Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2022 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Efferocytosis in multisystem diseases (Review)

  • Authors:
    • Yifan Zhang
    • Yiru Wang
    • Jie Ding
    • Ping Liu
  • View Affiliations / Copyright

    Affiliations: Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 13
    |
    Published online on: November 10, 2021
       https://doi.org/10.3892/mmr.2021.12529
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
View Figures
View References

1 

Thorp E and Tabas I: Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol. 86:1089–1095. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Boada-Romero E, Martinez J, Heckmann BL and Green DR: The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol. 21:398–414. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Trahtemberg U and Mevorach D: Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells. Front Immunol. 8:13562017. View Article : Google Scholar : PubMed/NCBI

4 

Segawa K and Nagata S: An apoptotic ‘Eat Me’ Signal: Phosphatidylserine exposure. Trends Cell Biol. 25:639–650. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Kourtzelis I, Hajishengallis G and Chavakis T: Phagocytosis of apoptotic cells in resolution of inflammation. Front Immunol. 11:5532020. View Article : Google Scholar : PubMed/NCBI

6 

Freeman SA and Grinstein S: Phagocytosis: Receptors, signal integration and the cytoskeleton. Immunol Rev. 262:193–215. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Doran AC, Yurdagul A Jr and Tabas I: Efferocytosis in health and disease. Nat Rev Immunol. 20:254–267. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Levin R, Grinstein S and Canton J: The life cycle of phagosomes: Formation, maturation and resolution. Immunol Rev. 273:156–179. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, et al: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 461:282–286. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, et al: Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113:717–730. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S and Spiegel S: Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a ‘come-and-get-me’ signal. FASEB J. 22:2629–2638. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, et al: CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 112:5026–5036. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S and Lauber K: Migration to apoptotic ‘find-me’ signals is mediated via the phagocyte receptor G2A. J Biol Chem. 283:5296–5305. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M and Henson PM: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 123:321–334. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Appelt U, Sheriff A, Gaipl US, Kalden JR, Voll RE and Herrmann M: Viable, apoptotic and necrotic monocytes expose phosphatidylserine: Cooperative binding of the ligand Annexin V to dying but not viable cells and implications for PS-dependent clearance. Cell Death Differ. 12:194–196. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Geng K, Kumar S, Kimani SG, Kholodovych V, Kasikara C, Mizuno K, Sandiford O, Rameshwar P, Kotenko SV and Birge RB: Requirement of gamma-carboxyglutamic acid modification and phosphatidylserine binding for the activation of Tyro3, Axl and Mertk receptors by growth arrest-specific 6. Front Immunol. 8:15212017. View Article : Google Scholar : PubMed/NCBI

18 

Ravichandran KS: Find-me and eat-me signals in apoptotic cell clearance: Progress and conundrums. J Exp Med. 207:1807–1817. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Tajbakhsh A, Rezaee M, Kovanen PT and Sahebkar A: Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther. 188:12–25. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Yoon KW: Dead cell phagocytosis and innate immune checkpoint. BMB Rep. 50:496–503. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR and Mirzaei H: Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol. 90:1071772021. View Article : Google Scholar : PubMed/NCBI

22 

Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, et al: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 316:1491–1493. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Smith JG, Melander O, Lövkvist H, Hedblad B, Engström G, Nilsson P, Carlson J, Berglund G, Norrving B and Lindgren A: Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: A large-scale genetic association study. Circ Cardiovasc Genet. 2:159–164. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Kojima Y, Downing K, Kundu R, Miller C, Dewey F, Lancero H, Raaz U, Perisic L, Hedin U, Schadt E, et al: Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest. 129:21642019. View Article : Google Scholar : PubMed/NCBI

25 

Leeper NJ, Raiesdana A, Kojima Y, Kundu RK, Cheng H, Maegdefessel L, Toh R, Ahn GO, Ali ZA, Anderson DR, et al: Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol. 33:e1–e10. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Martinho-Dias D, Leite-Moreira A and Castro-Chaves P: Calreticulin in the heart: From embryological development to cardiac pathology. Curr Mol Med. 16:12–22. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Cunnington MS and Keavney B: Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus. Curr Atheroscler Rep. 13:193–201. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Bäck M, Yurdagul A Jr, Tabas I, Öörni K and Kovanen PT: Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 6:389–406. 2019.PubMed/NCBI

29 

Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, et al: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 464:1357–1361. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Tabas I: Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 10:36–46. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, Direnzo D, Nanda V, Ye J, Connolly AJ, et al: CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 536:86–90. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Martinet W, Schrijvers DM and De Meyer GR: Necrotic cell death in atherosclerosis. Basic Res Cardiol. 106:749–760. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Tabas I: 2016 Russell Ross memorial lecture in vascular biology: Molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 37:183–189. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Han CZ and Ravichandran KS: Metabolic connections during apoptotic cell engulfment. Cell. 147:1442–1445. 2011. View Article : Google Scholar : PubMed/NCBI

37 

A-Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Díaz M, Gallardo G, et al: Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 31:245–258. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, et al: PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med. 15:1266–1272. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Festuccia WT, Pouliot P, Bakan I, Sabatini DM and Laplante M: Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS One. 9:e954322014. View Article : Google Scholar : PubMed/NCBI

40 

Schrijvers DM, De Meyer GR, Kockx MM, Herman AG and Martinet W: Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol. 25:1256–1261. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Yurdagul A Jr, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, Kolluru GK, Rymond CC, Gerlach BD, Zheng Z, et al: Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31:518–533.e10. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Kimani SG, Geng K, Kasikara C, Kumar S, Sriram G, Wu Y and Birge RB: Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity. Front Immunol. 5:5662014. View Article : Google Scholar : PubMed/NCBI

43 

Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJ, Dorweiler B, Spite M, Fredman G and Tabas I: MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J Clin Invest. 127:564–568. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, et al: Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 115:2168–2177. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Schrijvers DM, De Meyer GR, Herman AG and Martinet W: Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 73:470–480. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Virmani R, Burke AP, Kolodgie FD and Farb A: Vulnerable plaque: The pathology of unstable coronary lesions. J Interv Cardiol. 15:439–446. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Pulanco MC, Cosman J, Ho MM, Huynh J, Fing K, Turcu J and Fraser DA: Complement protein C1q enhances macrophage foam cell survival and efferocytosis. J Immunol. 198:472–480. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Marsch E, Theelen TL, Demandt JA, Jeurissen M, van Gink M, Verjans R, Janssen A, Cleutjens JP, Meex SJ, Donners MM, et al: Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol. 34:2545–2553. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Gui Y, Yao S, Yan H, Hu L, Yu C, Gao F, Xi C, Li H, Ye Y and Wang Y: A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Cardiovasc Res. 112:502–514. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Salman H, Bergman M, Djaldetti M and Bessler H: Hydrophobic but not hydrophilic statins enhance phagocytosis and decrease apoptosis of human peripheral blood cells in vitro. Biomed Pharmacother. 62:41–45. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Ivanova EA, Myasoedova VA, Melnichenko AA and Orekhov AN: Peroxisome proliferator-activated receptor (PPAR) gamma agonists as therapeutic agents for cardiovascular disorders: Focus on atherosclerosis. Curr Pharm Des. 23:1119–1124. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Heo KS, Cushman HJ, Akaike M, Woo CH, Wang X, Qiu X, Fujiwara K and Abe J: ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation. 130:180–191. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Wang J and Liu P: Effects of ERK5 inhibitors on macrophages efferocytosis and the expression of ProS and Axl. Journal of Jinan University (Natural Science & Medicine Edition). 39:93–98. 2018.(In Chinese).

54 

Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, et al: Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res. 113:1004–1012. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Fox S, Leitch AE, Duffin R, Haslett C and Rossi AG: Neutrophil apoptosis: Relevance to the innate immune response and inflammatory disease. J Innate Immun. 2:216–227. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Hodge S, Tran HB, Hamon R, Roscioli E, Hodge G, Jersmann H, Ween M, Reynolds PN, Yeung A, Treiberg J and Wilbert S: Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases. Am J Physiol Lung Cell Mol Physiol. 312:L678–Ll687. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Lee YJ, Lee SH, Youn YS, Choi JY, Song KS, Cho MS and Kang JL: Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice. Toxicol Appl Pharmacol. 263:61–72. 2012. View Article : Google Scholar : PubMed/NCBI

58 

McCubbrey AL and Curtis JL: Efferocytosis and lung disease. Chest. 143:1750–1757. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Lareau SC, Fahy B, Meek P and Wang A: Chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 199:P1–P2. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Noda N, Matsumoto K, Fukuyama S, Asai Y, Kitajima H, Seki N, Matsunaga Y, Kan-O K, Moriwaki A, Morimoto K, et al: Cigarette smoke impairs phagocytosis of apoptotic neutrophils by alveolar macrophages via inhibition of the histone deacetylase/Rac/CD9 pathways. Int Immunol. 25:643–650. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Krysko O, Vandenabeele P, Krysko DV and Bachert C: Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis. 15:1137–1146. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Simpson JL, Gibson PG, Yang IA, Upham J, James A, Reynolds PN and Hodge S; AMAZES Study Research Group, : Impaired macrophage phagocytosis in non-eosinophilic asthma. Clin Exp Allergy. 43:29–35. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Stanton BF: Cystic fibrosis. Pediatr Clin North Am. 63:xv2016. View Article : Google Scholar

64 

Vandivier RW, Fadok VA, Ogden CA, Hoffmann PR, Brain JD, Accurso FJ, Fisher JH, Greene KE and Henson PM: Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest. 121 (Suppl 3):S892002. View Article : Google Scholar : PubMed/NCBI

65 

Mishra V, Banga J and Silveyra P: Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther. 181:169–182. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Felton JM, Lucas CD, Dorward DA, Duffin R, Kipari T, Vermeren S, Robb CT, MacLeod KG, Serrels B, Schwarze J, et al: Mer-mediated eosinophil efferocytosis regulates resolution of allergic airway inflammation. J Allergy Clin Immunol. 142:1884–1893.e6. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Freeman GJ, Casasnovas JM, Umetsu DT and DeKruyff RH: TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev. 235:172–189. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Grabiec AM, Denny N, Doherty JA, Happonen KE, Hankinson J, Connolly E, Fife ME, Fujimori T, Fujino N, Goenka A, et al: Diminished airway macrophage expression of the Axl receptor tyrosine kinase is associated with defective efferocytosis in asthma. J Allergy Clin Immunol. 140:1144–1146.e4. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Aziz M, Matsuda A, Yang WL, Jacob A and Wang P: Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol. 189:393–402. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Choi JY, Park HJ, Lee YJ, Byun J, Youn YS, Choi JH, Woo SY and Kang JL: Upregulation of Mer receptor tyrosine kinase signaling attenuated lipopolysaccharide-induced lung inflammation. J Pharmacol Exp Ther. 344:447–458. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M and Reynolds PN: Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 178:139–148. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K and Nagatake T: Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob Agents Chemother. 47:48–53. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M and Reynolds PN: Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J. 28:486–495. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Xiong Z, Leme AS, Ray P, Shapiro SD and Lee JS: CX3CR1+ lung mononuclear phagocytes spatially confined to the interstitium produce TNF-α and IL-6 and promote cigarette smoke-induced emphysema. J Immunol. 186:3206–3214. 2011. View Article : Google Scholar : PubMed/NCBI

75 

McColl A, Bournazos S, Franz S, Perretti M, Morgan BP, Haslett C and Dransfield I: Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J Immunol. 183:2167–2175. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Zizzo G, Hilliard BA, Monestier M and Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Grégoire M, Uhel F, Lesouhaitier M, Gacouin A, Guirriec M, Mourcin F, Dumontet E, Chalin A, Samson M, Berthelot LL, et al: Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. Eur Respir J. 52:17025902018. View Article : Google Scholar : PubMed/NCBI

78 

Grabiec AM and Hussell T: The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin Immunopathol. 38:409–423. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Krenkel O and Tacke F: Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 17:306–321. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Bukong TN, Cho Y, Iracheta-Vellve A, Saha B, Lowe P, Adejumo A, Furi I, Ambade A, Gyongyosi B, Catalano D, et al: Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol. 69:1145–1154. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Horst AK, Tiegs G and Diehl L: Contribution of macrophage efferocytosis to liver homeostasis and disease. Front Immunol. 10:26702019. View Article : Google Scholar : PubMed/NCBI

82 

Rocco A, Compare D, Angrisani D, Sanduzzi Zamparelli M and Nardone G: Alcoholic disease: Liver and beyond. World J Gastroenterol. 20:14652–14659. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Wang X, Bu HF, Zhong W, Asai A, Zhou Z and Tan XD: MFG-E8 and HMGB1 are involved in the mechanism underlying alcohol-induced impairment of macrophage efferocytosis. Mol Med. 19:170–182. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Roszer T, Menendez-Gutierrez MP, Lefterova MI, Alameda D, Núñez V, Lazar MA, Fischer T and Ricote M: Autoimmune kidney disease and impaired engulfment of apoptotic cells in mice with macrophage peroxisome proliferator-activated receptor gamma or retinoid X receptor alpha deficiency. J Immunol. 186:621–631. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Tutusaus A, de Gregorio E, Cucarull B, Cristóbal H, Aresté C, Graupera I, Coll M, Colell A, Gausdal G, Lorens JB, et al: A functional role of GAS6/TAM in nonalcoholic steatohepatitis progression implicates AXL as therapeutic target. Cell Mol Gastroenterol Hepatol. 9:349–368. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Ashraf NU and Sheikh TA: Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res. 49:1405–1418. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Anwar A, Keating AK, Joung D, Sather S, Kim GK, Sawczyn KK, Brandão L, Henson PM and Graham DK: Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress. J Leukoc Biol. 86:73–79. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, et al: NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 66:1037–1046. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Liu W, Bai F, Wang H, Liang Y, Du X, Liu C, Cai D, Peng J, Zhong G, Liang X, et al: Tim-4 inhibits NLRP3 inflammasome via the LKB1/AMPKα pathway in macrophages. J Immunol. 203:990–1000. 2019. View Article : Google Scholar : PubMed/NCBI

90 

El Bassat H, Ziada DH, Hasby EA, Nagy H and Abo Ryia MH: Apoptotic and anti-apoptotic seromarkers for assessment of disease severity of non-alcoholic steatohepatitis. Arab J Gastroenterol. 15:6–11. 2014. View Article : Google Scholar : PubMed/NCBI

91 

de Alwis NM and Day CP: Non-alcoholic fatty liver disease: The mist gradually clears. J Hepatol. 48 (Suppl 1):S104–S112. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Yao Q, Li S, Li X, Wang F and Tu C: Myricetin modulates macrophage polarization and mitigates liver inflammation and fibrosis in a murine model of nonalcoholic steatohepatitis. Front Med (Lausanne). 7:712020. View Article : Google Scholar : PubMed/NCBI

93 

Yang M, Liu J, Piao C, Shao J and Du J: ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death Dis. 6:e17802015. View Article : Google Scholar : PubMed/NCBI

94 

Rantakari P, Patten DA, Valtonen J, Karikoski M, Gerke H, Dawes H, Laurila J, Ohlmeier S, Elima K, Hübscher SG, et al: Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc Natl Acad Sci USA. 113:9298–9303. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Llacuna L, Bárcena C, Bellido-Martín L, Fernández L, Stefanovic M, Marí M, García-Ruiz C, Fernández-Checa JC, García de Frutos P and Morales A: Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology. 52:1371–1379. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Lafdil F, Chobert MN, Deveaux V, Zafrani ES, Mavier P, Nakano T, Laperche Y and Brouillet A: Growth arrest-specific protein 6 deficiency impairs liver tissue repair after acute toxic hepatitis in mice. J Hepatol. 51:55–66. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Caberoy NB, Alvarado G, Bigcas JL and Li W: Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol. 227:401–407. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Triantafyllou E, Pop OT, Possamai LA, Wilhelm A, Liaskou E, Singanayagam A, Bernsmeier C, Khamri W, Petts G, Dargue R, et al: MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut. 67:333–347. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Otani A, Ishihara S, Aziz MM, Oshima N, Mishima Y, Moriyama I, Yuki T, Amano Y, Ansary MM and Kinoshita Y: Intrarectal administration of milk fat globule epidermal growth factor-8 protein ameliorates murine experimental colitis. Int J Mol Med. 29:349–356. 2012.PubMed/NCBI

100 

Rothlin CV, Leighton JA and Ghosh S: Tyro3, Axl and Mertk receptor signaling in inflammatory bowel disease and colitis-associated cancer. Inflamm Bowel Dis. 20:1472–1480. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Bosurgi L, Bernink JH, Delgado Cuevas V, Gagliani N, Joannas L, Schmid ET, Booth CJ, Ghosh S and Rothlin CV: Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc Natl Acad Sci USA. 110:13091–13096. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Steiner CA, Rodansky ES, Johnson LA, Berinstein JA, Cushing KC, Huang S, Spence JR and Higgins PDR: AXL is a potential target for the treatment of intestinal fibrosis. Inflamm Bowel Dis. 27:303–316. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Akitake-Kawano R, Seno H, Nakatsuji M, Kimura Y, Nakanishi Y, Yoshioka T, Kanda K, Kawada M, Kawada K, Sakai Y and Chiba T: Inhibitory role of Gas6 in intestinal tumorigenesis. Carcinogenesis. 34:1567–1574. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Shankman LS, Fleury ST, Evans WB, Penberthy KK, Arandjelovic S, Blumberg RS, Agaisse H and Ravichandran KS: Efferocytosis by Paneth cells within the intestine. Curr Biol. 31:2469–2476.e5. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Fuchs Y and Steller H: Programmed cell death in animal development and disease. Cell. 147:742–758. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M and Muñoz LE: Surface code-biophysical signals for apoptotic cell clearance. Phys Biol. 10:0650072013. View Article : Google Scholar : PubMed/NCBI

107 

Yang F, He Y, Zhai Z and Sun E: Programmed cell death pathways in the pathogenesis of systemic lupus erythematosus. J Immunol Res. 2019:36385622019. View Article : Google Scholar : PubMed/NCBI

108 

Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC and Sahebkar A: The role of nuclear factors as ‘Find-Me’/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol. 80:1061342020. View Article : Google Scholar : PubMed/NCBI

109 

Silva MT, do Vale A and dos Santos NM: Secondary necrosis in multicellular animals: An outcome of apoptosis with pathogenic implications. Apoptosis. 13:463–482. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Muñoz LE, Lauber K, Schiller M, Manfredi AA and Herrmann M: The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 6:280–289. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Qi N, Liu P, Zhang Y, Wu H, Chen Y and Han D: Development of a spontaneous liver disease resembling autoimmune hepatitis in mice lacking tyro3, axl and mer receptor tyrosine kinases. PLoS One. 8:e666042013. View Article : Google Scholar : PubMed/NCBI

112 

Mills JA: Systemic lupus erythematosus. N Engl J Med. 330:1871–1879. 1994. View Article : Google Scholar : PubMed/NCBI

113 

Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, Komisar O, Slonimsky E, Klang E, Lotan E, et al: A volcanic explosion of autoantibodies in systemic lupus erythematosus: A diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 14:75–79. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Huang WN, Tso TK, Wu HC, Yang HF and Tsay GJ: Impaired phagocytosis of apoptotic cell material in serologically active clinically quiescent patients with systemic lupus erythematosis. Int J Rheum Dis. 19:1310–1316. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Sakamoto K, Fukushima Y, Ito K, Matsuda M, Nagata S, Minato N and Hattori M: Osteopontin in Spontaneous Germinal Centers inhibits apoptotic cell engulfment and promotes Anti-Nuclear antibody production in Lupus-Prone Mice. J Immunol. 197:2177–2186. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Recarte-Pelz P, Tàssies D, Espinosa G, Hurtado B, Sala N, Cervera R, Reverter JC and de Frutos PG: Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: Correlation with common genetic variants and disease activity. Arthritis Res Ther. 15:R412013. View Article : Google Scholar : PubMed/NCBI

117 

Lu Q and Lemke G: Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science. 293:306–311. 2001. View Article : Google Scholar : PubMed/NCBI

118 

Rodriguez-Manzanet R, Sanjuan MA, Wu HY, Quintana FJ, Xiao S, Anderson AC, Weiner HL, Green DR and Kuchroo VK: T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA. 107:8706–8711. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Xiao S, Brooks CR, Zhu C, Wu C, Sweere JM, Petecka S, Yeste A, Quintana FJ, Ichimura T, Sobel RA, et al: Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci USA. 109:12105–12110. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Ramirez-Ortiz ZG, Pendergraft WF III, Prasad A, Byrne MH, Iram T, Blanchette CJ, Luster AD, Hacohen N, El Khoury J and Means TK: The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol. 14:917–926. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Tian L, Choi SC, Murakami Y, Allen J, Morse HC III, Qi CF, Krzewski K and Coligan JE: p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat Commun. 5:31462014. View Article : Google Scholar : PubMed/NCBI

122 

Waterborg CEJ, Koenders MI, van Lent PLEM, van der Kraan PM and van de Loo FAJ: Tyro3/Axl/Mertk-deficient mice develop bone marrow edema which is an early pathological marker in rheumatoid arthritis. PLoS One. 13:e02059022018. View Article : Google Scholar : PubMed/NCBI

123 

Park MC, Kwon YJ, Chung SJ, Park YB and Lee SK: Liver X receptor agonist prevents the evolution of collagen-induced arthritis in mice. Rheumatology (Oxford). 49:882–890. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Huang Y, Fu X, Lyu X, Xu Z, He Z, Zhang Y, Zeng Y, He F and Huang G: Activation of LXR attenuates collagen-induced arthritis via suppressing BLyS production. Clin Immunol. 161:339–347. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Zhu X, Chen F, Lu K, Wei A, Jiang Q and Cao W: PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice. Ann Rheum Dis. 78:1420–1429. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Noble JA: Immunogenetics of type 1 diabetes: A comprehensive review. J Autoimmun. 64:101–112. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, Perna-Barrull D, Cano-Sarabia M, Garcia-Jimeno S, Villalba A, Sanchez A, Aguilera E, Vazquez F, et al: Phosphatidylserine-liposomes promote tolerogenic features on dendritic cells in human type 1 diabetes by apoptotic mimicry. Front Immunol. 9:2532018. View Article : Google Scholar : PubMed/NCBI

128 

Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK and Roy S: Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 5:e95392010. View Article : Google Scholar : PubMed/NCBI

129 

Das A, Ghatak S, Sinha M, Chaffee S, Ahmed NS, Parinandi NL, Wohleb ES, Sheridan JF, Sen CK and Roy S: Correction of MFG-E8 resolves inflammation and promotes cutaneous wound healing in diabetes. J Immunol. 196:5089–5100. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Witas R, Peck AB, Ambrus JL and Nguyen CQ: Sjogren's syndrome and TAM receptors: A possible contribution to disease onset. J Immunol Res. 2019:48137952019. View Article : Google Scholar : PubMed/NCBI

131 

Chen CH, Chen HC, Chang CC, Peng YJ, Lee CH, Shieh YS, Hung YJ and Lin YF: Growth arrest-specific 6 protein in patients with Sjögren syndrome: Determination of the plasma level and expression in the labial salivary gland. PLoS One. 10:e01399552015. View Article : Google Scholar : PubMed/NCBI

132 

Qin B, Wang J, Ma N, Yang M, Fu H, Liang Y, Huang F, Yang Z and Zhong R: The association of Tyro3/Axl/Mer signaling with inflammatory response, disease activity in patients with primary Sjögren's syndrome. Joint Bone Spine. 82:258–263. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Lauber K, Keppeler H, Munoz LE, Koppe U, Schröder K, Yamaguchi H, Krönke G, Uderhardt S, Wesselborg S, Belka C, et al: Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death Differ. 20:1230–1240. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Zagórska A, Través PG, Lew ED, Dransfield I and Lemke G: Diversification of TAM receptor tyrosine kinase function. Nat Immunol. 15:920–928. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Elliott MR and Ravichandran KS: Clearance of apoptotic cells: Implications in health and disease. J Cell Biol. 189:1059–1070. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Maderna P, Yona S, Perretti M and Godson C: Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac(2–26). J Immunol. 174:3727–3733. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Majai G, Sarang Z, Csomós K, Zahuczky G and Fésüs L: PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol. 37:1343–1354. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Kawano M and Nagata S: Efferocytosis and autoimmune disease. Int Immunol. 30:551–558. 2018.PubMed/NCBI

139 

Tait AS, Butts CL and Sternberg EM: The role of glucocorticoids and progestins in inflammatory, autoimmune and infectious disease. J Leukoc Biol. 84:924–931. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Wolf SA, Boddeke HW and Kettenmann H: Microglia in physiology and disease. Annu Rev Physiol. 79:619–643. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Radi E, Formichi P, Battisti C and Federico A: Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 42 (Suppl 3):S125–S152. 2014. View Article : Google Scholar : PubMed/NCBI

142 

Fuller AD and Eldik LJ: MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol. 3:246–256. 2008. View Article : Google Scholar : PubMed/NCBI

143 

Ji R, Tian S, Lu HJ and Lu Q, Zheng Y, Wang X, Ding J, Li Q and Lu Q: TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol. 191:6165–6177. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Ramachandran G and Udgaonkar JB: Mechanistic studies unravel the complexity inherent in tau aggregation leading to Alzheimer's disease and the tauopathies. Biochemistry. 52:4107–4126. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Zheng Y, Wang Q, Xiao B, Lu Q, Wang Y and Wang X: Involvement of receptor tyrosine kinase Tyro3 in amyloidogenic APP processing and β-amyloid deposition in Alzheimer's disease models. PLoS One. 7:e390352012. View Article : Google Scholar : PubMed/NCBI

146 

Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM and Brown GC: MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci. 32:2657–2666. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y and Shi X: MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol. 234:904–914. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Shi X, Cai X, Di W, Li J, Xu X, Zhang A, Qi W, Zhou Z and Fang Y: MFG-E8 selectively inhibited Aβ-induced microglial M1 polarization via NF-κB and PI3K-Akt pathways. Mol Neurobiol. 54:7777–7788. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Xu X, Cai X, Zhu Y, He W, Wu Q, Shi X, Fang Y and Pei Z: MFG-E8 inhibits Aβ-induced microglial production of cathelicidin-related antimicrobial peptide: A suitable target against Alzheimer's disease. Cell Immunol. 331:59–66. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Kalia LV, Kalia SK, McLean PJ, Lozano AM and Lang AE: α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 73:155–169. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Gardai SJ, Mao W, Schüle B, Babcock M, Schoebel S, Lorenzana C, Alexander J, Kim S, Glick H, Hilton K, et al: Elevated alpha-synuclein impairs innate immune cell function and provides a potential peripheral biomarker for Parkinson's disease. PLoS One. 8:e716342013. View Article : Google Scholar : PubMed/NCBI

152 

Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, et al: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 9:917–924. 2006. View Article : Google Scholar : PubMed/NCBI

153 

Depboylu C, Schäfer MK, Arias-Carrión O, Oertel WH, Weihe E and Höglinger GU: Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol. 70:125–132. 2011. View Article : Google Scholar : PubMed/NCBI

154 

Michelakakis H, Xiromerisiou G, Dardiotis E, Bozi M, Vassilatis D, Kountra PM, Patramani G, Moraitou M, Papadimitriou D, Stamboulis E, et al: Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson's disease. Mov Disord. 27:400–405. 2012. View Article : Google Scholar : PubMed/NCBI

155 

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, et al: A transcriptome database for astrocytes, neurons and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci. 28:264–278. 2008. View Article : Google Scholar : PubMed/NCBI

156 

Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin CV, Nimmerjahn A and Lemke G: TAM receptors regulate multiple features of microglial physiology. Nature. 532:240–244. 2016. View Article : Google Scholar : PubMed/NCBI

157 

Nakashima Y, Miyagi-Shiohira C, Noguchi H and Omasa T: The healing effect of human milk fat Globule-EGF factor 8 protein (MFG-E8) in A rat model of Parkinson's disease. Brain Sci. 8:1672018. View Article : Google Scholar : PubMed/NCBI

158 

Ghahremani Piraghaj M, Soudi S, Ghanbarian H, Bolandi Z, Namaki S and Hashemi SM: Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sci. 212:203–212. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Werfel TA and Cook RS: Efferocytosis in the tumor microenvironment. Semin Immunopathol. 40:545–554. 2018. View Article : Google Scholar : PubMed/NCBI

160 

Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP and Donners MM: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 17:109–118. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Han Q, Shi H and Liu F: CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int Immunopharmacol. 34:101–106. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Finkernagel F, Reinartz S, Lieber S, Adhikary T, Wortmann A, Hoffmann N, Bieringer T, Nist A, Stiewe T, Jansen JM, et al: The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget. 7:75339–75352. 2016. View Article : Google Scholar : PubMed/NCBI

163 

Yeh HW, Chiang CF, Chen PH, Su CC, Wu YC, Chou L, Huang RY, Liu SY and Shieh YS: Axl involved in mineral trioxide aggregate induces macrophage polarization. J Endod. 44:1542–1548. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Graham DK, Salzberg DB, Kurtzberg J, Sather S, Matsushima GK, Keating AK, Liang X, Lovell MA, Williams SA, Dawson TL, et al: Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin Cancer Res. 12:2662–2669. 2006. View Article : Google Scholar : PubMed/NCBI

165 

Wang Y, Moncayo G, Morin P Jr, Xue G, Grzmil M, Lino MM, Clément-Schatlo V, Frank S, Merlo A and Hemmings BA: Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene. 32:872–882. 2013. View Article : Google Scholar : PubMed/NCBI

166 

Schlegel J, Sambade MJ, Sather S, Moschos SJ, Tan AC, Winges A, DeRyckere D, Carson CC, Trembath DG, Tentler JJ, et al: MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J Clin Invest. 123:2257–2267. 2013. View Article : Google Scholar : PubMed/NCBI

167 

Myers KV, Amend SR and Pienta KJ: Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer. 18:942019. View Article : Google Scholar : PubMed/NCBI

168 

Bondanza A, Zimmermann VS, Rovere-Querini P, Turnay J, Dumitriu IE, Stach CM, Voll RE, Gaipl US, Bertling W, Pöschl E, et al: Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J Exp Med. 200:1157–1165. 2004. View Article : Google Scholar : PubMed/NCBI

169 

Linger RM, Keating AK, Earp HS and Graham DK: Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets. 14:1073–1090. 2010. View Article : Google Scholar : PubMed/NCBI

170 

Sawabu T, Seno H, Kawashima T, Fukuda A, Uenoyama Y, Kawada M, Kanda N, Sekikawa A, Fukui H, Yanagita M, et al: Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog. 46:155–164. 2007. View Article : Google Scholar : PubMed/NCBI

171 

Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS, Hunsucker SA, Schlegel J, Martinson H, Cannon C, et al: Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene. 32:5359–5368. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Brightwell RM, Grzankowski KS, Lele S, Eng K, Arshad M, Chen H and Odunsi K: The CD47 ‘don't eat me signal’ is highly expressed in human ovarian cancer. Gynecol Oncol. 143:393–397. 2016. View Article : Google Scholar : PubMed/NCBI

173 

Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, et al: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 109:6662–6667. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, et al: Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 142:699–713. 2010. View Article : Google Scholar : PubMed/NCBI

175 

Liang YY, Schwarzinger I, Simonitsch-Klupp I, Agis H and Oehler R: Impaired efferocytosis by monocytes in multiple myeloma. Oncol Lett. 16:409–416. 2018.PubMed/NCBI

176 

Terzić J, Grivennikov S, Karin E and Karin M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114.e5. 2010. View Article : Google Scholar : PubMed/NCBI

177 

Lew DS, Mazzoni F and Finnemann SC: Microglia inhibition delays retinal degeneration due to MerTK phagocytosis receptor deficiency. Front Immunol. 11:14632020. View Article : Google Scholar : PubMed/NCBI

178 

Jun JI, Kim KH and Lau LF: The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun. 6:73862015. View Article : Google Scholar : PubMed/NCBI

179 

Borucki DM, Toutonji A, Couch C, Mallah K, Rohrer B and Tomlinson S: Complement-mediated microglial phagocytosis and pathological changes in the development and degeneration of the visual system. Front Immunol. 11:5668922020. View Article : Google Scholar : PubMed/NCBI

180 

Bossi F, Tripodo C, Rizzi L, Bulla R, Agostinis C, Guarnotta C, Munaut C, Baldassarre G, Papa G, Zorzet S, et al: C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc Natl Acad Sci USA. 111:4209–4214. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Wang J, Wong YK and Liao F: What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 20:e42018. View Article : Google Scholar : PubMed/NCBI

182 

Wei J, Wang J, Ma G and Liu P: Effects of Guanxinkang on efferocytosis of spleen macrophages in LDLR-/-mice. Academic Journal of Shanghai University of Traditional Chinese Medicine. 32:56–61. 2018.(In Chinese).

183 

Wang J, Mao M, Deng B and Liu P: Effects of Guanxinkang medicated serum on MerTK expression in RAW264.7 macrophages. Academic Journal of Shanghai University of Traditional Chinese Medicine. 32:45–48. 2018.(In Chinese).

184 

Wang J and Liu P: Effects of Guanxinkang and its separate prescriptions on TAM receptor expression in peritoneal macrophages of LDLR−/− atherosclerotic mice. Lishizhen Medicine and Materia Medica Research. 29:2326–2328. 2018.(In Chinese).

185 

Susanti E, Ratnawati R, Aulani A and Rudijanto A: Catechins green tea upregulates the expression of ABCA1, ABCG1 and SRB1 in rats induced atherogenic diet. J Appl Pharma Sci. 9:91–97. 2019. View Article : Google Scholar

186 

Li XY, Kong LX, Li J, He HX and Zhou YD: Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1. Int J Mol Med. 31:331–338. 2013. View Article : Google Scholar : PubMed/NCBI

187 

Kim MS, Kim DS, Kim HS, Kang SW and Kang YH: Inhibitory effects of luteolin on transendothelial migration of monocytes and formation of lipid-laden macrophages. Nutrition. 28:1044–1054. 2012. View Article : Google Scholar : PubMed/NCBI

188 

Park SH, Kim JL, Lee ES, Han SY, Gong JH, Kang MK and Kang YH: Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages. J Nutr. 141:1931–1937. 2011. View Article : Google Scholar : PubMed/NCBI

189 

Guan S, Wang B, Li W, Guan J and Fang X: Effects of berberine on expression of LOX-1 and SR-BI in human macrophage-derived foam cells induced by ox-LDL. Am J Chin Med. 38:1161–1169. 2010. View Article : Google Scholar : PubMed/NCBI

190 

Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A, Takiguchi S, Yakushiji E, Terao Y, Ozasa H, et al: Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ Res. 106:779–787. 2010. View Article : Google Scholar : PubMed/NCBI

191 

Ford HZ, Zeboudj L, Purvis GSD, Ten Bokum A, Zarebski AE, Bull JA, Byrne HM, Myerscough MR and Greaves DR: Efferocytosis perpetuates substance accumulation inside macrophage populations. Proc Biol Sci. 286:201907302019.PubMed/NCBI

192 

Dattaroy D, Seth RK, Das S, Alhasson F, Chandrashekaran V, Michelotti G, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM and Chatterjee S: Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Am J Physiol Gastrointest Liver Physiol. 310:G510–525. 2016. View Article : Google Scholar : PubMed/NCBI

193 

Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, et al: Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One. 7:e425292012. View Article : Google Scholar : PubMed/NCBI

194 

Luo D, Guo Y, Cheng Y, Zhao J, Wang Y and Rong J: Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging (Albany NY). 9:2069–2082. 2017. View Article : Google Scholar : PubMed/NCBI

195 

Lai YS, Putra RBDS, Aui SP and Chang KT: M2C polarization by baicalin enhances efferocytosis via upregulation of MERTK receptor. Am J Chin Med. 46:1899–1914. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Zhu W, Jin Z, Yu J, Liang J, Yang Q, Li F, Shi X, Zhu X and Zhang X: Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 35:119–126. 2016. View Article : Google Scholar : PubMed/NCBI

197 

Cai Q, Li Y and Pei G: Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation. 14:632017. View Article : Google Scholar : PubMed/NCBI

198 

Wu TF, Hsu CY, Huang HS, Chou SP and Wu H: Proteomic analysis of pycnogenol effects in RAW 264.7 macrophage reveals induction of cathepsin D expression and enhancement of phagocytosis. J Agric Food Chem. 55:9784–9791. 2007. View Article : Google Scholar : PubMed/NCBI

199 

Tong H, Mao D, Zhai M, Zhang Z, Sun G and Jiang G: Macrophage activation induced by the polysaccharides isolated from the roots of Sanguisorba officinalis. Pharm Biol. 53:1511–1515. 2015. View Article : Google Scholar : PubMed/NCBI

200 

Wang H, Wei G, Liu F, Banerjee G, Joshi M, Bligh SW, Shi S, Lian H, Fan H, Gu X and Wang S: Characterization of two homogalacturonan pectins with immunomodulatory activity from green tea. Int J Mol Sci. 15:9963–9978. 2014. View Article : Google Scholar : PubMed/NCBI

201 

Gheibi Hayat SM, Bianconi V, Pirro M and Sahebkar A: Efferocytosis: Molecular mechanisms and pathophysiological perspectives. Immunol Cell Biol. 97:124–133. 2019. View Article : Google Scholar : PubMed/NCBI

202 

Holden RM, Hétu MF, Li TY, Ward EC, Couture LE, Herr JE, Christilaw E, Adams MA and Johri AM: Circulating Gas6 is associated with reduced human carotid atherosclerotic plaque burden in high risk cardiac patients. Clin Biochem. 64:6–11. 2019. View Article : Google Scholar : PubMed/NCBI

203 

Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, et al: Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res. 124:e6–e19. 2019. View Article : Google Scholar : PubMed/NCBI

204 

Ait-Oufella H, Pouresmail V, Simon T, Blanc-Brude O, Kinugawa K, Merval R, Offenstadt G, Lesèche G, Cohen PL, Tedgui A and Mallat Z: Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol. 28:1429–1431. 2008. View Article : Google Scholar : PubMed/NCBI

205 

Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S, Wang LJ, Wu Y, Guo N, Zhou J and Yuan ZY: Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol. 317:C776–C787. 2019. View Article : Google Scholar : PubMed/NCBI

206 

Thorp E, Cui D, Schrijvers DM, Kuriakose G and Tabas I: Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol. 28:1421–1428. 2008. View Article : Google Scholar : PubMed/NCBI

207 

Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, Curtiss LK and Terkeltaub R: Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol. 26:563–569. 2006. View Article : Google Scholar : PubMed/NCBI

208 

Gong S, Xu Z, Liu Y, Xing L, Ma J, Yu C, Liu X, Jia X, Xie R and Sui M: Plasma sMer, sAxl and GAS6 levels correlate with disease activity and severity in lupus nephritis. Eur J Clin Invest. 49:e130642019. View Article : Google Scholar : PubMed/NCBI

209 

Tworkoski KA, Platt JT, Bacchiocchi A, Bosenberg M, Boggon TJ and Stern DF: MERTK controls melanoma cell migration and survival and differentially regulates cell behavior relative to AXL. Pigment Cell Melanoma Res. 26:527–541. 2013. View Article : Google Scholar : PubMed/NCBI

210 

Demarest SJ, Gardner J, Vendel MC, Ailor E, Szak S, Huang F, Doern A, Tan X, Yang W, Grueneberg DA, et al: Evaluation of Tyro3 expression, Gas6-mediated Akt phosphorylation and the impact of anti-Tyro3 antibodies in melanoma cell lines. Biochemistry. 52:3102–3118. 2013. View Article : Google Scholar : PubMed/NCBI

211 

Xie S, Li Y, Li X, Wang L, Yang N, Wang Y and Wei H: Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib. Oncotarget. 6:9206–9219. 2015. View Article : Google Scholar : PubMed/NCBI

212 

Walport MJ, Davies KA and Botto M: C1q and systemic lupus erythematosus. Immunobiology. 199:265–285. 1998. View Article : Google Scholar : PubMed/NCBI

213 

Huang W, Wu J, Yang H, Xiong Y, Jiang R, Cui T and Ye D: Milk fat globule-EGF factor 8 suppresses the aberrant immune response of systemic lupus erythematosus-derived neutrophils and associated tissue damage. Cell Death Differ. 24:263–275. 2017. View Article : Google Scholar : PubMed/NCBI

214 

Zhu H, Sun X, Zhu L, Hu F, Shi L, Li Z and Su Y: The expression and clinical significance of different forms of Mer receptor tyrosine kinase in systemic lupus erythematosus. J Immunol Res. 2014:4318962014. View Article : Google Scholar : PubMed/NCBI

215 

Bertolaccini ML, Sanna G, Ralhan S, Gennari LC, Merrill JT, Khamashta MA and Hughes GR: Antibodies directed to protein S in patients with systemic lupus erythematosus: Prevalence and clinical significance. Thromb Haemost. 90:636–641. 2003. View Article : Google Scholar : PubMed/NCBI

216 

Peng Y and Elkon KB: Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J Clin Invest. 121:2221–2241. 2011. View Article : Google Scholar : PubMed/NCBI

217 

Avilla E, Guarino V, Visciano C, Liotti F, Svelto M, Krishnamoorthy G, Franco R and Melillo RM: Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res. 71:1792–1804. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Wang Y, Ding J and Liu P: Efferocytosis in multisystem diseases (Review). Mol Med Rep 25: 13, 2022.
APA
Zhang, Y., Wang, Y., Ding, J., & Liu, P. (2022). Efferocytosis in multisystem diseases (Review). Molecular Medicine Reports, 25, 13. https://doi.org/10.3892/mmr.2021.12529
MLA
Zhang, Y., Wang, Y., Ding, J., Liu, P."Efferocytosis in multisystem diseases (Review)". Molecular Medicine Reports 25.1 (2022): 13.
Chicago
Zhang, Y., Wang, Y., Ding, J., Liu, P."Efferocytosis in multisystem diseases (Review)". Molecular Medicine Reports 25, no. 1 (2022): 13. https://doi.org/10.3892/mmr.2021.12529
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Wang Y, Ding J and Liu P: Efferocytosis in multisystem diseases (Review). Mol Med Rep 25: 13, 2022.
APA
Zhang, Y., Wang, Y., Ding, J., & Liu, P. (2022). Efferocytosis in multisystem diseases (Review). Molecular Medicine Reports, 25, 13. https://doi.org/10.3892/mmr.2021.12529
MLA
Zhang, Y., Wang, Y., Ding, J., Liu, P."Efferocytosis in multisystem diseases (Review)". Molecular Medicine Reports 25.1 (2022): 13.
Chicago
Zhang, Y., Wang, Y., Ding, J., Liu, P."Efferocytosis in multisystem diseases (Review)". Molecular Medicine Reports 25, no. 1 (2022): 13. https://doi.org/10.3892/mmr.2021.12529
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team