|
1
|
WHO publishes definitive atlas on global
heart disease and stroke epidemic. Indian J Med Sci. 58:405–406.
2004.PubMed/NCBI
|
|
2
|
Cramer SC, Wolf SL, Adams HP Jr, Chen D,
Dromerick AW, Dunning K, Ellerbe C, Grande A, Janis S, Lansberg MG,
et al: Stroke recovery and rehabilitation research: Issues,
opportunities, and the national institutes of health strokeNet.
Stroke. 48:813–819. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
GBD 2016 Causes of Death Collaborators, .
Global, regional, and national age-sex specific mortality for 264
causes of death, 1980–2016: A systematic analysis for the global
burden of disease study 2016. Lancet. 390:1151–1210. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman
M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C,
et al: Heart disease and stroke statistics-2017 update: A report
from the American Heart Association. Circulation. 135:e146–e603.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jianrong S, Yanjun Z, Chen Y and Jianwen
X: DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by
reducing inflammation and apoptosis via the activation of Nrf-2.
Biochem Biophys Res Commun. 509:713–721. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kim JY, Kawabori M and Yenari MA: Innate
inflammatory responses in stroke: Mechanisms and potential
therapeutic targets. Curr Med Chem. 21:2076–2097. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tobin MK, Bonds JA, Minshall RD,
Pelligrino DA, Testai FD and Lazarov O: Neurogenesis and
inflammation after ischemic stroke: What is known and where we go
from here. J Cereb Blood Flow Metab. 34:1573–1584. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang H, Sun X, Xie Y, Zan J and Tan W:
Isosteviol sodium protects against permanent cerebral ischemia
injury in mice via inhibition of NF-κB-mediated inflammatory and
apoptotic responses. J Stroke Cerebrovasc Dis. 26:2603–2614. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ishrat T, Sayeed I, Atif F and Stein DG:
Effects of progesterone administration on infarct volume and
functional deficits following permanent focal cerebral ischemia in
rats. Brain Res. 1257:94–101. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hazell AS: Excitotoxic mechanisms in
stroke: An update of concepts and treatment strategies. Neurochem
Int. 50:941–953. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rothman SM and Olney JW: Glutamate and the
pathophysiology of hypoxic-ischemic brain damage. Ann Neurol.
19:105–111. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lo EH, Dalkara T and Moskowitz MA:
Mechanisms, challenges and opportunities in stroke. Nat Rev
Neurosci. 4:399–415. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wardlaw JM, Murray V, Berge E, del Zoppo
G, Sandercock P, Lindley RL and Cohen G: Recombinant tissue
plasminogen activator for acute ischaemic stroke: An updated
systematic review and meta-analysis. Lancet. 379:2364–2372. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Prabhakar NR and Semenza GL: Adaptive and
maladaptive cardiorespiratory responses to continuous and
intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2.
Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kruschewski M, Foitzik T, Perez-Cantó A,
Hübotter A and Buhr HJ: Changes of colonic mucosal microcirculation
and histology in two colitis models: An experimental study using
intravital microscopy and a new histological scoring system. Dig
Dis Sci. 46:2336–2343. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Semenza GL and Wang GL: A nuclear factor
induced by hypoxia via de novo protein synthesis binds to the human
erythropoietin gene enhancer at a site required for transcriptional
activation. Mol Cell Biol. 12:5447–5454. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Harris AL: Hypoxia-a key regulatory factor
in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wilkins SE, Abboud MI, Hancock RL and
Schofield CJ: Targeting protein-protein interactions in the HIF
system. ChemMedChem. 11:773–786. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pereira T, Zheng X and Poellinger L:
Degradation of the hypoxia-inducible factor 1alpha: Where does it
happen? Cell Cycle. 5:2720–2722. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lee JW, Bae SH, Jeong JW, Kim SH and Kim
KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability
and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rabie T and Marti HH: Brain protection by
erythropoietin: A manifold task. Physiology (Bethesda). 23:263–274.
2008.PubMed/NCBI
|
|
22
|
Schito L and Semenza GL: Hypoxia-inducible
factors: Master regulators of cancer progression. Trends Cancer.
2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Semenza GL: Targeting HIF-1 for cancer
therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sharp FR and Bernaudin M: HIF1 and oxygen
sensing in the brain. Nat Rev Neurosci. 5:437–448. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ke XJ and Zhang JJ: Changes in HIF-1α,
VEGF, NGF and BDNF levels in cerebrospinal fluid and their
relationship with cognitive impairment in patients with cerebral
infarction. J Huazhong Univ Sci Technolog Med Sci. 33:433–437.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kuang S, Zheng J, Yang H, Li S, Duan S,
Shen Y, Ji C, Gan J, Xu XW and Li J: Structure insight of GSDMD
reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc
Natl Acad Sci USA. 114:10642–10647. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chavez JC and LaManna JC: Activation of
hypoxia-inducible factor-1 in the rat cerebral cortex after
transient global ischemia: Potential role of insulin-like growth
factor-1. J Neurosci. 22:8922–8931. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Masoud GN and Li W: HIF-1α pathway: Role,
regulation and intervention for cancer therapy. Acta Pharm Sin B.
5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Singh N, Sharma G and Mishra V: Hypoxia
inducible factor-1: Its potential role in cerebral ischemia. Cell
Mol Neurobiol. 32:491–507. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lu J, Jiang L, Zhu H, Zhang L and Wang T:
Hypoxia-inducible factor-1α and erythropoietin expression in the
hippocampus of neonatal rats following hypoxia-ischemia. J Nanosci
Nanotechnol. 14:5614–5619. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li L, Saliba P, Reischl S, Marti HH and
Kunze R: Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice
improves ischemic stroke recovery in an HIF dependent manner.
Neurobiol Dis. 91:221–235. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ishikawa H, Tajiri N, Shinozuka K,
Vasconcellos J, Kaneko Y, Lee HJ, Mimura O, Dezawa M, Kim SU and
Borlongan CV: Vasculogenesis in experimental stroke after human
cerebral endothelial cell transplantation. Stroke. 44:3473–3481.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu Y, Ran H, Xiao Y, Wang H, Chen Y, Chen
W and Xu X: Knockdown of HIF-1α impairs post-ischemic vascular
reconstruction in the brain via deficient homing and sprouting
bmEPCs. Brain Pathol. 28:860–874. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Borlongan CV, Glover LE, Tajiri N, Kaneko
Y and Freeman TB: The great migration of bone marrow-derived stem
cells toward the ischemic brain: Therapeutic implications for
stroke and other neurological disorders. Prog Neurobiol.
95:213–228. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hayakawa K, Pham LD, Katusic ZS, Arai K
and Lo EH: Astrocytic high-mobility group box 1 promotes
endothelial progenitor cell-mediated neurovascular remodeling
during stroke recovery. Proc Natl Acad Sci USA. 109:7505–7510.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Miller JT, Bartley JH, Wimborne HJ, Walker
AL, Hess DC, Hill WD and Carroll JE: The neuroblast and angioblast
chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated
by reactive astrocytes in brain following neonatal hypoxic-ischemic
injury. BMC Neurosci. 6:632005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang ZG, Zhang L, Jiang Q and Chopp M:
Bone marrow-derived endothelial progenitor cells participate in
cerebral neovascularization after focal cerebral ischemia in the
adult mouse. Circ Res. 90:284–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Eilken HM and Adams RH: Dynamics of
endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell
Biol. 22:617–625. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jakobsson L, Franco CA, Bentley K, Collins
RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G,
Medvinsky A, et al: Endothelial cells dynamically compete for the
tip cell position during angiogenic sprouting. Nat Cell Biol.
12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Phng LK, Stanchi F and Gerhardt H:
Filopodia are dispensable for endothelial tip cell guidance.
Development. 140:4031–4040. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Aspalter IM, Gordon E, Dubrac A, Ragab A,
Narloch J, Vizán P, Geudens I, Collins RT, Franco CA, Abrahams CL,
et al: Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting
downstream of Notch. Nat Commun. 6:72642015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fantin A, Vieira JM, Plein A, Denti L,
Fruttiger M, Pollard JW and Ruhrberg C: NRP1 acts cell autonomously
in endothelium to promote tip cell function during sprouting
angiogenesis. Blood. 121:2352–2362. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Domanska UM, Kruizinga RC, Nagengast WB,
Timmer-Bosscha H, Huls G, de Vries EG and Walenkamp AM: A review on
CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer.
49:219–230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang C, Lin G, Luan Y, Ding J, Li PC, Zhao
Z, Qian C, Liu G, Ju S and Teng GJ: HIF-prolyl hydroxylase 2
silencing using siRNA delivered by MRI-visible nanoparticles
improves therapy efficacy of transplanted EPCs for ischemic stroke.
Biomaterials. 197:229–243. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lin CH, Chiu L, Lee HT, Chiang CW, Liu SP,
Hsu YH, Lin SZ, Hsu CY, Hsieh CH and Shyu WC: PACAP38/PAC1
signaling induces bone marrow-derived cells homing to ischemic
brain. Stem Cells. 33:1153–1172. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Muller WA: Mechanisms of transendothelial
migration of leukocytes. Circ Res. 105:223–230. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ferrero E, Belloni D, Contini P, Foglieni
C, Ferrero ME, Fabbri M, Poggi A and Zocchi MR: Transendothelial
migration leads to protection from starvation-induced apoptosis in
CD34+CD14+ circulating precursors: Evidence
for PECAM-1 involvement through Akt/PKB activation. Blood.
101:186–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Honczarenko M, Le Y, Swierkowski M, Ghiran
I, Glodek AM and Silberstein LE: Human bone marrow stromal cells
express a distinct set of biologically functional chemokine
receptors. Stem Cells. 24:1030–1041. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Torzicky M, Viznerova P, Richter S, Strobl
H, Scheinecker C, Foedinger D and Riedl E: Platelet endothelial
cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in
lymphatic transmigration of human dendritic cells. J Invest
Dermatol. 132:1149–1157. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
de la Rosa G, Longo N, Rodríguez-Fernández
JL, Puig-Kroger A, Pineda A, Corbí AL and Sánchez-Mateos P:
Migration of human blood dendritic cells across endothelial cell
monolayers: Adhesion molecules and chemokines involved in
subset-specific transmigration. J Leukoc Biol. 73:639–649. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kaneider NC, Kaser A, Dunzendorfer S, Tilg
H and Wiedermann CJ: Sphingosine kinase-dependent migration of
immature dendritic cells in response to neurotoxic prion protein
fragment. J Virol. 77:5535–5539. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Muller WA: Leukocyte-endothelial-cell
interactions in leukocyte transmigration and the inflammatory
response. Trends Immunol. 24:327–334. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang CC, Steele AD, Lindquist S and
Lodish HF: Prion protein is expressed on long-term repopulating
hematopoietic stem cells and is important for their self-renewal.
Proc Natl Acad Sci USA. 103:2184–2189. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gnecchi M and Melo LG: Bone marrow-derived
mesenchymal stem cells: Isolation, expansion, characterization,
viral transduction, and production of conditioned medium. Methods
Mol Biol. 482:281–294. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Miles DK and Kernie SG: Hypoxic-ischemic
brain injury activates early hippocampal stem/progenitor cells to
replace vulnerable neuroblasts. Hippocampus. 18:793–806. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Santilli G, Lamorte G, Carlessi L, Ferrari
D, Rota Nodari L, Binda E, Delia D, Vescovi AL and De Filippis L:
Mild hypoxia enhances proliferation and multipotency of human
neural stem cells. PLoS One. 5:e85752010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen
X, Shi Q and Song T: Cell proliferation in ependymal/subventricular
zone and nNOS expression following focal cerebral ischemia in adult
rats. Neurol Res. 28:91–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bürgers HF, Schelshorn DW, Wagner W,
Kuschinsky W and Maurer MH: Acute anoxia stimulates proliferation
in adult neural stem cells from the rat brain. Exp Brain Res.
188:33–43. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Park KI, Hack MA, Ourednik J, Yandava B,
Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V and
Snyder EY: Acute injury directs the migration, proliferation, and
differentiation of solid organ stem cells: Evidence from the effect
of hypoxia-ischemia in the CNS on clonal ‘reporter’ neural stem
cells. Exp Neurol. 199:156–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qi C, Zhang J, Chen X, Wan J, Wang J,
Zhang P and Liu Y: Hypoxia stimulates neural stem cell
proliferation by increasing HIF-1α expression and activating
Wnt/β-catenin signaling. Cell Mol Biol (Noisy-le-grand). 63:12–19.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ciani L and Salinas PC: WNTs in the
vertebrate nervous system: From patterning to neuronal
connectivity. Nat Rev Neurosci. 6:351–362. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lee SM, Tole S, Grove E and McMahon AP: A
local Wnt-3a signal is required for development of the mammalian
hippocampus. Development. 127:457–467. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lie DC, Colamarino SA, Song HJ, Désiré L,
Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR
and Gage FH: Wnt signalling regulates adult hippocampal
neurogenesis. Nature. 437:1370–1375. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cheng YL, Park JS, Manzanero S, Choi Y,
Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et
al: Evidence that collaboration between HIF-1α and Notch-1 promotes
neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang Z, Zhao TZ, Zou YJ, Zhang JH and Feng
H: Hypoxia induces autophagic cell death through hypoxia-inducible
factor 1α in microglia. PLoS One. 9:e965092014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun Y, He W and Geng L: Neuroprotective
mechanism of HIF-1α overexpression in the early stage of acute
cerebral infarction in rats. Exp Ther Med. 12:391–395. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun
C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting
ferroptosis-induced brain injury and neuroinflammation. Brain Behav
Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Panchision DM: The role of oxygen in
regulating neural stem cells in development and disease. J Cell
Physiol. 220:562–568. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang Q, Geng X, Warren J, Eugene Paul
Cosky E, Kaura S, Stone C, Li F and Ding Y: Hypoxia inducible
factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic
and apoptotic cell death following schemic stroke. Neuroscience.
448:126–139. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X,
Li L and Tang M: Hispidulin exhibits neuroprotective activities
against cerebral ischemia reperfusion injury through suppressing
NLRP3-mediated pyroptosis. Life Sci. 232:1165992019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tang B, Tang WJ, Tang YH and Deng CQ:
Astragaloside IV attenuates cerebral ischemia and reperfusion
injury and reduces activation of NLRP3 inflammasome and NF-κB
phosphorylation in rats following a transient middle cerebral
artery occlusion. Sheng Li Xue Bao. 71:424–430. 2019.(In Chinese).
PubMed/NCBI
|
|
72
|
Davis BK, Wen H and Ting JP: The
inflammasome NLRs in immunity, inflammation, and associated
diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M:
HIF-1α attenuates neuronal apoptosis by upregulating EPO expression
following cerebral ischemia-reperfusion injury in a rat MCAO model.
Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI
|
|
74
|
Zhu T, Zhan L, Liang D, Hu J, Lu Z, Zhu X,
Sun W, Liu L and Xu E: Hypoxia-inducible factor 1α mediates
neuroprotection of hypoxic postconditioning against global cerebral
ischemia. J Neuropathol Exp Neurol. 73:975–986. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang ML, Tao T, Xu J, Liu Z and Xu D:
Antiapoptotic effect of gene therapy with recombinant adenovirus
vector containing hypoxia-inducible factor-1α after cerebral
ischemia and reperfusion in rats. Chin Med J (Engl). 130:1700–1706.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Guo Y: Role of HIF-1a in regulating
autophagic cell survival during cerebral ischemia reperfusion in
rats. Oncotarget. 8:98482–98494. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jin X, Wang RH and Wang H, Long CL and
Wang H: Brain protection against ischemic stroke using choline as a
new molecular bypass treatment. Acta Pharmacol Sin. 36:1416–1425.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen X, Zhou B, Yan T, Wu H, Feng J, Chen
H, Gao C, Peng T, Yang D and Shen J: Peroxynitrite enhances
self-renewal, proliferation and neuronal differentiation of neural
stem/progenitor cells through activating HIF-1α and Wnt/β-catenin
signaling pathway. Free Radic Biol Med. 117:158–167. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen SF, Pan MX, Tang JC, Cheng J, Zhao D,
Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is
neuroprotective through suppressing HIF-1α/LDHA-mediated
inflammatory response after cerebral ischemia/reperfusion injury.
Mol Brain. 13:632020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu R, Liao XY, Pan MX, Tang JC, Chen SF,
Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, et al: Glycine exhibits
neuroprotective effects in ischemic stroke in rats through the
inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α
signaling pathway. J Immunol. 202:1704–1714. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jeyaseelan K, Lim KY and Armugam A:
MicroRNA expression in the blood and brain of rats subjected to
transient focal ischemia by middle cerebral artery occlusion.
Stroke. 39:959–966. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Y, Wang Y and Yang GY: MicroRNAs in
cerebral ischemia. Stroke Res Treat. 2013:2765402013.PubMed/NCBI
|
|
83
|
Sun JJ, Zhang XY, Qin XD, Zhang J, Wang MX
and Yang JB: miRNA-210 induces the apoptosis of neuronal cells of
rats with cerebral ischemia through activating HIF-1α-VEGF pathway.
Eur Rev Med Pharmacol Sci. 23:2548–2554. 2019.PubMed/NCBI
|
|
84
|
Li LJ, Huang Q, Zhang N, Wang GB and Liu
YH: miR-376b-5p regulates angiogenesis in cerebral ischemia. Mol
Med Rep. 10:527–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang L, Zhang Y, Zhang X, Zhang Y, Jiang
Y, Xiao X, Tan J, Yuan W and Liu Y: MicroRNA-433 inhibits the
proliferation and migration of HUVECs and neurons by targeting
hypoxia-inducible factor 1 alpha. J Mol Neurosci. 61:135–143. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu FJ, Kaur P, Karolina DS, Sepramaniam
S, Armugam A, Wong PT and Jeyaseelan K: miR-335 regulates Hif-1α to
reduce cell death in both mouse cell line and rat ischemic models.
PLoS One. 10:e01284322015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang D, Wang L, Bai L, Du Y, Liu L and
Chen X: Effects of inhibition of miR-155-5p in neural stem cell
subarachnoid transplant on rats with cerebral infarction. Hum Gene
Ther Methods. 30:184–193. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang X, Li H, Burnett JC and Rossi JJ:
The role of antisense long noncoding RNA in small RNA-triggered
gene activation. RNA. 20:1916–1928. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
PLOS Genetics Staff, . Correction:
fMiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and
interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma.
PLoS Genet. 12:e10058252016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen ZH, Wang WT, Huang W, Fang K, Sun YM,
Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the
degradation of PML-RARA oncoprotein and myeloid cell
differentiation by enhancing the autophagy pathway. Cell Death
Differ. 24:212–224. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mineo M, Ricklefs F, Rooj AK, Lyons SM,
Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J and Bronisz
A: The Long Non-coding RNA HIF1A-AS2 facilitates the maintenance of
mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell
Rep. 15:2500–2509. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y
and Wen A: lncRNAs HIF1A-AS2 facilitates the up-regulation of
HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in
HUVECs in hypoxia. Biomed Pharmacother. 96:165–172. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fani L, Bos D, Mutlu U, Portegies MLP,
Zonneveld HI, Koudstaal PJ, Vernooij MW, Ikram MA and Ikram MK:
Global brain perfusion and the risk of transient ischemic attack
and ischemic stroke: The rotterdam study. J Am Heart Assoc.
8:e0115652019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tsai MJ, Kuo YM and Tsai YH: Transient
ischemic attack induced by melted solid lipid microparticles
protects rat brains from permanent focal ischemia. Neuroscience.
275:136–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sprick JD, Mallet RT, Przyklenk K and
Rickards CA: Ischaemic and hypoxic conditioning: Potential for
protection of vital organs. Exp Physiol. 104:278–294. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Rojas DR, Tegeder I, Kuner R and Agarwal
N: Hypoxia-inducible factor 1α protects peripheral sensory neurons
from diabetic peripheral neuropathy by suppressing accumulation of
reactive oxygen species. J Mol Med. 96:1395–1405. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Rodríguez-Reynoso S, Leal-Cortés C,
Portilla-de Buen E and López-De la Torre SP: Ischemic
preconditioning preserves liver energy charge and function on
hepatic ischemia/reperfusion injury in rats. Arch Med Res.
49:373–380. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Meng SS, Xu XP, Chang W, Lu ZH, Huang LL,
Xu JY, Liu L, Qiu HB, Yang Y and Guo FM: LincRNA-p21 promotes
mesenchymal stem cell migration capacity and survival through
hypoxic preconditioning. Stem Cell Res Ther. 9:2802018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yang Y, Lu F, Zhuang L, Yang S, Kong Y,
Tan W, Gong Z and Zhan S: Combined preconditioning with hypoxia and
GYKI-52466 protects rats from cerebral ischemic injury by
HIF-1α/eNOS pathway. Am J Transl Res. 9:5308–5319. 2017.PubMed/NCBI
|
|
100
|
Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan
D, Lu M and Hu Z: Hypoxia-preconditioned olfactory mucosa
mesenchymal stem cells abolish cerebral
ischemia/reperfusion-induced pyroptosis and apoptotic death of
microglial cells by activating HIF-1α. Aging (Albany NY).
12:10931–10950. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Murry CE, Jennings RB and Reimer KA:
Preconditioning with ischemia: A delay of lethal cell injury in
ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lee JC, Tae HJ, Kim IH, Cho JH, Lee TK,
Park JH, Ahn JH, Choi SY, Bai HC, Shin BN, et al: Roles of HIF-1α,
VEGF, and NF-κB in ischemic preconditioning-mediated
neuroprotection of hippocampal CA1 pyramidal neurons against a
subsequent transient cerebral ischemia. Mol Neurobiol.
54:6984–6998. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hirayama Y and Koizumi S:
Hypoxia-independent mechanisms of HIF-1α expression in astrocytes
after ischemic preconditioning. Glia. 65:523–530. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yang J, Liu C, Du X, Liu M, Ji X, Du H and
Zhao H: Hypoxia inducible factor 1α plays a key role in remote
ischemia preconditioning against stroke by modulating inflammatory
responses in rats. J Am Heart Assoc. 7:e0075892018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang
Y, Geng XK, Zhang Y, Du HS, Leak RK, et al: Remote ischemic
preconditioning-mediated neuroprotection against stroke is
associated with significant alterations in peripheral immune
responses. CNS Neurosci Ther. 22:43–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xia M, Ding Q, Zhang Z and Feng Q: Remote
limb ischemic preconditioning protects rats against cerebral
ischemia via HIF-1α/AMPK/HSP70 pathway. Cell Mol Neurobiol.
37:1105–1114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fath DM, Kong X, Liang D, Lin Z, Chou A,
Jiang Y, Fang J, Caro J and Sang N: Histone deacetylase inhibitors
repress the transactivation potential of hypoxia-inducible factors
independently of direct acetylation of HIF-alpha. J Biol Chem.
281:13612–13619. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liang D, Kong X and Sang N: Effects of
histone deacetylase inhibitors on HIF-1. Cell Cycle. 5:2430–2435.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chen S, Yin C, Lao T, Liang D, He D, Wang
C and Sang N: AMPK-HDAC5 pathway facilitates nuclear accumulation
of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70
in the cytosol. Cell Cycle. 14:2520–2536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F,
Hu X, Jing Z, Chen J, Zigmond MJ and Gao Y: Preconditioning
provides neuroprotection in models of CNS disease: Paradigms and
clinical significance. Prog Neurobiol. 114:58–83. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhang F, Wu Y and Jia J: Exercise
preconditioning and brain ischemic tolerance. Neuroscience.
177:170–176. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ding YH, Ding Y, Li J, Bessert DA and
Rafols JA: Exercise pre-conditioning strengthens brain
microvascular integrity in a rat stroke model. Neurol Res.
28:184–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ding YH, Li J, Yao WX, Rafols JA, Clark JC
and Ding Y: Exercise preconditioning upregulates cerebral integrins
and enhances cerebrovascular integrity in ischemic rats. Acta
Neuropathol. 112:74–84. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kang KA, Seong H, Jin HB, Park J, Lee J,
Jeon JY and Kim YJ: The effect of treadmill exercise on ischemic
neuronal injury in the stroke animal model: Potentiation of
cerebral vascular integrity. J Korean Acad Nurs. 41:197–203.
2011.(In Korean). View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Otsuka S, Sakakima H, Terashi T, Takada S,
Nakanishi K and Kikuchi K: Preconditioning exercise reduces brain
damage and neuronal apoptosis through enhanced endogenous 14-3-3γ
after focal brain ischemia in rats. Brain Struct Funct.
224:727–738. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang L, Deng W, Yuan Q and Yang H:
Exercise preconditioning reduces ischemia reperfusion-induced focal
cerebral infarct volume through up-regulating the expression of
HIF-1α. Pak J Pharm Sci. 28 (Suppl 2):S791–S798. 2015.
|
|
117
|
Wang H, Niu F, Fan W, Shi J, Zhang J and
Li B: Modulating effects of preconditioning exercise in the
expression of ET-1 and BNP via HIF-1α in ischemically injured
brain. Metab Brain Dis. 34:1299–1311. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hacke W, Kaste M, Bluhmki E, Brozman M,
Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, et
al: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic
stroke. N Engl J Med. 359:1317–1329. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang H and Xu X, Yin Y, Yu S, Ren H, Xue Q
and Xu X: Catalpol protects vascular structure and promotes
angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF.
Phytomedicine. 78:1533002020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Liang C, Ni GX, Shi XL, Jia L and Wang YL:
Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway
through miRNA-210 to promote angiogenesis after ischemic stroke.
Restor Neurol Neurosci. 38:271–282. 2020.PubMed/NCBI
|
|
121
|
Hu Q, Liu L, Zhou L, Lu H, Wang J, Chen X
and Wang Q: Effect of fluoxetine on HIF-1α-Netrin/VEGF cascade,
angiogenesis and neuroprotection in a rat model of transient middle
cerebral artery occlusion. Exp Neurol. 329:1133122020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang J, Zhou X, Lu H, Song M, Zhao J and
Wang Q: Fluoxetine induces vascular endothelial growth
factor/Netrin over-expression via the mediation of
hypoxia-inducible factor 1-alpha in SH-SY5Y cells. J Neurochem.
136:1186–1195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu
M, Zhang H, Xiao X, Wang K and Wang N: VEGF-A promotes angiogenesis
after acute myocardial infarction through increasing ROS production
and enhancing ER stress-mediated autophagy. J Cell Physiol.
234:17690–17703. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Cheng X, Wang H, Liu C, Zhong S, Niu X,
Zhang X, Qi R, Zhao S, Zhang X, Qu H and Zhao C:
Dl-3-n-butylphthalide promotes remyelination process in cerebral
white matter in rats subjected to ischemic stroke. Brain Res.
1717:167–175. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhang Q, Bian H, Guo L and Zhu H:
Berberine preconditioning protects neurons against ischemia via
sphingosine-1-phosphate and hypoxia-inducible factor-1[Formula: See
text]. Am J Chin Med. 44:927–941. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ryou MG, Choudhury GR, Li W, Winters A,
Yuan F, Liu R and Yang SH: Methylene blue-induced neuronal
protective mechanism against hypoxia-reoxygenation stress.
Neuroscience. 301:193–203. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu
K, Brown J, Hong G and Chen L: Salidroside inhibits inflammation
through PI3K/Akt/HIF signaling after focal cerebral ischemia in
rats. Inflammation. 40:1297–1309. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hou Y, Wang J and Feng J: The
neuroprotective effects of curcumin are associated with the
regulation of the reciprocal function between autophagy and HIF-1α
in cerebral ischemia-reperfusion injury. Drug Des Devel Ther.
13:1135–1144. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Saad MAE, Fahmy MIM, Al-Shorbagy M, Assaf
N, Hegazy AAE and El-Yamany MF: Nateglinide exerts neuroprotective
effects via downregulation of HIF-1α/TIM-3 inflammatory pathway and
promotion of caveolin-1 expression in the rat's hippocampus
subjected to focal cerebral ischemia/reperfusion injury.
Inflammation. 43:401–416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cheng CY, Ho TY, Hsiang CY, Tang NY, Hsieh
CL, Kao ST and Lee YC: Angelica sinensis exerts angiogenic
and anti-apoptotic effects against cerebral ischemia-reperfusion
injury by activating p38MAPK/HIF-1[Formula: See text]/VEGF-A
signaling in rats. Am J Chin Med. 45:1683–1708. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wu S, Wang N, Li J, Wang G, Seto SW, Chang
D and Liang H: Ligustilide ameliorates the permeability of the
blood-brain barrier model in vitro during oxygen-glucose
deprivation injury through HIF/VEGF pathway. J Cardiovasc
Pharmacol. 73:316–325. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chen ZZ, Gong X, Guo Q, Zhao H and Wang L:
Bu Yang Huan Wu decoction prevents reperfusion injury following
ischemic stroke in rats via inhibition of HIF-1α, VEGF and
promotion β-ENaC expression. J Ethnopharmacol. 228:70–81. 2019.
View Article : Google Scholar : PubMed/NCBI
|