|
1
|
Alber AB and Suter DM: Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle. 18:784–794. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Soniat M and Chook YM: Nuclear localization signals for four distinct karyopherin-beta nuclear import systems. Biochem J. 468:353–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FA, Kralt A, van den Bogaart G, Lusk CP, Poolman B and Veenhoff LM: Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science. 333:90–93. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Borlido J, Zecchini V and Mills IG: Nuclear trafficking and functions of endocytic proteins implicated in oncogenesis. Traffic. 10:1209–1220. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Moroianu J: Nuclear import and export pathways. J Cell Biochem Suppl 32-33. S76–S83. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Etienne-Manneville S and Lammerding J: Connecting the plasma membrane to the nucleus by intermediate filaments. Mol Biol Cell. 28:695–696. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pan D and Lin X: Epithelial growth factor receptor-activated nuclear factor κB signaling and its role in epithelial growth factor receptor-associated tumors. Cancer J. 19:461–467. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Packham S, Lin Y, Zhao Z, Warsito D, Rutishauser D and Larsson O: The nucleus-localized epidermal growth factor receptor is SUMOylated. Biochemistry. 54:5157–5166. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
De Angelis Campos AC, Rodrigues MA, de Andrade C, de Goes AM, Nathanson MH and Gomes DA: Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway. Biochem Biophys Res Commun. 412:341–346. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Reif R, Adawy A, Vartak N, Schröder J, Günther G, Ghallab A, Schmidt M, Schormann W and Hengstler JG: Activated ErbB3 translocates to the nucleus via clathrin-independent endocytosis, which is associated with proliferating cells. J Biol Chem. 291:3837–3847. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gururaj AE, Gibson L, Panchabhai S, Bai M, Manyam G, Lu Y, Latha K, Rojas ML, Hwang Y, Liang S and Bogler O: Access to the nucleus and functional association with c-Myc is required for the full oncogenic potential of ΔEGFR/EGFRvIII. J Biol Chem. 288:3428–3438. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bryant DM and Stow JL: Nuclear translocation of cell-surface receptors: Lessons from fibroblast growth factor. Traffic. 6:947–954. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tuzon CT, Rigueur D and Merrill AE: Nuclear fibroblast growth factor receptor signaling in skeletal development and disease. Curr Osteoporos Rep. 17:138–146. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, Huang S, Guo JC and Zhao YP: Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 8:14640–14648. 2015.PubMed/NCBI
|
|
15
|
Narla ST, Klejbor I, Birkaya B, Lee YW, Morys J, Stachowiak EK, Prokop D, Bencherif M and Stachowiak MK: Activation of developmental nuclear fibroblast growth factor receptor 1 signaling and neurogenesis in adult brain by α7 nicotinic receptor agonist. Stem Cells Transl Med. 2:776–788. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM and Nathanson MH: c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem. 283:4344–4351. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen Y, Huang L, Qi X and Chen C: Insulin receptor trafficking: Consequences for insulin sensitivity and diabetes. Int J Mol Sci. 20:50072019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kesten D, Horovitz-Fried M, Brutman-Barazani T and Sampson SR: Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence. Biochim Biophys Acta Mol Cell Res. 1865:551–559. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kabuta T, Hakuno F, Asano T and Takahashi S: Insulin receptor substrate-3 functions as transcriptional activator in the nucleus. J Biol Chem. 277:6846–6851. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim JW, Kim HS, Kim SD and Park JY: Insulin phosphorylates tyrosine residue 464 of tub and translocates tubby into the nucleus in HIRcB cells. Endocrinol Metab (Seoul). 29:163–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P and Legembre P: CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol. 60:121–131. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Garofalo T, Tinari A, Matarrese P, Giammarioli AM, Manganelli V, Ciarlo L, Misasi R, Sorice M and Malorni W: Do mitochondria act as ‘cargo boats’ in the journey of GD3 to the nucleus during apoptosis? FEBS Lett. 581:3899–3903. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sheikh MS and Huang Y: The FADD is going nuclear. Cell Cycle. 2:346–347. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Amarante-Mendes GP and Griffith TS: Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther. 155:117–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mert U, Adawy A, Scharff E, Teichmann P, Willms A, Haselmann V, Colmorgen C, Lemke J, von Karstedt S, Fritsch J and Trauzold A: TRAIL induces nuclear translocation and chromatin localization of TRAIL death receptors. Cancer (Basel). 11:11672019. View Article : Google Scholar
|
|
27
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, et al: Modulators of CXCR4 and CXCR7/ACKR3 function. Mol Pharmacol. 96:737–752. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Don-Salu-Hewage AS, Chan SY, McAndrews KM, Chetram MA, Dawson MR, Bethea DA and Hinton CV: Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLoS One. 8:e571942013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kamal A, Fain C, Park A, Wang P, Gonzalez-Velez E, Leffler DA and Hutfless SM: Angiotensin II receptor blockers and gastrointestinal adverse events of resembling sprue-like enteropathy: A systematic review. Gastroenterol Rep (Oxf). 7:162–167. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bundalo M, Djordjevic A, Bursac B, Zivkovic M, Koricanac G and Stanković A: Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue. Appl Physiol Nutr Metab. 42:1254–1263. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hogan KA, Chini CCS and Chini EN: The multi-faceted ecto-enzyme CD38: Roles in immunomodulation, cancer, aging, and metabolic diseases. Front Immunol. 10:11872019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Orciani M, Trubiani O, Guarnieri S, Ferrero E and Di Primio R: CD38 is constitutively expressed in the nucleus of human hematopoietic cells. J Cell Biochem. 105:905–912. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sharma V and O'Halloran DM: Recent structural and functional insights into the family of sodium calcium exchangers. Genesis. 52:93–109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ledeen RW and Wu G: Sodium-calcium exchangers in the nucleus: An unexpected locus and an unusual regulatory mechanism. Ann N Y Acad Sci. 1099:494–506. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Philippova M, Joshi MB, Kyriakakis E, Pfaff D, Erne P and Resink TJ: A guide and guard: The many faces of T-cadherin. Cell Signal. 21:1035–1044. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Andreeva AV, Kutuzov MA, Tkachuk VA and Voyno-Yasenetskaya TA: T-cadherin is located in the nucleus and centrosomes in endothelial cells. Am J Physiol Cell Physiol. 297:C1168–C1177. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A and Bauer HC: The dual role of zonula occludens ZO) proteins. J Biomed Biotechnol. 2010:4025932010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Traweger A, Lehner C, Farkas A, Krizbai IA, Tempfer H, Klement E, Guenther B, Bauer HC and Bauer H: Nuclear Zonula occludens-2 alters gene expression and junctional stability in epithelial and endothelial cells. Differentiation. 76:99–106. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bonacquisti EE and Nguyen J: Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett. 442:439–444. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dang X, Doble BW and Kardami E: The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem. 242:35–38. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen X, Kong X, Zhuang W, Teng B, Yu X, Hua S, Wang S, Liang F, Ma D, Zhang S, et al: Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells. Sci Rep. 6:212242016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dzobo K, Thomford NE and Senthebane DA: Targeting the versatile Wnt/β-Catenin pathway in cancer biology and therapeutics: From concept to actionable strategy. OMICS. 23:517–538. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kim W, Kim M and Jho EH: Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J. 450:9–21. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Johnson M, Sharma M, Jamieson C, Henderson JM, Mok MT, Bendall L and Henderson BR: Regulation of beta-catenin trafficking to the membrane in living cells. Cell Signal. 21:339–348. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Neufeld KL: Nuclear APC. Adv Exp Biol. 656:13–29. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Daniel JM: Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso. Biochim Biophys Acta. 1773:59–68. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang YX, Wang DY, Guo YC and Guo J: Zyxin: A mechanotransductor to regulate gene expression. Eur Rev Med Pharmacol Sci. 23:413–425. 2019.PubMed/NCBI
|
|
48
|
Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friederich E and Beckerle MC: Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem. 276:34759–34767. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hohenester E: Laminin G-like domains: Dystroglycan-specific lectins. Curr Opin Struct Biol. 56:56–63. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gracida-Jiménez V, Mondragón-González R, Vélez-Aguilera G, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez-López JD, Vaca L, Gourlay SC, Jacobs LA, Winder SJ and Cisneros B: Publisher Correction: Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus. Sci Rep. 8:177852018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Guo X, Elkashef SM, Loadman PM, Patterson LH and Falconer RA: Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr Polym. 224:1151452019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Westphal N, Loers G, Lutz D, Theis T, Kleene R and Schachner M: Generation and intracellular trafficking of a polysialic acid-carrying fragment of the neural cell adhesion molecule NCAM to the cell nucleus. Sci Rep. 7:86222017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bianchi G and Cusi D: Association and linkage analysis of alpha-adducin polymorphism: Is the glass half full or half empty? Am J Hypertens. 13((6 Pt 1)): 739–743. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen CL, Lin YP, Lai YC and Chen HC: α-Adducin translocates to the nucleus upon loss of cell-cell adhesions. Traffic. 12:1327–1340. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhou J, Yi Q and Tang L: The roles of nuclear focal adhesion kinase (FAK) on cancer: A focused review. J Exp Clin Cancer Res. 38:2502019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jones G and Stewart G: Nuclear import of N-terminal FAK by activation of the FcepsilonRI receptor in RBL-2H3 cells. Biochem Biophys Res Commun. 314:39–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tanos BE, Yeaman C and Rodriguez-Boulan E: An emerging role for IQGAP1 in tight junction control. Small GTPases. 9:375–383. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Johnson M, Sharma M, Brocardo MG and Henderson BR: IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest. Int J Biochem Cell Biol. 43:65–73. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang X and Liu K: P-gp inhibition-based strategies for modulating pharmacokinetics of anticancer drugs: An update. Curr Drug Metab. 17:806–826. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tome ME, Herndon JM, Schaefer CP, Jacobs LM, Zhang Y, Jarvis CK and Davis TP: P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 36:1913–1928. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Khot MI, Downey CL, Armstrong G, Svavarsdottir HS, Jarral F, Andrew H and Jayne DG: The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther. 29:1015792020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liang SC, Yang CY, Tseng JY, Wang HL, Tung CY, Liu HW, Chen CY, Yeh YC, Chou TY, Yang MH, et al: ABCG2 localizes to the nucleus and modulates CDH1 expression in lung cancer cells. Neoplasia. 17:265–278. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Crino PB: Mechanistic target of rapamycin (mTOR) signaling in status epilepticus. Epilepsy Behav. 101((Pt B)): 1065502019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang X, Shu L, Hosoi H, Murti KG and Houghton PJ: Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem. 277:28127–28134. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rusciano MR, Sommariva E, Douin-Echinard V, Ciccarelli M, Poggio P and Maione AS: CaMKII activity in the inflammatory response of cardiac diseases. Int J Mol Sci. 20:43742019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ma H, Groth RD, Cohen SM, Emery JF, Li B, Hoedt E, Zhang G, Neubert TA and Tsien RW: γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 159:281–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
O'Brien JB, Wilkinson JC and Roman DL: Regulator of G protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem. 294:18571–18585. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hepler JR: R7BP: A surprising new link between G proteins, RGS proteins, and nuclear signaling in the brain. Sco STKE. 2005:pe382005.PubMed/NCBI
|
|
69
|
Thomas MP, Erneux C and Potter BV: SHIP2: Structure, function and inhibition. Chembiochem. 18:233–247. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Elong Edimo W, Vanderwinden JM and Erneux C: SHIP2 signalling at the plasma membrane, in the nucleus and at focal contacts. Adv Biol Regul. 53:28–37. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bill CA and Vines CM: Phospholipase C. Adv Exp Med Biol. 1131:215–242. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pan G, Cao X, Liu B, Li C, Li D, Zheng J, Lai C, Olkkonen VM, Zhong W and Yan D: OSBP-related protein 4L promotes phospholipase Cβ3 translocation from the nucleus to the plasma membrane in Jurkat T-cells. J Biol Chem. 293:17430–17441. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mérida I, Arranz-Nicolás J, Rodríguez-Rodríguez C and Ávila-Flores A: Diacylglycerol kinase control of protein kinase C. Biochem J. 476:1205–1219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Divecha N, Treagus J, Vann L and D'santos C: Phospholipases in the nucleus. Semin Cell Dev Biol. 8:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cheng Y, Duan C and Zhang C: New perspective on SH2B1: An accelerator of cancer progression. Biomed Pharmacother. 121:1096512020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Maures TJ, Chen L and Carter-Su C: Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol. 23:1077–1091. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Venken T, Schillinger AS, Fuglebakk E and Reuter N: Interactions stabilizing the C-terminal helix of human phospholipid scramblase 1 in lipid bilayers: A computational study. Biochim Biophys Acta Biomembr. 1859:1200–1210. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wiedmer T, Zhao J, Nanjundan M and Sims PJ: Palmitoylation of phospholipid scramblase 1 controls its distribution between nucleus and plasma membrane. Biochemistry. 42:1227–1233. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xi S, Tie Y, Lu K, Zhang M, Yin X, Chen J, Xing G, Tian C, Zheng X, He F and Zhang L: N-terminal PH domain and C-terminal auto-inhibitory region of CKIP-1 coordinate to determine its nucleus-plasma membrane shuttling. FEBS Lett. 584:1223–1230. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhou F, Li F, Xie F, Zhang Z, Huang H and Zhang L: TRAF4 mediates activation of TGF-β signaling and is a biomarker for oncogenesis in breast cancer. Sci China Life Sci. 57:1172–1176. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kédinger V, Alpy F, Baguet A, Polette M, Stoll I, Chenard MP, Tomasetto C and Rio MC: Tumor necrosis factor receptor-associated factor 4 is a dynamic tight junction-related shuttle protein involved in epithelium homeostasis. PLoS One. 3:e35182008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zheng Y and Tyner AL: Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest. 43:397–404. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ie Kim H and Lee ST: Oncogenic functions of PTK6 are enhanced by its targeting to plasma membrane but abolished by its targeting to nucleus. J Biochem. 146:133–139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yau MK, Lim J, Liu L and Fairlie DP: Protease activated receptor 2 (PAR2) modulators: A patent review (2010–2015). Expert Opin Ther Pat. 26:471–483. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Joyal JS, Nim S, Zhu T, Sitaras N, Rivera JC, Shao Z, Sapieha P, Hamel D, Sanchez M, Zaniolo K, et al: Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nat Med. 20:1165–1173. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pekar O, Benjamin S, Weidberg H, Smaldone S, Ramirez F and Horowitz M: EHD2 shuttles to the nucleus and represses transcription. Biochem J. 444:383–394. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Takahashi M, Tsukamoto Y, Kai T, Tokunaga A, Nakada C, Hijiya N, Uchida T, Daa T, Nomura T, Sato F, et al: Downregulation of WDR20 due to loss of 14q is involved in the malignant transformation of clear cell renal cell carcinoma. Cancer Sci. 107:417–423. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Olazabal-Herrero A, Sendino M, Arganda-Carreras I and Rodríguez JA: WDR20 regulates shuttling of the USP12 deubiquitinase complex between the plasma membrane, cytoplasm and nucleus. Eur J Cell Biol. 98:12–26. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ugrinova I, Petrova M, Chalabi-Dchar M and Bouvet P: Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv Protein Chem Struct Biol. 111:133–164. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J and Krust B: Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One. 5:e157872010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen X, Kube DM, Cooper MJ and Davis PB: Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol Ther. 16:333–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
McQuown SC and Wood MA: HDAC3 and the molecular brake pad hypothesis. Neurobiol Learn Mem. 96:27–34. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Longworth MS and Laimins LA: Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene. 25:4495–4500. 2006. View Article : Google Scholar : PubMed/NCBI
|