Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

HIF‑1α in cerebral ischemia (Review)

  • Authors:
    • Peiliang Dong
    • Qingna Li
    • Hua Han
  • View Affiliations / Copyright

    Affiliations: Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
    Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 41
    |
    Published online on: December 7, 2021
       https://doi.org/10.3892/mmr.2021.12557
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cerebral ischemic injury may lead to a series of serious brain diseases, death or different degrees of disability. Hypoxia‑inducible factor‑1α (HIF‑1α) is an oxygen‑sensitive transcription factor, which mediates the adaptive metabolic response to hypoxia and serves a key role in cerebral ischemia. HIF‑1α is the main molecule that responds to hypoxia. HIF‑1α serves an important role in the development of cerebral ischemia by participating in numerous processes, including metabolism, proliferation and angiogenesis. The present review focuses on the endogenous protective mechanism of cerebral ischemia and elaborates on the role of HIF‑1α in cerebral ischemia. In addition, it focuses on cerebral ischemia interventions that act on the HIF‑1α target, including biological factors, non‑coding RNA, hypoxic‑ischemic preconditioning and drugs, and expands upon the measures to strengthen the endogenous compensatory response to support HIF‑1α as a therapeutic target, thus providing novel suggestions for the treatment of cerebral ischemia.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

WHO publishes definitive atlas on global heart disease and stroke epidemic. Indian J Med Sci. 58:405–406. 2004.PubMed/NCBI

2 

Cramer SC, Wolf SL, Adams HP Jr, Chen D, Dromerick AW, Dunning K, Ellerbe C, Grande A, Janis S, Lansberg MG, et al: Stroke recovery and rehabilitation research: Issues, opportunities, and the national institutes of health strokeNet. Stroke. 48:813–819. 2017. View Article : Google Scholar : PubMed/NCBI

3 

GBD 2016 Causes of Death Collaborators, . Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the global burden of disease study 2016. Lancet. 390:1151–1210. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Jianrong S, Yanjun Z, Chen Y and Jianwen X: DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2. Biochem Biophys Res Commun. 509:713–721. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Kim JY, Kawabori M and Yenari MA: Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Curr Med Chem. 21:2076–2097. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD and Lazarov O: Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J Cereb Blood Flow Metab. 34:1573–1584. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhang H, Sun X, Xie Y, Zan J and Tan W: Isosteviol sodium protects against permanent cerebral ischemia injury in mice via inhibition of NF-κB-mediated inflammatory and apoptotic responses. J Stroke Cerebrovasc Dis. 26:2603–2614. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Ishrat T, Sayeed I, Atif F and Stein DG: Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res. 1257:94–101. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Hazell AS: Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem Int. 50:941–953. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Rothman SM and Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol. 19:105–111. 1986. View Article : Google Scholar : PubMed/NCBI

12 

Lo EH, Dalkara T and Moskowitz MA: Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 4:399–415. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL and Cohen G: Recombinant tissue plasminogen activator for acute ischaemic stroke: An updated systematic review and meta-analysis. Lancet. 379:2364–2372. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Prabhakar NR and Semenza GL: Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Kruschewski M, Foitzik T, Perez-Cantó A, Hübotter A and Buhr HJ: Changes of colonic mucosal microcirculation and histology in two colitis models: An experimental study using intravital microscopy and a new histological scoring system. Dig Dis Sci. 46:2336–2343. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Semenza GL and Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 12:5447–5454. 1992. View Article : Google Scholar : PubMed/NCBI

17 

Harris AL: Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Wilkins SE, Abboud MI, Hancock RL and Schofield CJ: Targeting protein-protein interactions in the HIF system. ChemMedChem. 11:773–786. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Pereira T, Zheng X and Poellinger L: Degradation of the hypoxia-inducible factor 1alpha: Where does it happen? Cell Cycle. 5:2720–2722. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Rabie T and Marti HH: Brain protection by erythropoietin: A manifold task. Physiology (Bethesda). 23:263–274. 2008.PubMed/NCBI

22 

Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Sharp FR and Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 5:437–448. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Ke XJ and Zhang JJ: Changes in HIF-1α, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction. J Huazhong Univ Sci Technolog Med Sci. 33:433–437. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, Ji C, Gan J, Xu XW and Li J: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci USA. 114:10642–10647. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Chavez JC and LaManna JC: Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: Potential role of insulin-like growth factor-1. J Neurosci. 22:8922–8931. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Singh N, Sharma G and Mishra V: Hypoxia inducible factor-1: Its potential role in cerebral ischemia. Cell Mol Neurobiol. 32:491–507. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Lu J, Jiang L, Zhu H, Zhang L and Wang T: Hypoxia-inducible factor-1α and erythropoietin expression in the hippocampus of neonatal rats following hypoxia-ischemia. J Nanosci Nanotechnol. 14:5614–5619. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Li L, Saliba P, Reischl S, Marti HH and Kunze R: Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiol Dis. 91:221–235. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, Mimura O, Dezawa M, Kim SU and Borlongan CV: Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke. 44:3473–3481. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Liu Y, Ran H, Xiao Y, Wang H, Chen Y, Chen W and Xu X: Knockdown of HIF-1α impairs post-ischemic vascular reconstruction in the brain via deficient homing and sprouting bmEPCs. Brain Pathol. 28:860–874. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Borlongan CV, Glover LE, Tajiri N, Kaneko Y and Freeman TB: The great migration of bone marrow-derived stem cells toward the ischemic brain: Therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 95:213–228. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Hayakawa K, Pham LD, Katusic ZS, Arai K and Lo EH: Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci USA. 109:7505–7510. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD and Carroll JE: The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 6:632005. View Article : Google Scholar : PubMed/NCBI

37 

Zhang ZG, Zhang L, Jiang Q and Chopp M: Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 90:284–288. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Eilken HM and Adams RH: Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 22:617–625. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, et al: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Phng LK, Stanchi F and Gerhardt H: Filopodia are dispensable for endothelial tip cell guidance. Development. 140:4031–4040. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizán P, Geudens I, Collins RT, Franco CA, Abrahams CL, et al: Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 6:72642015. View Article : Google Scholar : PubMed/NCBI

42 

Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M, Pollard JW and Ruhrberg C: NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood. 121:2352–2362. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG and Walenkamp AM: A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer. 49:219–230. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Wang C, Lin G, Luan Y, Ding J, Li PC, Zhao Z, Qian C, Liu G, Ju S and Teng GJ: HIF-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials. 197:229–243. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Lin CH, Chiu L, Lee HT, Chiang CW, Liu SP, Hsu YH, Lin SZ, Hsu CY, Hsieh CH and Shyu WC: PACAP38/PAC1 signaling induces bone marrow-derived cells homing to ischemic brain. Stem Cells. 33:1153–1172. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Muller WA: Mechanisms of transendothelial migration of leukocytes. Circ Res. 105:223–230. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Ferrero E, Belloni D, Contini P, Foglieni C, Ferrero ME, Fabbri M, Poggi A and Zocchi MR: Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+ circulating precursors: Evidence for PECAM-1 involvement through Akt/PKB activation. Blood. 101:186–193. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM and Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 24:1030–1041. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Torzicky M, Viznerova P, Richter S, Strobl H, Scheinecker C, Foedinger D and Riedl E: Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells. J Invest Dermatol. 132:1149–1157. 2012. View Article : Google Scholar : PubMed/NCBI

50 

de la Rosa G, Longo N, Rodríguez-Fernández JL, Puig-Kroger A, Pineda A, Corbí AL and Sánchez-Mateos P: Migration of human blood dendritic cells across endothelial cell monolayers: Adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol. 73:639–649. 2003. View Article : Google Scholar : PubMed/NCBI

51 

Kaneider NC, Kaser A, Dunzendorfer S, Tilg H and Wiedermann CJ: Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment. J Virol. 77:5535–5539. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Muller WA: Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24:327–334. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Zhang CC, Steele AD, Lindquist S and Lodish HF: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA. 103:2184–2189. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Gnecchi M and Melo LG: Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol. 482:281–294. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Miles DK and Kernie SG: Hypoxic-ischemic brain injury activates early hippocampal stem/progenitor cells to replace vulnerable neuroblasts. Hippocampus. 18:793–806. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Santilli G, Lamorte G, Carlessi L, Ferrari D, Rota Nodari L, Binda E, Delia D, Vescovi AL and De Filippis L: Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One. 5:e85752010. View Article : Google Scholar : PubMed/NCBI

57 

Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen X, Shi Q and Song T: Cell proliferation in ependymal/subventricular zone and nNOS expression following focal cerebral ischemia in adult rats. Neurol Res. 28:91–96. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Bürgers HF, Schelshorn DW, Wagner W, Kuschinsky W and Maurer MH: Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain. Exp Brain Res. 188:33–43. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V and Snyder EY: Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: Evidence from the effect of hypoxia-ischemia in the CNS on clonal ‘reporter’ neural stem cells. Exp Neurol. 199:156–178. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Qi C, Zhang J, Chen X, Wan J, Wang J, Zhang P and Liu Y: Hypoxia stimulates neural stem cell proliferation by increasing HIF-1α expression and activating Wnt/β-catenin signaling. Cell Mol Biol (Noisy-le-grand). 63:12–19. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Ciani L and Salinas PC: WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci. 6:351–362. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Lee SM, Tole S, Grove E and McMahon AP: A local Wnt-3a signal is required for development of the mammalian hippocampus. Development. 127:457–467. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR and Gage FH: Wnt signalling regulates adult hippocampal neurogenesis. Nature. 437:1370–1375. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Yang Z, Zhao TZ, Zou YJ, Zhang JH and Feng H: Hypoxia induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PLoS One. 9:e965092014. View Article : Google Scholar : PubMed/NCBI

66 

Sun Y, He W and Geng L: Neuroprotective mechanism of HIF-1α overexpression in the early stage of acute cerebral infarction in rats. Exp Ther Med. 12:391–395. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Panchision DM: The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol. 220:562–568. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Jiang Q, Geng X, Warren J, Eugene Paul Cosky E, Kaura S, Stone C, Li F and Ding Y: Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following schemic stroke. Neuroscience. 448:126–139. 2020. View Article : Google Scholar : PubMed/NCBI

70 

An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L and Tang M: Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 232:1165992019. View Article : Google Scholar : PubMed/NCBI

71 

Tang B, Tang WJ, Tang YH and Deng CQ: Astragaloside IV attenuates cerebral ischemia and reperfusion injury and reduces activation of NLRP3 inflammasome and NF-κB phosphorylation in rats following a transient middle cerebral artery occlusion. Sheng Li Xue Bao. 71:424–430. 2019.(In Chinese). PubMed/NCBI

72 

Davis BK, Wen H and Ting JP: The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M: HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model. Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI

74 

Zhu T, Zhan L, Liang D, Hu J, Lu Z, Zhu X, Sun W, Liu L and Xu E: Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia. J Neuropathol Exp Neurol. 73:975–986. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Yang ML, Tao T, Xu J, Liu Z and Xu D: Antiapoptotic effect of gene therapy with recombinant adenovirus vector containing hypoxia-inducible factor-1α after cerebral ischemia and reperfusion in rats. Chin Med J (Engl). 130:1700–1706. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Guo Y: Role of HIF-1a in regulating autophagic cell survival during cerebral ischemia reperfusion in rats. Oncotarget. 8:98482–98494. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Jin X, Wang RH and Wang H, Long CL and Wang H: Brain protection against ischemic stroke using choline as a new molecular bypass treatment. Acta Pharmacol Sin. 36:1416–1425. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Chen X, Zhou B, Yan T, Wu H, Feng J, Chen H, Gao C, Peng T, Yang D and Shen J: Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating HIF-1α and Wnt/β-catenin signaling pathway. Free Radic Biol Med. 117:158–167. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Chen SF, Pan MX, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain. 13:632020. View Article : Google Scholar : PubMed/NCBI

80 

Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, et al: Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J Immunol. 202:1704–1714. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Jeyaseelan K, Lim KY and Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 39:959–966. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Wang Y, Wang Y and Yang GY: MicroRNAs in cerebral ischemia. Stroke Res Treat. 2013:2765402013.PubMed/NCBI

83 

Sun JJ, Zhang XY, Qin XD, Zhang J, Wang MX and Yang JB: miRNA-210 induces the apoptosis of neuronal cells of rats with cerebral ischemia through activating HIF-1α-VEGF pathway. Eur Rev Med Pharmacol Sci. 23:2548–2554. 2019.PubMed/NCBI

84 

Li LJ, Huang Q, Zhang N, Wang GB and Liu YH: miR-376b-5p regulates angiogenesis in cerebral ischemia. Mol Med Rep. 10:527–535. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Zhang L, Zhang Y, Zhang X, Zhang Y, Jiang Y, Xiao X, Tan J, Yuan W and Liu Y: MicroRNA-433 inhibits the proliferation and migration of HUVECs and neurons by targeting hypoxia-inducible factor 1 alpha. J Mol Neurosci. 61:135–143. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Liu FJ, Kaur P, Karolina DS, Sepramaniam S, Armugam A, Wong PT and Jeyaseelan K: miR-335 regulates Hif-1α to reduce cell death in both mouse cell line and rat ischemic models. PLoS One. 10:e01284322015. View Article : Google Scholar : PubMed/NCBI

87 

Wang D, Wang L, Bai L, Du Y, Liu L and Chen X: Effects of inhibition of miR-155-5p in neural stem cell subarachnoid transplant on rats with cerebral infarction. Hum Gene Ther Methods. 30:184–193. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Zhang X, Li H, Burnett JC and Rossi JJ: The role of antisense long noncoding RNA in small RNA-triggered gene activation. RNA. 20:1916–1928. 2014. View Article : Google Scholar : PubMed/NCBI

89 

PLOS Genetics Staff, . Correction: fMiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 12:e10058252016. View Article : Google Scholar : PubMed/NCBI

90 

Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ. 24:212–224. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J and Bronisz A: The Long Non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 15:2500–2509. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y and Wen A: lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 96:165–172. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Fani L, Bos D, Mutlu U, Portegies MLP, Zonneveld HI, Koudstaal PJ, Vernooij MW, Ikram MA and Ikram MK: Global brain perfusion and the risk of transient ischemic attack and ischemic stroke: The rotterdam study. J Am Heart Assoc. 8:e0115652019. View Article : Google Scholar : PubMed/NCBI

94 

Tsai MJ, Kuo YM and Tsai YH: Transient ischemic attack induced by melted solid lipid microparticles protects rat brains from permanent focal ischemia. Neuroscience. 275:136–145. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Sprick JD, Mallet RT, Przyklenk K and Rickards CA: Ischaemic and hypoxic conditioning: Potential for protection of vital organs. Exp Physiol. 104:278–294. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Rojas DR, Tegeder I, Kuner R and Agarwal N: Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med. 96:1395–1405. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Rodríguez-Reynoso S, Leal-Cortés C, Portilla-de Buen E and López-De la Torre SP: Ischemic preconditioning preserves liver energy charge and function on hepatic ischemia/reperfusion injury in rats. Arch Med Res. 49:373–380. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Meng SS, Xu XP, Chang W, Lu ZH, Huang LL, Xu JY, Liu L, Qiu HB, Yang Y and Guo FM: LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Stem Cell Res Ther. 9:2802018. View Article : Google Scholar : PubMed/NCBI

99 

Yang Y, Lu F, Zhuang L, Yang S, Kong Y, Tan W, Gong Z and Zhan S: Combined preconditioning with hypoxia and GYKI-52466 protects rats from cerebral ischemic injury by HIF-1α/eNOS pathway. Am J Transl Res. 9:5308–5319. 2017.PubMed/NCBI

100 

Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan D, Lu M and Hu Z: Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α. Aging (Albany NY). 12:10931–10950. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Murry CE, Jennings RB and Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI

102 

Lee JC, Tae HJ, Kim IH, Cho JH, Lee TK, Park JH, Ahn JH, Choi SY, Bai HC, Shin BN, et al: Roles of HIF-1α, VEGF, and NF-κB in ischemic preconditioning-mediated neuroprotection of hippocampal CA1 pyramidal neurons against a subsequent transient cerebral ischemia. Mol Neurobiol. 54:6984–6998. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Hirayama Y and Koizumi S: Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning. Glia. 65:523–530. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Yang J, Liu C, Du X, Liu M, Ji X, Du H and Zhao H: Hypoxia inducible factor 1α plays a key role in remote ischemia preconditioning against stroke by modulating inflammatory responses in rats. J Am Heart Assoc. 7:e0075892018. View Article : Google Scholar : PubMed/NCBI

105 

Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, et al: Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther. 22:43–52. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Xia M, Ding Q, Zhang Z and Feng Q: Remote limb ischemic preconditioning protects rats against cerebral ischemia via HIF-1α/AMPK/HSP70 pathway. Cell Mol Neurobiol. 37:1105–1114. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y, Fang J, Caro J and Sang N: Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem. 281:13612–13619. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Liang D, Kong X and Sang N: Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 5:2430–2435. 2006. View Article : Google Scholar : PubMed/NCBI

109 

Chen S, Yin C, Lao T, Liang D, He D, Wang C and Sang N: AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle. 14:2520–2536. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ and Gao Y: Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Prog Neurobiol. 114:58–83. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Zhang F, Wu Y and Jia J: Exercise preconditioning and brain ischemic tolerance. Neuroscience. 177:170–176. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Ding YH, Ding Y, Li J, Bessert DA and Rafols JA: Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res. 28:184–189. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Ding YH, Li J, Yao WX, Rafols JA, Clark JC and Ding Y: Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol. 112:74–84. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Kang KA, Seong H, Jin HB, Park J, Lee J, Jeon JY and Kim YJ: The effect of treadmill exercise on ischemic neuronal injury in the stroke animal model: Potentiation of cerebral vascular integrity. J Korean Acad Nurs. 41:197–203. 2011.(In Korean). View Article : Google Scholar : PubMed/NCBI

115 

Otsuka S, Sakakima H, Terashi T, Takada S, Nakanishi K and Kikuchi K: Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats. Brain Struct Funct. 224:727–738. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Wang L, Deng W, Yuan Q and Yang H: Exercise preconditioning reduces ischemia reperfusion-induced focal cerebral infarct volume through up-regulating the expression of HIF-1α. Pak J Pharm Sci. 28 (Suppl 2):S791–S798. 2015.

117 

Wang H, Niu F, Fan W, Shi J, Zhang J and Li B: Modulating effects of preconditioning exercise in the expression of ET-1 and BNP via HIF-1α in ischemically injured brain. Metab Brain Dis. 34:1299–1311. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, et al: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 359:1317–1329. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Wang H and Xu X, Yin Y, Yu S, Ren H, Xue Q and Xu X: Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF. Phytomedicine. 78:1533002020. View Article : Google Scholar : PubMed/NCBI

120 

Liang C, Ni GX, Shi XL, Jia L and Wang YL: Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci. 38:271–282. 2020.PubMed/NCBI

121 

Hu Q, Liu L, Zhou L, Lu H, Wang J, Chen X and Wang Q: Effect of fluoxetine on HIF-1α-Netrin/VEGF cascade, angiogenesis and neuroprotection in a rat model of transient middle cerebral artery occlusion. Exp Neurol. 329:1133122020. View Article : Google Scholar : PubMed/NCBI

122 

Wang J, Zhou X, Lu H, Song M, Zhao J and Wang Q: Fluoxetine induces vascular endothelial growth factor/Netrin over-expression via the mediation of hypoxia-inducible factor 1-alpha in SH-SY5Y cells. J Neurochem. 136:1186–1195. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K and Wang N: VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 234:17690–17703. 2019. View Article : Google Scholar : PubMed/NCBI

124 

Cheng X, Wang H, Liu C, Zhong S, Niu X, Zhang X, Qi R, Zhao S, Zhang X, Qu H and Zhao C: Dl-3-n-butylphthalide promotes remyelination process in cerebral white matter in rats subjected to ischemic stroke. Brain Res. 1717:167–175. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Zhang Q, Bian H, Guo L and Zhu H: Berberine preconditioning protects neurons against ischemia via sphingosine-1-phosphate and hypoxia-inducible factor-1[Formula: See text]. Am J Chin Med. 44:927–941. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Ryou MG, Choudhury GR, Li W, Winters A, Yuan F, Liu R and Yang SH: Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience. 301:193–203. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu K, Brown J, Hong G and Chen L: Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation. 40:1297–1309. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Hou Y, Wang J and Feng J: The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. Drug Des Devel Ther. 13:1135–1144. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Saad MAE, Fahmy MIM, Al-Shorbagy M, Assaf N, Hegazy AAE and El-Yamany MF: Nateglinide exerts neuroprotective effects via downregulation of HIF-1α/TIM-3 inflammatory pathway and promotion of caveolin-1 expression in the rat's hippocampus subjected to focal cerebral ischemia/reperfusion injury. Inflammation. 43:401–416. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Cheng CY, Ho TY, Hsiang CY, Tang NY, Hsieh CL, Kao ST and Lee YC: Angelica sinensis exerts angiogenic and anti-apoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1[Formula: See text]/VEGF-A signaling in rats. Am J Chin Med. 45:1683–1708. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Wu S, Wang N, Li J, Wang G, Seto SW, Chang D and Liang H: Ligustilide ameliorates the permeability of the blood-brain barrier model in vitro during oxygen-glucose deprivation injury through HIF/VEGF pathway. J Cardiovasc Pharmacol. 73:316–325. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Chen ZZ, Gong X, Guo Q, Zhao H and Wang L: Bu Yang Huan Wu decoction prevents reperfusion injury following ischemic stroke in rats via inhibition of HIF-1α, VEGF and promotion β-ENaC expression. J Ethnopharmacol. 228:70–81. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong P, Li Q and Han H: HIF‑1α in cerebral ischemia (Review). Mol Med Rep 25: 41, 2022.
APA
Dong, P., Li, Q., & Han, H. (2022). HIF‑1α in cerebral ischemia (Review). Molecular Medicine Reports, 25, 41. https://doi.org/10.3892/mmr.2021.12557
MLA
Dong, P., Li, Q., Han, H."HIF‑1α in cerebral ischemia (Review)". Molecular Medicine Reports 25.2 (2022): 41.
Chicago
Dong, P., Li, Q., Han, H."HIF‑1α in cerebral ischemia (Review)". Molecular Medicine Reports 25, no. 2 (2022): 41. https://doi.org/10.3892/mmr.2021.12557
Copy and paste a formatted citation
x
Spandidos Publications style
Dong P, Li Q and Han H: HIF‑1α in cerebral ischemia (Review). Mol Med Rep 25: 41, 2022.
APA
Dong, P., Li, Q., & Han, H. (2022). HIF‑1α in cerebral ischemia (Review). Molecular Medicine Reports, 25, 41. https://doi.org/10.3892/mmr.2021.12557
MLA
Dong, P., Li, Q., Han, H."HIF‑1α in cerebral ischemia (Review)". Molecular Medicine Reports 25.2 (2022): 41.
Chicago
Dong, P., Li, Q., Han, H."HIF‑1α in cerebral ischemia (Review)". Molecular Medicine Reports 25, no. 2 (2022): 41. https://doi.org/10.3892/mmr.2021.12557
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team