz Transl Med. 2:672015.

26 

Esmaeili M, Niazi V, Pourfathollah AA, Hosseini MKM, Nakhlestani M, Golzadeh K, Taheri M, Ghafouri-Fard S and Atarodi K: The impact of parathyroid hormone treated mesenchymal stem cells on ex-vivo expansion of cord blood hematopoietic stem cells. Gene Rep. 17:1004902019. View Article : Google Scholar

27 

Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, Llamazares GA, Lamar Z, Porada CD, Soker S and Almeida-Porada G: Evaluating interaction of cord blood hematopoietic stem/progenitor cells with functionally integrated three-dimensional microenvironments. Stem Cells Transl Med. 7:271–282. 2018. View Article : Google Scholar

28 

Chaurasia P, Gajzer DC, Schaniel C, D'Souza S and Hoffman R: Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest. 124:2378–2395. 2014. View Article : Google Scholar

29 

Li Q, Zhao D, Chen Q, Luo M, Huang J, Yang C, Wang F, Li W and Liu T: Wharton's jelly mesenchymal stem cell-based or umbilical vein endothelial cell-based serum-free coculture with cytokines supports the ex vivo expansion/maintenance of cord blood hematopoietic stem/progenitor cells. Stem Cell Res Ther. 10:3762019. View Article : Google Scholar

30 

Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, et al: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 4:513–522. 2015. View Article : Google Scholar

31 

Rim YA, Nam Y and Ju JH: Application of cord blood and cord blood-derived induced pluripotent stem cells for cartilage regeneration. Cell Transplant. 28:529–537. 2019. View Article : Google Scholar

32 

Zheng YL, Sun YP, Zhang H, Liu WJ, Jiang R, Li WY, Zheng YH and Zhang ZG: Mesenchymal stem cells obtained from synovial fluid mesenchymal stem cell-derived induced pluripotent stem cells on a matrigel coating exhibited enhanced proliferation and differentiation potential. PLoS One. 10:e01442262015. View Article : Google Scholar

33 

Zhou RQ, Wu JH, Gong YP, Guo Y and Xing HY: Transcription factor SCL/TAL1 mediates the phosphorylation of MEK/ERK pathway in umbilical cord blood CD34+ stem cells during hematopoietic differentiation. Blood Cells Mol Dis. 53:39–46. 2014. View Article : Google Scholar

34 

Ajami M, Soleimani M, Abroun S and Atashi A: Comparison of cord blood CD34 + stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF. J Cell Biochem. 120:15297–15309. 2019. View Article : Google Scholar

35 

Naka K, Muraguchi T, Hoshii T and Hirao A: Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 10:1883–1894. 2008. View Article : Google Scholar

36 

Bonifazi F, Dan E, Labopin M, Sessa M, Guadagnuolo V, Ferioli M, Rizzi S, De Carolis S, Sinigaglia B, Motta MR, et al: Intrabone transplant provides full stemness of cord blood stem cells with fast hematopoietic recovery and low GVHD rate: Results from a prospective study. Bone Marrow Transplant. 54:717–725. 2019. View Article : Google Scholar

37 

Lee YH: Clinical utilization of cord blood over human health: Experience of stem cell transplantation and cell therapy using cord blood in Korea. Korean J Pediatr. 57:110–116. 2014. View Article : Google Scholar

38 

Li X, Ma X, Chen Y, Peng D, Wang H, Chen S, Xiao Y, Li L, Zhou H, Cheng F, et al: Coinhibition of activated p38 MAPKα and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34+ cells via inhibition of senescence. Stem Cells Transl Med. 9:1604–1616. 2020. View Article : Google Scholar

39 

Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, Csaszar E, Knapp DJ, Miller P, Ngom M, et al: Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 345:1509–1512. 2014. View Article : Google Scholar

40 

Seghatoleslam M, Jalali M, Alamdari DH, Nikravesh MR, Hosseini SM and Fazel AR: Effect of incubation time on the in vitro labeling of umbilical cord blood hematopoietic stem cells with bromodeoxyuridine (BrdU). Clin Biochem. 44 (Suppl):S1532011. View Article : Google Scholar

41 

Walsh C and Cepko CL: Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science. 255:434–440. 1992. View Article : Google Scholar

42 

Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ, de Haan G and Bystrykh LV: Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood. 115:2610–2618. 2010. View Article : Google Scholar

43 

Zorita E, Cuscó P and Filion GJ: Starcode: Sequence clustering based on all-pairs search. Bioinformatics. 31:1913–1919. 2015. View Article : Google Scholar

44 

Schepers K, Swart E, van Heijst JW, Gerlach C, Castrucci M, Sie D, Heimerikx M, Velds A, Kerkhoven RM, Arens R and Schumacher TN: Dissecting T cell lineage relationships by cellular barcoding. J Exp Med. 205:2309–2318. 2008. View Article : Google Scholar

45 

Kristiansen TA, Jaensson Gyllenbäck E, Zriwil A, Björklund T, Daniel JA, Sitnicka E, Soneji S, Bryder D and Yuan J: Cellular barcoding links B-1a B cell potential to a fetal hematopoietic stem cell state at the single-cell level. Immunity. 45:346–357. 2016. View Article : Google Scholar

46 

Lu R, Neff NF, Quake SR and Weissman IL: Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 29:928–933. 2011. View Article : Google Scholar

47 

Naik SH, Perié L, Swart E, Gerlach C, van Rooij N, de Boer RJ and Schumacher TN: Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature. 496:229–232. 2013. View Article : Google Scholar

48 

Verovskaya E, Broekhuis MJ, Zwart E, Ritsema M, van Os R, de Haan G and Bystrykh LV: Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood. 122:523–532. 2013. View Article : Google Scholar

49 

Keller G, Paige C, Gilboa E and Wagner EF: Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature. 318:149–154. 1985. View Article : Google Scholar

50 

Lemischka IR, Raulet DH and Mulligan RC: Developmental potential and dynamic behavior of hematopoietic stem cells. Cell. 45:917–927. 1986. View Article : Google Scholar

51 

Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, Pelka K, Ge W, Oren Y, Brack A, et al: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 176:1325–1339.e22. 2019. View Article : Google Scholar

52 

Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG and Klein AM: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 360:981–987. 2018. View Article : Google Scholar

53 

Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y and Morris SA: CellTag Indexing: Genetic barcode-based sample multiplexing for single-cell genomics. Genome Biol. 20:902019. View Article : Google Scholar

54 

Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J and Lu R: Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc. 15:1436–1458. 2020. View Article : Google Scholar

55 

Pei W, Feyerabend TB, Rössler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C, et al: Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 548:456–460. 2017. View Article : Google Scholar

56 

Pei W, Wang X, Rössler J, Feyerabend TB, Hofer T and Rodewald HR: Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nat Protoc. 14:1820–1840. 2019. View Article : Google Scholar

57 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. 2013. View Article : Google Scholar

58 

McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF and Shendure J: Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 353:aaf79072016. View Article : Google Scholar

59 

Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK, Singer ZS, Budde MW, Elowitz MB and Cai L: Synthetic recording and in situ readout of lineage information in single cells. Nature. 541:107–111. 2017. View Article : Google Scholar

60 

Perli SD, Cui CH and Lu TK: Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science. 353:aag05112016. View Article : Google Scholar

61 

Kalhor R, Mali P and Church GM: Rapidly evolving homing CRISPR barcodes. Nat Methods. 14:195–200. 2017. View Article : Google Scholar

62 

Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P and Church GM: Developmental barcoding of whole mouse via homing CRISPR. Science. 361:eaat98042018. View Article : Google Scholar

63 

Loveless TB, Grotts JH, Schechter MW, Forouzmand E, Carlson CK, Agahi BS, Liang G, Ficht M, Liu B, Xie X and Liu CC: DNA writing at a single genomic site enables lineage tracing and analog recording in mammalian cells. bioRxiv. 6391202019.

64 

Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, Patel S, Yuan WC, Fujiwara Y, Li BE, et al: An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell. 181:1410–1422.e27. 2020. View Article : Google Scholar

65 

Nguyen LV, Cox CL, Eirew P, Knapp DJ, Pellacani D, Kannan N, Carles A, Moksa M, Balani S, Shah S, et al: DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat Commun. 5:58712014. View Article : Google Scholar

66 

Naik SH, Schumacher TN and Perie L: Cellular barcoding: A technical appraisal. Exp Hematol. 42:598–608. 2014. View Article : Google Scholar

67 

Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T, Makarem M, Cox CL, Kennedy W, Beer P, Carles A, et al: Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature. 528:267–271. 2015. View Article : Google Scholar

68 

McKenzie JL, Gan OI, Doedens M, Wang JC and Dick JE: Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol. 7:1225–1233. 2006. View Article : Google Scholar

69 

Gonzalez-Murillo A, Lozano ML, Montini E, Bueren JA and Guenechea G: Unaltered repopulation properties of mouse hematopoietic stem cells transduced with lentiviral vectors. Blood. 112:3138–3147. 2008. View Article : Google Scholar

70 

Golden JA, Fields-Berry SC and Cepko CL: Construction and characterization of a highly complex retroviral library for lineage analysis. Proc Natl Acad Sci USA. 92:5704–5708. 1995. View Article : Google Scholar

71 

Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, et al: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 167:1867–1882.e21. 2016. View Article : Google Scholar

72 

Cheung AM, Nguyen LV, Carles A, Beer P, Miller PH, Knapp DJ, Dhillon K, Hirst M and Eaves CJ: Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood. 122:3129–3137. 2013. View Article : Google Scholar

73 

Belderbos ME, Jacobs S, Koster TK, Ausema A, Weersing E, Zwart E, de Haan G and Bystrykh LV: Donor-to-donor heterogeneity in the clonal dynamics of transplanted human cord blood stem cells in murine xenografts. Biol Blood Marrow Transplant. 26:16–25. 2020. View Article : Google Scholar

74 

Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O and Camargo FD: Clonal dynamics of native haematopoiesis. Nature. 514:322–327. 2014. View Article : Google Scholar

75 

Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, et al: The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol. 10:12492020. View Article : Google Scholar

76 

Han ZW, Lyv ZW, Cui B, Wang YY, Cheng JT, Zhang Y, Cai WQ, Zhou Y, Ma ZW, Wang XW, et al: Correction to: The old CEACAMs find their new role in tumor immunotherapy. Invest New Drugs. 38:1899–1900. 2020. View Article : Google Scholar

77 

Wang YY, Lyu YN, Xin HY, Cheng JT, Liu XQ, Wang XW, Peng XC, Xiang Y, Xin VW, Lu CB, et al: Identification of putative UL54 (ICP27) transcription regulatory sequences binding to Oct-1, v-Myb, Pax-6 and hairy in herpes simplex viruses. J Cancer. 10:430–440. 2019. View Article : Google Scholar

78 

Jensen P and Dymecki SM: Essentials of recombinase-based genetic fate mapping in mice. Methods Mol Biol. 1092:437–454. 2014. View Article : Google Scholar

79 

Herring CA, Chen B, McKinley ET and Lau KS: Single-cell computational strategies for lineage reconstruction in tissue systems. Cell Mol Gastroenterol Hepatol. 5:539–548. 2018. View Article : Google Scholar

80 

Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, et al: Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv. 25:1950–1962. 2018. View Article : Google Scholar

81 

Woodworth MB, Girskis KM and Walsh CA: Building a lineage from single cells: Genetic techniques for cell lineage tracking. Nat Rev Genet. 18:230–244. 2017. View Article : Google Scholar

82 

Xu J, Nuno K, Litzenburger UM, Qi Y, Corces MR, Majeti R and Chang HY: Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. Elife. 8:e451052019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang M, Zhou Y, Lai G, Huang Q, Cai W, Han Z, Wang Y, Ma Z, Wang X, Xiang Y, Xiang Y, et al: DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 24: 849, 2021.
APA
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z. ... Xin, H. (2021). DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Molecular Medicine Reports, 24, 849. https://doi.org/10.3892/mmr.2021.12489
MLA
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z., Wang, Y., Ma, Z., Wang, X., Xiang, Y., Fang, S., Peng, X., Xin, H."DNA barcode to trace the development and differentiation of cord blood stem cells (Review)". Molecular Medicine Reports 24.6 (2021): 849.
Chicago
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z., Wang, Y., Ma, Z., Wang, X., Xiang, Y., Fang, S., Peng, X., Xin, H."DNA barcode to trace the development and differentiation of cord blood stem cells (Review)". Molecular Medicine Reports 24, no. 6 (2021): 849. https://doi.org/10.3892/mmr.2021.12489
Copy and paste a formatted citation
x
Spandidos Publications style
Wang M, Zhou Y, Lai G, Huang Q, Cai W, Han Z, Wang Y, Ma Z, Wang X, Xiang Y, Xiang Y, et al: DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 24: 849, 2021.
APA
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z. ... Xin, H. (2021). DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Molecular Medicine Reports, 24, 849. https://doi.org/10.3892/mmr.2021.12489
MLA
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z., Wang, Y., Ma, Z., Wang, X., Xiang, Y., Fang, S., Peng, X., Xin, H."DNA barcode to trace the development and differentiation of cord blood stem cells (Review)". Molecular Medicine Reports 24.6 (2021): 849.
Chicago
Wang, M., Zhou, Y., Lai, G., Huang, Q., Cai, W., Han, Z., Wang, Y., Ma, Z., Wang, X., Xiang, Y., Fang, S., Peng, X., Xin, H."DNA barcode to trace the development and differentiation of cord blood stem cells (Review)". Molecular Medicine Reports 24, no. 6 (2021): 849. https://doi.org/10.3892/mmr.2021.12489
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team