You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Laplane L, Duluc D, Larmonier N, Pradeu T and Bikfalvi A: The multiple layers of the tumor environment. Trends Cancer. 4:802–809. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Elia I and Haigis MC: Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat Metab. 3:21–32. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Liu G, Liu S, Su H, Wang Y, Li J and Luo C: Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci. 39:59–74. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lazar I, Clement E, Attane C, Muller C and Nieto L: A new role for extracellular vesicles: How small vesicles can feed tumors' big appetite. J Lipid Res. 59:1793–1804. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Li B, Li Z, Li J and Sun S and Sun S: Cancer-associated adipocytes: Key players in breast cancer progression. J Hematol Oncol. 12:952019. View Article : Google Scholar : PubMed/NCBI | |
|
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vaupel H, Schmidberger A and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hoxhaj G and Manning BD: The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nieman KM, Romero IL, Van Houten B and Lengyel E: Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 1831:1533–1541. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW, Albanese C, Flanagan L, Tenniswood MP, Guha C, Lisanti MP, et al: Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 22:6408–6423. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Park J, Morley TS, Kim M, Clegg DJ and Scherer PE: Obesity and cancer-mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 10:455–465. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Donohoe CL, Lysaght J, O'sullivan J and Reynolds JV: Emerging concepts linking obesity with the hallmarks of cancer. Trends Endocrinol Metab. 28:46–62. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kahn CR, Wang G and Lee KY: Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 129:3990–4000. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Scheja L and Heeren J: The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 15:507–524. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y and Miyazaki M: Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 150:255–263. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q and Wu Y: Cancer-associated adipocytes: Emerging supporters in breast cancer. J Exp Clin Cancer Res. 39:1562020. View Article : Google Scholar : PubMed/NCBI | |
|
Choi J, Cha YJ and Koo JS: Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res. 69:11–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rybinska I, Agresti R, Trapani A, Tagliabue E and Triulzi T: Adipocytes in breast cancer, the thick and the thin. Cells. 9:5602020. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L and Sonveaux P: Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 1863:2481–2497. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang E, Wang X, Gong Z, Yu M, Wu H and Zhang D: Exosome-mediated metabolic reprogramming: The emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 5:2422020. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong X, Wen YA, Fairchild R, Zaytseva YY, Weiss HL, Evers BM and Gao T: Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer. Cell Death Dis. 11:7362020. View Article : Google Scholar : PubMed/NCBI | |
|
Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, Sirintrapun SJ, Glodé LM, Eckel RH and Cramer SD: Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 13:2361–2371. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tabuso M, Homer-Vanniasinkam S, Adya R and Arasaradnam RP: Role of tissue microenvironment resident adipocytes in colon cancer. World J Gastroenterol. 23:5829–5835. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ko JH, Um JY, Lee SG, Yang WM, Sethi G and Ahn KS: Conditioned media from adipocytes promote proliferation, migration, and invasion in melanoma and colorectal cancer cells. J Cell Physiol. 234:18249–18261. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fontana L, Eagon JC, Trujillo ME, Scherer PE and Klein S: Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 56:1010–1013. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Silva C, Rotellar F, Hernández-Lizoain JL, Baixauli J, Valentí V, Pardo F, et al: Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer. J Nutr Biochem. 22:634–641. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Connors S, Oenick M, D'Amato RJ, Klement GL and Folkman J: VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 15:265–273. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lumeng CN, Deyoung SM, Bodzin JL and Saltiel AR: Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 56:16–23. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA and Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 112:1821–1830. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Harvey AE, Lashinger LM and Hursting SD: The growing challenge of obesity and cancer: An inflammatory issue. Ann N Y Acad Sci. 1229:45–52. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner M, Bjerkvig R, Wiig H, Melero-Martin JM, Lin RZ, Klagsbrun M and Dudley AC: Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis. 15:481–495. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Amor S, Iglesias-de la Cruz MC, Ferrero E, García-Villar O, Barrios V, Fernandez N, Monge L, García-Villalón AL and Granado M: Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer. Int J Colorectal Dis. 31:365–375. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ye P, Xi Y, Huang Z and Xu P: Linking obesity with colorectal cancer: Epidemiology and mechanistic insights. Cancers (Basel). 12:14082020. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, Limame R, Mestdagh P, Vandesompele J, Vanhove C, et al: Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 74:6806–6819. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
D'Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, Raciti GA, Miele C, Valentino R, Campiglia P, et al: Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 7:24495–24509. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
De Palma M, Biziato D and Petrova TV: Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 17:457–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, et al: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2:e874892017. View Article : Google Scholar : PubMed/NCBI | |
|
Attane C, Milhas D, Hoy AJ and Muller C: Metabolic remodeling induced by adipocytes: A new Achille heels in invasive breast cancer? Curr Med Chem. 27:3984–4001. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C and Marini FC: Tumor associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 18:842016. View Article : Google Scholar : PubMed/NCBI | |
|
Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
John B, Naczki C, Patel C, Ghoneum A, Qasem S, Salih Z and Said N: Regulation of the bi-directional cross-talk between ovarian cancer cells and adipocytes by SPARC. Oncogene. 38:4366–4383. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee A, Chiang CY, Daifotis HA, Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O and Lengyel E: Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 80:1748–1761. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun C, Li X, Guo E, Li N, Zhou B, Lu H, Huang J, Xia M, Shan W, Wang B, et al: MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene. 39:1681–1695. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL and Abumrad NA: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 275:32523–32529. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
|
Renehan AG, Tyson M, Egger M, Heller RF and Zwahlen M: Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet. 371:569–578. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, Li X, Yao L, Dong H and Xu Y: Metabolic reprogramming in triple-negative breast cancer. Front Oncol. 10:4282020. View Article : Google Scholar : PubMed/NCBI | |
|
Santander AM, Lopez-Ocejo O, Casas O, Agostini T, Sanchez L, Lamas-Basulto E, Carrio R, Cleary MP, Gonzalez-Perez RR and Torroella-Kouri M: Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: The role of obesity and inflammation in breast adipose tissue. Cancers (Basel). 7:143–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Corn KC, Windham MA and Rafat M: Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 80:1010552020. View Article : Google Scholar : PubMed/NCBI | |
|
Pallegar NK and Christian SL: Adipocytes in the tumour microenvironment. Adv Exp Med Biol. 1234:1–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dias AS, Almeida CR, Helguero LA and Duarte IF: Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer. 121:154–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Li Y, Xing L, Tan Y, Sun J, Zeng B, Xiang T, Tan J, Ren G and Wang Y: Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun Signal. 16:322018. View Article : Google Scholar : PubMed/NCBI | |
|
Zaoui M, Morel M, Ferrand N, Fellahi S, Bastard JP, Lamazière A, Larsen AK, Béréziat V, Atlan M and Sabbah M: Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel). 11:20122019. View Article : Google Scholar : PubMed/NCBI | |
|
Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, Nieman KM, Pascual G, Benitah SA, Montag A, et al: Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 37:2285–2301. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Di Martino JS, Bowman RL, Campbell NR, Baksh SC, Simon-Vermot T, Kim IS, Haldeman P, Mondal C, Yong-Gonzales V, et al: Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8:1006–1025. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lopes-Coelho F, Andre S, Felix A and Serpa J: Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 462:93–106. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Yue C, Herrmann A, Song J, Egelston C, Wang T, Zhang Z, Li W, Lee H, Aftabizadeh M, et al: STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31:148–161.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, et al: Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20:368–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M, Stevens B, Pei S, Balys M, Ashton JM, et al: Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell. 19:23–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, Allen-Petersen BL, Link J, Kendsersky ND, et al: A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9:617–627. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Benesch MG, Tang X, Maeda T, Ohhata A, Zhao YY, Kok BP, Dewald J, Hitt M, Curtis JM, McMullen TP and Brindley DN: Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice. FASEB J. 28:2655–2666. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Yu X and Yang Y: Autotaxin upregulated by STAT3 activation contributes to invasion in pancreatic neuroendocrine neoplasms. Endocr Connect. 7:1299–1307. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Azare J, Doane A, Leslie K, Chang Q, Berishaj M, Nnoli J, Mark K, Al-Ahmadie H, Gerald W, Hassimi M, et al: Stat3 mediates expression of autotaxin in breast cancer. PLoS One. 6:e278512011. View Article : Google Scholar : PubMed/NCBI | |
|
Schmid R, Wolf K, Robering JW, Strauß S, Strissel PL, Strick R, Rübner M, Fasching PA, Horch RE, Kremer AE, et al: ADSCs and adipocytes are the main producers in the autotaxin-lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC Cancer. 18:12732018. View Article : Google Scholar : PubMed/NCBI | |
|
Corbet C and Feron O: Emerging roles of lipid metabolism in cancer progression. Curr Opin Clin Nutr Metab Care. 20:254–260. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wculek SK and Malanchi I: Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Poltavets V, Kochetkova M, Pitson SM and Samuel MS: The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 8:4312018. View Article : Google Scholar : PubMed/NCBI | |
|
Bacac M and Stamenkovic I: Metastatic cancer cell. Annu Rev Pathol. 3:221–247. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ribeiro RJ, Monteiro CP, Cunha VF, Azevedo AS, Oliveira MJ, Monteiro R, Fraga AM, Príncipe P, Lobato C, Lobo F, et al: Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem. 29:233–240. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SG, Kim JS, Kim HJ, Schlaepfer DD, Kim IS and Nam JO: Endothelial angiogenic activity and adipose angiogenesis is controlled by extracellular matrix protein TGFBI. Sci Rep. 11:96442021. View Article : Google Scholar : PubMed/NCBI | |
|
Campo-Verde-Arbocco F, López-Laur JD, Romeo LR, Giorlando N, Bruna FA, Contador DE, López-Fontana G, Santiano FE, Sasso CV, Zyla LE, et al: Human renal adipose tissue induces the invasion and progression of renal cell carcinoma. Oncotarget. 8:94223–94234. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, et al: Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 115:1163–1176. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bochet L, Meulle A, Imbert S, Salles B, Valet P and Muller C: Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 411:102–106. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda S, Saeki T, Osaki A, Yamane T and Kuji I: Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: Multimodal functional imaging and multiplex cytokine analysis. Clin Cancer Res. 23:5769–5778. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Levitsky A, Brismar K, Hafström I, Hambardzumyan K, Lourdudoss C, van Vollenhoven RF and Saevarsdottir S: Obesity is a strong predictor of worse clinical outcomes and treatment responses in early rheumatoid arthritis: Results from the SWEFOT trial. RMD Open. 3:e0004582017. View Article : Google Scholar : PubMed/NCBI | |
|
Castillo JJ, Mulkey F, Geyer S, Kolitz JE, Blum W, Powell BL, George SL, Larson RA and Stone RM: Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: A pooled analysis from four CALGB (alliance) clinical trials. Am J Hematol. 91:199–204. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Laurent V, Guérard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, Zaidi F, Majed B, Garandeau D, Socrier Y, et al: Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 7:102302016. View Article : Google Scholar : PubMed/NCBI | |
|
Osman MA and Hennessy BT: Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol. 9:105–112. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Engin A: Obesity-associated breast cancer: Analysis of risk factors. Adv Exp Med Biol. 960:571–606. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y: Tumor angiogenesis and molecular targets for therapy. Front Biosci (Landmark Ed). 14:3962–3973. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, et al: Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 28:104–117.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hedlund EM, Yang X, Zhang Y, Yang Y, Shibuya M, Zhong W, Sun B, Liu Y, Hosaka K and Cao Y: Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs. Proc Natl Acad Sci USA. 110:654–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Honek J, Seki T, Iwamoto H, Fischer C, Li J, Lim S, Samani NJ, Zang J and Cao Y: Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues. Proc Natl Acad Sci USA. 111:14906–14911. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, Lim S, Fischer C, Nakamura M, Abe M, et al: Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 7:126802016. View Article : Google Scholar : PubMed/NCBI | |
|
Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, Putluri V, Bhat VB, Bhowmik SK, Gupta V, Arora K, et al: Fatty acid oxidation-driven src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep. 14:2154–2165. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Trédan O, Lacroix-Triki M, Guiu S, Mouret-Reynier MA, Barrière J, Bidard FC, Braccini AL, Mir O, Villanueva C and Barthélémy P: Angiogenesis and tumor microenvironment: Bevacizumab in the breast cancer model. Target Oncol. 10:189–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, et al: Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med. 10:eaag09452018. View Article : Google Scholar : PubMed/NCBI | |
|
Casanovas O, Hicklin DJ, Bergers G and Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 8:299–309. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dimou NL, Papadimitriou N, Mariosa D, Johansson M, Brennan P, Peters U, Chanock SJ, Purdue M, Bishop DT, Gago-Dominquez M, et al: Circulating adipokine concentrations and risk of five obesity-related cancers: A mendelian randomization study. Int J Cancer. 148:1625–1636. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cha YJ, Kim ES and Koo JS: Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer. Breast Cancer Res Treat. 170:15–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JO, Kim N, Lee HJ, Lee YW, Kim SJ, Park SH and Kim HS: Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep. 6:189232016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong Y, Russell DL, McDonald LT, Cowart LA and LaRue AC: Hematopoietic stem cell-derived adipocytes promote tumor growth and cancer cell migration. Int J Cancer Res Mol Mech. 3:102017.PubMed/NCBI | |
|
Wang C, Gao C, Meng K, Qiao H and Wang Y: Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One. 10:e01193482015. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L and Sánchez-Margalet V: Obesity and breast cancer: Role of leptin. Front Oncol. 9:5962019. View Article : Google Scholar : PubMed/NCBI | |
|
Ando S, Barone I, Giordano C, Bonofiglio D and Catalano S: The multifaceted mechanism of leptin signaling within tumor microenvironment in driving breast cancer growth and progression. Front Oncol. 4:3402014.PubMed/NCBI | |
|
Gnerlich JL, Yao KA, Fitchev PS, Goldschmidt RA, Bond MC, Cornwell M and Crawford SE: Peritumoral expression of adipokines and fatty acids in breast cancer. Ann Surg Oncol. 20 (Suppl 3):S731–S738. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, Cooper DR and Yasuda K: Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: Reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta. 1592:107–116. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Guo S and Gonzalez-Perez RR: Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 104:128–137. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Li K, Pang X, Guo B, Su M, Huang Y, Wang N, Ji F, Zhong C, Yang J, et al: Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res. 35:1662016. View Article : Google Scholar : PubMed/NCBI | |
|
Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, Castañeda-Saucedo E, Mendoza-Catalán MÁ, Ortuño-Pineda C, Moreno-Godínez ME, Villegas-Comonfort S, Padilla-Benavides T and Navarro-Tito N: Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect. 8:1539–1552. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, Nakajima N, Wada K, Takeda K, Nakagama H and Nakajima A: Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut. 60:1363–1371. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
He JY, Wei XH, Li SJ, Liu Y, Hu HL, Li ZZ, Kuang XH, Wang L, Shi X, Yuan ST and Sun L: Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun Signal. 16:1002018. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Wei L, Huang Y, Wu Y, Su M, Pang X, Wang N, Ji F, Zhong C and Chen T: Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 48:2479–2487. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Maroni P: Leptin, adiponectin, and Sam68 in bone metastasis from breast cancer. Int J Mol Sci. 21:10512020. View Article : Google Scholar : PubMed/NCBI | |
|
Sultana R, Kataki AC, Borthakur BB, Basumatary TK and Bose S: Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene. 621:51–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, Woo J, Győrffy B, Gabrielson E, Saxena NK and Sharma D: ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 13:1386–1403. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Li B and Sun S and Sun S: Unraveling adipocytes and cancer links: Is there a role for senescence? Front Cell Dev Biol. 8:2822020. View Article : Google Scholar : PubMed/NCBI | |
|
Hardie DG: AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 8:774–785. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Theriau CF, Sauvé OS, Beaudoin MS, Wright DC and Connor MK: Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation. PLoS One. 12:e01838972017. View Article : Google Scholar : PubMed/NCBI | |
|
Tae CH, Kim SE, Jung SA, Joo YH, Shim KN, Jung HK, Kim TH, Cho MS, Kim KH and Kim JS: Involvement of adiponectin in early stage of colorectal carcinogenesis. BMC Cancer. 14:8112014. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Saud SM, Young MR, Chen G and Hua B: Targeting AMPK for cancer prevention and treatment. Oncotarget. 6:7365–7378. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Park SY, Kim D and Kee SH: Metformin-activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol Lett. 17:2695–2702. 2019.PubMed/NCBI | |
|
Rutherford C, Speirs C, Williams JJ, Ewart MA, Mancini SJ, Hawley SA, Delles C, Viollet B, Costa-Pereira AP, Baillie GS, et al: Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Sci Signal. 9:ra1092016. View Article : Google Scholar : PubMed/NCBI | |
|
Waldner MJ, Foersch S and Neurath MF: Interleukin-6-a key regulator of colorectal cancer development. Int J Biol Sci. 8:1248–1253. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Semaan J, Pinon A, Rioux B, Hassan L, Limami Y, Pouget C, Fagnère C, Sol V, Diab-Assaf M, Simon A and Liagre B: Resistance to 3-HTMC-induced apoptosis through activation of PI3K/Akt, MEK/ERK, and p38/COX-2/PGE2 pathways in human HT-29 and HCT116 colorectal cancer cells. J Cell Biochem. 117:2875–2885. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura T: The chemokine MCP-1 (CCL2) in the host interaction with cancer: A foe or ally? Cell Mol Immunol. 15:335–345. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, Luu T, Li AX, Wu X, Ye W, et al: CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 72:2768–2779. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K and Toi M: Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer. 92:1085–1091. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Dommel S and Blüher M: Does C-C motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int J Mol Sci. 22:15002021. View Article : Google Scholar : PubMed/NCBI | |
|
Faria SS, Corrêa LH, Heyn GS, de Sant'Ana LP, Almeida RDN and Magalhães KG: Obesity and breast cancer: The role of crown-like structures in breast adipose tissue in tumor progression, prognosis, and therapy. J Breast Cancer. 23:233–245. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh CC and Huang YS: Aspirin breaks the crosstalk between 3T3-L1 adipocytes and 4T1 breast cancer cells by regulating cytokine production. PLoS One. 11:e01471612016. View Article : Google Scholar : PubMed/NCBI | |
|
Kuziel G, Thompson V, D'Amato JV and Arendt LM: Stromal CCL2 signaling promotes mammary tumor fibrosis through recruitment of myeloid-lineage cells. Cancers (Basel). 12:20832020. View Article : Google Scholar : PubMed/NCBI | |
|
Kranjc MK, Novak M, Pestell RG and Lah TT: Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiol Oncol. 53:397–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Suárez-Nájera LE, Chanona-Pérez JJ, Valdivia-Flores A, Marrero-Rodríguez D, Salcedo-Vargas M, García-Ruiz DI and Castro-Reyes MA: Morphometric study of adipocytes on breast cancer by means of photonic microscopy and image analysis. Microsc Res Tech. 81:240–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zazo S, González-Alonso P, Martín-Aparicio E, Chamizo C, Luque M, Sanz-Álvarez M, Mínguez P, Gómez-López G, Cristóbal I, Caramés C, et al: Autocrine CCL5 effect mediates trastuzumab resistance by ERK pathway activation in HER2-positive breast cancer. Mol Cancer Ther. 19:1696–1707. 2020.PubMed/NCBI | |
|
Song X, Zhou X, Qin Y, Yang J, Wang Y, Sun Z, Yu K, Zhang S and Liu S: Emodin inhibits epithelial-mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC-chemokine ligand 5 secreted from adipocytes. Int J Mol Med. 42:579–588. 2018.PubMed/NCBI | |
|
Gao D, Rahbar R and Fish EN: CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biol. 6:1601222016. View Article : Google Scholar : PubMed/NCBI | |
|
Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, et al: Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget. 7:85437–85449. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Velasco-Velazquez M and Pestell RG: The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncoimmunology. 2:e236602013. View Article : Google Scholar : PubMed/NCBI | |
|
Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP and Pestell RG: CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 72:3839–3850. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kim EJ, Kim YK, Kim S, Kim JE, Tian YD, Doh EJ, Lee DH and Chung JH: Adipochemokines induced by ultraviolet irradiation contribute to impaired fat metabolism in subcutaneous fat cells. Br J Dermatol. 178:492–501. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Keophiphath M, Rouault C, Divoux A, Clement K and Lacasa D: CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb Vasc Biol. 30:39–45. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shao L, Feng B, Zhang Y, Zhou H, Ji W and Min W: The role of adipose-derived inflammatory cytokines in type 1 diabetes. Adipocyte. 5:270–274. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Brett E, Sauter M, Timmins É, Azimzadeh O, Rosemann M, Merl-Pham J, Hauck SM, Nelson PJ, Becker KF, Schunn I, et al: Oncogenic linear collagen VI of invasive breast cancer is induced by CCL5. J Clin Med. 9:9912020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Xu F, Lu T, Duan Z and Zhang Z: Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 38:904–910. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HS, Jung M, Choi SK, Woo J, Piao YJ, Hwang EH, Kim H, Kim SJ and Moon WK: IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res. 37:2002018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Hong BS, Ryu HS, Lee HB, Lee M, Park IA, Kim J, Han W, Noh DY and Moon HG: Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One. 12:e01741262017. View Article : Google Scholar : PubMed/NCBI | |
|
Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A and Blay JY: Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 88:1721–1726. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Deng T, Lyon CJ, Bergin S, Caligiuri MA and Hsueh WA: Obesity, inflammation, and cancer. Annu Rev Pathol. 11:421–449. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Lee JS, Jie C, Park MH, Iwakura Y, Patel Y, Soni M, Reisman D and Chen H: HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance. Cancer Res. 78:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Banerjee K and Resat H: Constitutive activation of STAT3 in breast cancer cells: A review. Int J Cancer. 138:2570–2578. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nickel A, Blücher C, Kadri OA, Schwagarus N, Müller S, Schaab M, Thiery J, Burkhardt R and Stadler SC: Adipocytes induce distinct gene expression profiles in mammary tumor cells and enhance inflammatory signaling in invasive breast cancer cells. Sci Rep. 8:94822018. View Article : Google Scholar : PubMed/NCBI | |
|
Gyamfi J, Lee YH, Eom M and Choi J: Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 8:88592018. View Article : Google Scholar : PubMed/NCBI | |
|
Jin K, Pandey NB and Popel AS: Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res. 20:542018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Chen Y, Gao W, Chang A, Ye Y, Shen W, Luo Y, Yang S, Sun P, Xiang R and Li N: Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics. 7:775–788. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gyamfi J, Lee YH, Min BS and Choi J: Niclosamide reverses adipocyte induced epithelial-mesenchymal transition in breast cancer cells via suppression of the interleukin-6/STAT3 signalling axis. Sci Rep. 9:113362019. View Article : Google Scholar : PubMed/NCBI |