Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling

  • Authors:
    • Lei Jiang
    • Jinghui Li
  • View Affiliations / Copyright

    Affiliations: Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, P.R. China, Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, Kunming, Yunnan 650051, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 67
    |
    Published online on: January 3, 2022
       https://doi.org/10.3892/mmr.2022.12583
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long non‑coding RNA (lncRNA) is considered a crucial modulator of the initiation and progression of several diseases. However, the roles of lncRNA in sepsis have yet to be fully elucidated. Thus, the aim of the present study was to investigate the effects of the lncRNA GDP‑mannose 4,6‑dehydratase antisense 1 (GMDS‑AS1) and its target in order to understand its role in the pathogenesis of sepsis. An in vitro sepsis model was established by lipopolysaccharide (LPS) induction. Reverse transcription‑quantitative PCR analysis was applied to detect the expression of inflammatory cytokines and the levels of GMDS‑AS1, microRNA (miR)‑96‑5p and caspase‑2 (CASP2). Flow cytometry was used to quantify the rate of apoptosis. In addition, the interaction between miR‑96‑5p and CASP2 was verified using a luciferase reporter assay. Western blot analysis was performed to assess the protein levels of CASP2 following alterations in GMDS‑AS1 and miR‑96‑5p expression using transfection. The levels of interleukin (IL)‑6, tumor necrosis factor‑α and IL‑1β were increased by LPS treatment in THP‑1 cells, whereas miR‑96‑5p expression was downregulated. miR‑96‑5p overexpression inhibited LPS‑induced inflammatory responses and apoptosis. In addition, GMDS‑AS1 expression increased, and upregulation of GMDS‑AS1 inhibited, the expression of miR‑96‑5p in the in vitro sepsis model. Moreover, CASP2 was confirmed to be a direct target of miR‑96‑5p. Therefore, the lncRNA GMDS‑AS1 regulated inflammatory responses and apoptosis by modulating CASP2 and sponging miR‑96‑5p in LPS‑induced THP‑1 cells. In summary, the findings of the present study demonstrated that lncRNA GMDS‑AS1 could promote the development of sepsis by targeting miR‑96‑5p/CASP2, indicating that the GMDS‑AS1/miR‑96‑5p/CASP2 axis may be a new therapeutic target and potential research direction for sepsis therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Chaudhry H, Zhou J, Zhong Y, Ali MM, McGuire F, Nagarkatti PS and Nagarkatti M: Role of cytokines as a double-edged sword in sepsis. In vivo. 27:669–684. 2013.PubMed/NCBI

2 

Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE and Ognibene FP: Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 113:227–242. 1990. View Article : Google Scholar : PubMed/NCBI

3 

Becker KL, Snider R and Nylen ES: Procalcitonin in sepsis and systemic inflammation: A harmful biomarker and a therapeutic target. Br J Pharmacol. 159:253–264. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Bickler SW and De Maio A: Dysfunction of the innate immune system during sepsis: A call for research. Crit Care Med. 41:364–365. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Delano MJ and Ward PA: The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 274:330–353. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Maslove DM and Wong HR: Gene expression profiling in sepsis: Timing, tissue, and translational considerations. Trends Mol Med. 20:204–213. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Martin GS: Sepsis, severe sepsis and septic shock: Changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 10:701–706. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Wang J, Wang H, Zhu R, Liu Q, Fei J and Wang S: Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials. 53:475–483. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Li Y, Egranov SD, Yang L and Lin C: Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis. Genes Chromosomes Cancer. 58:200–207. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Fang Y and Fullwood MJ: Roles, functions, and mechanisms of long Non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 14:42–54. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Dai Y, Liang Z, Li Y, Li C and Chen L: Circulating Long Noncoding RNAs as potential biomarkers of sepsis: A preliminary study. Genet Test Mol Biomarkers. 21:649–657. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Zhang TN, Li D, Xia J, Wu QJ, Wen R, Yang N and Liu CF: Non-coding RNA: A potential biomarker and therapeutic target for sepsis. Oncotarget. 8:91765–91778. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Sun L, Li L and Yan J: Progress in relationship of the long non-coding RNA and sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 29:181–183. 2017.(In Chinese). PubMed/NCBI

14 

Fang Y, Hu J, Wang Z, Zong H, Zhang L, Zhang R and Sun L: LncRNA H19 functions as an Aquaporin 1 competitive endogenous RNA to regulate microRNA-874 expression in LPS sepsis. Biomed Pharmacother. 105:1183–1191. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Zhang HJ, Wei QF, Wang SJ, Zhang HJ, Zhang XY, Geng Q, Cui YH and Wang XH: LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-kappaB pathway. Int Immunopharmacol. 50:283–290. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Zhao M, Xin XF, Zhang JY, Dai W, Lv TF and Song Y: LncRNA GMDS-AS1 inhibits lung adenocarcinoma development by regulating miR-96-5p/CYLD signaling. Cancer Med. 9:1196–1208. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Jain S: Sepsis: An update on current practices in diagnosis and management. Am J Med Sci. 356:277–286. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Rello J, Valenzuela-Sanchez F, Ruiz-Rodriguez M and Moyano S: Sepsis: A review of advances in management. Adv Ther. 34:2393–2411. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Hamers L, Kox M and Pickkers P: Sepsis-induced immunoparalysis: Mechanisms, markers, and treatment options. Minerva Anestesiol. 81:426–439. 2015.PubMed/NCBI

21 

Liz J and Esteller M: lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 1859:169–176. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Varshney J and Subramanian S: MicroRNAs as potential target in human bone and soft tissue sarcoma therapeutics. Front Mol Biosci. 2:312015. View Article : Google Scholar : PubMed/NCBI

23 

Fu D, Dong J, Li P, Tang C, Cheng W, Xu Z, Zhou W, Ge J, Xia C and Zhang Z: MiRNA-21 has effects to protect kidney injury induced by sepsis. Biomed Pharmacother. 94:1138–1144. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Ge C, Liu J and Dong S: MiRNA-214 protects sepsis-induced myocardial injury. Shock. 50:112–118. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Wang Z, Ruan Z, Mao Y, Dong W, Zhang Y, Yin N and Jiang L: MiR-27a is up regulated and promotes inflammatory response in sepsis. Cell Immunol. 290:190–195. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, Lax S, Jahn S, Deutsch A, Bauernhofer T, Ling H, et al: MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog. 54:1442–1450. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Liu B, Zhang J and Yang D: MiR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J Ovarian Res. 12:572019. View Article : Google Scholar : PubMed/NCBI

28 

Chen J, Jiang S, Cao Y and Yang Y: Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J Clin Immunol. 34:340–348. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Cheng Q, Tang L and Wang Y: Regulatory role of miRNA-26a in neonatal sepsis. Exp Ther Med. 16:4836–4842. 2018.PubMed/NCBI

30 

How CK, Hou SK, Shih HC, Huang MS, Chiou SH, Lee CH and Juan CC: Expression profile of MicroRNAs in gram-negative bacterial sepsis. Shock. 43:121–127. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Hotchkiss RS and Nicholson DW: Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 6:813–822. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Gotts JE and Matthay MA: Sepsis: Pathophysiology and clinical management. BMJ. 353:i15852016. View Article : Google Scholar : PubMed/NCBI

34 

Matsuda A, Jacob A, Wu R, Aziz M, Yang WL, Matsutani T, Suzuki H, Furukawa K, Uchida E and Wang P: Novel therapeutic targets for sepsis: Regulation of exaggerated inflammatory responses. J Nippon Med Sch. 79:4–18. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Oberholzer C, Oberholzer A, Clare-Salzler M and Moldawer LL: Apoptosis in sepsis: A new target for therapeutic exploration. FASEB J. 15:879–892. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, Bai X, Wang K, Liu Y, Li X, et al: SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophys Acta Mol Basis Dis. 1864:784–792. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zheng D, Yu Y, Li M, Wang G, Chen R, Fan GC, Martin C, Xiong S and Peng T: Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J Infect Dis. 213:1661–1670. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Yong H, Wu G, Chen J, Liu X, Bai Y, Tang N, Liu L and Wei J: lncRNA MALAT1 accelerates skeletal muscle cell apoptosis and inflammatory response in sepsis by decreasing BRCA1 expression by recruiting EZH2. Mol Ther Nucleic Acids. 19:97–108. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Lu S, Wu H, Xu J, He Z, Li H and Ning C: SIKIAT1/miR-96/FOXA1 axis regulates sepsis-induced kidney injury through induction of apoptosis. Inflamm Res. 69:645–656. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang L and Li J: lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling. Mol Med Rep 25: 67, 2022.
APA
Jiang, L., & Li, J. (2022). lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling. Molecular Medicine Reports, 25, 67. https://doi.org/10.3892/mmr.2022.12583
MLA
Jiang, L., Li, J."lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling". Molecular Medicine Reports 25.2 (2022): 67.
Chicago
Jiang, L., Li, J."lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling". Molecular Medicine Reports 25, no. 2 (2022): 67. https://doi.org/10.3892/mmr.2022.12583
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang L and Li J: lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling. Mol Med Rep 25: 67, 2022.
APA
Jiang, L., & Li, J. (2022). lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling. Molecular Medicine Reports, 25, 67. https://doi.org/10.3892/mmr.2022.12583
MLA
Jiang, L., Li, J."lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling". Molecular Medicine Reports 25.2 (2022): 67.
Chicago
Jiang, L., Li, J."lncRNA GMDS‑AS1 upregulates IL‑6, TNF‑α and IL‑1β, and induces apoptosis in human monocytic THP‑1 cells via miR‑96‑5p/caspase 2 signaling". Molecular Medicine Reports 25, no. 2 (2022): 67. https://doi.org/10.3892/mmr.2022.12583
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team