|
1
|
Xiao D, Zeng L, Yao K, Kong X, Wu G and
Yin Y: The glutamine-alpha-ketoglutarate (AKG) metabolism and its
nutritional implications. Amino Acids. 48:2067–2080. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cunha RA: How does adenosine control
neuronal dysfunction and neurodegeneration? J Neurochem.
139:1019–1055. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
de Medeiros HC, Constantin J,
Ishii-Iwamoto EL and Mingatto FE: Effect of fipronil on energy
metabolism in the perfused rat liver. Toxicol Lett. 236:34–42.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jeevanandam M, Begay CK, Holaday NJ and
Petersen SR: Nutritional and metabolic effects and significance of
mild orotic aciduria during dietary supplementation with arginine
or its organic salts after trauma injury in rats. Metabolism.
46:785–792. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Legendre F, MacLean A, Appanna VP and
Appanna VD: Biochemical pathways to alpha-ketoglutarate, a
multi-faceted metabolite. World J Microbiol Biotechnol. 36:1232020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Valenzuela PL, Morales JS, Emanuele E,
Pareja-Galeano H and Lucia A: Supplements with purported effects on
muscle mass and strength. Eur J Nutr. 58:2983–3008. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Niemiec T, Sikorska J, Harrison A, Szmidt
M, Sawosz E, Wirth-Dzieciolowska E, Wilczak J and Pierzynowski S:
Alpha-ketoglutarate stabilizes redox homeostasis and improves
arterial elasticity in aged mice. J Physiol Pharmacol. 62:37–43.
2011.PubMed/NCBI
|
|
8
|
Radzki RP, Bienko M, Filip R and
Pierzynowski SG: The protective and therapeutic effect of exclusive
and combined treatment with alpha-ketoglutarate sodium salt and
ipriflavone on bone loss in orchidectomized rats. J Nutr Health
Aging. 20:628–636. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tomaszewska E, Swiatkiewicz S,
Arczewska-Wlosek A, Wojtysiak D, Dobrowolski P, Domaradzki P,
Świetlicka I, Donaldson J, Hułas-Stasiak M and Muszyński S:
Alpha-Ketoglutarate: An effective feed supplement in improving bone
metabolism and muscle quality of laying hens: A preliminary study.
Animals (Basel). 10:24202020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang R, Wang X, Liu S, Zhang W, Wang P,
Liu X, Ren Y, Tan X and Chi B: Bioinspired poly (ү-glutamic acid)
hydrogels for enhanced chondrogenesis of bone marrow-derived
mesenchymal stem cells. Int J Biol Macromol. 142:332–344. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tian Q, Bravo Iniguez A, Sun Q, Wang H, Du
M and Zhu MJ: Dietary alpha-ketoglutarate promotes epithelial
metabolic transition and protects against DSS-induced colitis. Mol
Nutr Food Res. 65:e20009362021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Asadi Shahmirzadi A, Edgar D, Liao CY, Hsu
YM, Lucanic M, Asadi Shahmirzadi A, Wiley CD, Gan G, Kim DE, Kasler
HG, et al: Alpha-Ketoglutarate, an endogenous metabolite, extends
lifespan and compresses morbidity in aging mice. Cell Metab.
32:447–456, e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang Y, Deng P, Liu Y, Wu Y, Chen Y, Guo
Y, Zhang S, Zheng X, Zhou L, Liu W, et al: Alpha-ketoglutarate
ameliorates age-related osteoporosis via regulating histone
methylations. Nat Commun. 11:55962020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP,
Goh J, Maier AB and Kennedy BK: Alpha-Ketoglutarate dietary
supplementation to improve health in humans. Trends Endocrinol
Metab. 33:136–146. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yamamoto T, Sato K, Yamaguchi M, Mitamura
K and Taga A: Development of simultaneous quantitative analysis of
tricarboxylic acid cycle metabolites to identify specific
metabolites in cancer cells by targeted metabolomic approach.
Biochem Biophys Res Commun. 584:53–59. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Woyke S, Mair N, Ortner A, Haller T,
Ronzani M, Rugg C, Ströhle M, Wintersteiger R and Gatterer H: Dose-
and sex-dependent changes in hemoglobin oxygen affinity by the
micronutrient 5-hydroxymethylfurfural and α-ketoglutaric acid.
Nutrients. 13:34482021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Niebisch A, Kabus A, Schultz C, Weil B and
Bott M: Corynebacterial protein kinase G controls 2-oxoglutarate
dehydrogenase activity via the phosphorylation status of the OdhI
protein. J Biol Chem. 281:12300–12307. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Krawczyk S, Raasch K, Schultz C, Hoffelder
M, Eggeling L and Bott M: The FHA domain of OdhI interacts with the
carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in
Corynebacterium glutamicum. FEBS Lett. 584:1463–1468. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lockwood LB and Stodola FH: Preliminary
studies on the production of alpha-ketoglutaric acid by Pseudomonas
fluorescens. J Biol Chem. 164:81–83. 1946. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Otto C, Yovkova V and Barth G:
Overproduction and secretion of alpha-ketoglutaric acid by
microorganisms. Appl Microbiol Biotechnol. 92:689–695. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Guo H, Su S, Madzak C, Zhou J, Chen H and
Chen G: Applying pathway engineering to enhance production of
alpha-ketoglutarate in Yarrowia lipolytica. Appl Microbiol
Biotechnol. 100:9875–9884. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guo H, Du G, Zhou J and Chen J: Progress
in microbial production of alpha-ketoglutarate. Sheng Wu Gong Cheng
Xue Bao. 29:141–152. 2013.(In Chinese). PubMed/NCBI
|
|
23
|
Bartlett DE, Miller RB, Thiesfeldt S,
Lakhani HV, Shapiro JI and Sodhi K: The role of Na/K-ATPase
signaling in oxidative stress related to aging: Implications in
obesity and cardiovascular disease. Int J Mol Sci. 19:21392018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liang WD, Huang PJ, Xiong LH, Zhou S, Ye
RY, Liu JR, Wei H and Lai RY: Metabolomics and its application in
the mechanism analysis on diabetic bone metabolic abnormality. Eur
Rev Med Pharmacol Sci. 24:9591–9600. 2020.PubMed/NCBI
|
|
25
|
Cheng MX, Cao D, Chen Y, Li JZ, Tu B and
Gong JP: α-ketoglutarate attenuates ischemia-reperfusion injury of
liver graft in rats. Biomed Pharmacother. 111:1141–1146. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Olenchock BA, Moslehi J, Baik AH, Davidson
SM, Williams J, Gibson WJ, Chakraborty AA, Pierce KA, Miller CM,
Hanse EA, et al: EGLN1 inhibition and rerouting of
alpha-ketoglutarate suffice for remote ischemic protection. Cell.
165:4972016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
O'Rourke MF and Hashimoto J: Mechanical
factors in arterial aging: A clinical perspective. J Am Coll
Cardiol. 50:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Satpute RM, Hariharakrishnan J and
Bhattacharya R: Effect of alpha-ketoglutarate and N-acetyl cysteine
on cyanide-induced oxidative stress mediated cell death in PC12
cells. Toxicol Ind Health. 26:297–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen P, Hou L, Luo Y, Chen L, Li S, Lei X,
Huang J and Wu D: Effect of diabetes on the assessment role of
2-oxoglutarate to the severity of chronic heart failure. Exp Clin
Endocrinol Diabetes. 126:478–486. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
An D, Zeng Q, Zhang P, Ma Z, Zhang H, Liu
Z, Li J, Ren H and Xu D: Alpha-ketoglutarate ameliorates pressure
overload-induced chronic cardiac dysfunction in mice. Redox Biol.
46:1020882021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Greilberger J, Herwig R, Greilberger M,
Stiegler P and Wintersteiger R: Alpha-Ketoglutarate and 5-HMF: A
potential anti-tumoral combination against leukemia cells.
Antioxidants (Basel). 10:18042021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mendoza G and Merchant H: Motor system
evolution and the emergence of high cognitive functions. Prog
Neurobiol. 122:73–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu
Y, Yu L, Wang L, Wang S, Zhu X, et al: alpha-Ketoglutarate prevents
skeletal muscle protein degradation and muscle atrophy through
PHD3/ADRB2 pathway. FASEB J. 32:488–499. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ge J, Cui H, Xie N, Banerjee S, Guo S,
Dubey S, Barnes S and Liu G: Glutaminolysis promotes collagen
translation and stability via alpha-ketoglutarate-mediated mTOR
activation and proline hydroxylation. Am J Respir Cell Mol Biol.
58:378–390. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xiong G, Stewart RL, Chen J, Gao T, Scott
TL, Samayoa LM, O'Connor K, Lane AN and Xu R: Collagen prolyl
4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC
chemoresistance. Nat Commun. 9:44562018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zurek A, Mizerska-Kowalska M,
Slawinska-Brych A, Kaławaj K, Bojarska-Junak A, Kandefer-Szerszeń M
and Zdzisińska B: Alpha ketoglutarate exerts a pro-osteogenic
effect in osteoblast cell lines through activation of JNK and
mTOR/S6K1/S6 signaling pathways. Toxicol Appl Pharmacol. 374:53–64.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Filip RS, Pierzynowski SG, Lindegard B,
Wernerman J, Haratym-Maj A and Podgurniak M: Alpha-ketoglutarate
decreases serum levels of C-terminal cross-linking telopeptide of
type I collagen (CTX) in postmenopausal women with osteopenia:
Six-month study. Int J Vitam Nutr Res. 77:89–97. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sliwa E, Tatara MR, Nowakowski H,
Pierzynowski SG and Studzinski T: Effect of maternal dexamethasone
and alpha-ketoglutarate administration on skeletal development
during the last three weeks of prenatal life in pigs. J Matern
Fetal Neonatal Med. 19:489–493. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hammarqvist F, Wernerman J, von der Decken
A and Vinnars E: Alpha-ketoglutarate preserves protein synthesis
and free glutamine in skeletal muscle after surgery. Surgery.
109:28–36. 1991.PubMed/NCBI
|
|
40
|
Radzki RP, Bienko M and Pierzynowski SG:
Anti-osteopenic effect of alpha-ketoglutarate sodium salt in
ovariectomized rats. J Bone Miner Metab. 30:651–659. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Godsora BKJ, Prakash P, Punekar NS and
Bhaumik P: Molecular insights into the inhibition of glutamate
dehydrogenase by the dicarboxylic acid metabolites. Proteins.
90:810–823. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Alrefai H, Allababidi H, Levy S and Levy
J: The endocrine system in diabetes mellitus. Endocrine.
18:105–119. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Temneanu OR, Trandafir LM and Purcarea MR:
Type 2 diabetes mellitus in children and adolescents: A relatively
new clinical problem within pediatric practice. J Med Life.
9:235–239. 2016.PubMed/NCBI
|
|
44
|
Rabaglia ME, Gray-Keller MP, Frey BL,
Shortreed MR, Smith LM and Attie AD: Alpha-Ketoisocaproate-induced
hypersecretion of insulin by islets from diabetes-susceptible mice.
Am J Physiol Endocrinol Metab. 289:E218–E224. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Macdonald MJ: Export of metabolites from
pancreatic islet mitochondria as a means to study anaplerosis in
insulin secretion. Metabolism. 52:993–998. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Odegaard ML, Joseph JW, Jensen MV, Lu D,
Ilkayeva O, Ronnebaum SM, Becker TC and Newgard CB: The
mitochondrial 2-oxoglutarate carrier is part of a metabolic pathway
that mediates glucose- and glutamine-stimulated insulin secretion.
J Biol Chem. 285:16530–16537. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fahien LA, MacDonald MJ, Kmiotek EH, Mertz
RJ and Fahien CM: Regulation of insulin release by factors that
also modify glutamate dehydrogenase. J Biol Chem. 263:13610–13614.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan Q, Wang W, Yang C, Zhang J, Sun K, Luo
HC, Mai LF, Lao Y, Yan L and Ren M: α-ketoglutarate is associated
with delayed wound healing in diabetes. Clin Endocrinol (Oxf).
85:54–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou
B, Tan B, Zhu G, Deng J and Yin Y: Glutamine metabolism in
macrophages: A novel target for obesity/type 2 diabetes. Adv Nutr.
10:321–330. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Poddar M, Chetty Y and Chetty VT: How does
obesity affect the endocrine system? A narrative review. Clin Obes.
7:136–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kang HS, Lee JH, Oh KJ, Lee EW, Han BS,
Park KY, Suh JM, Min JK, Chi SW, Lee SC, et al: IDH1-dependent
alpha-KG regulates brown fat differentiation and function by
modulating histone methylation. Metabolism. 105:1541732020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wu L, Xia M, Duan Y, Zhang L, Jiang H, Hu
X, Yan H, Zhang Y, Gu Y, Shi H, et al: Berberine promotes the
recruitment and activation of brown adipose tissue in mice and
humans. Cell Death Dis. 10:4682019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang Q, Liang X, Sun X, Zhang L, Fu X,
Rogers CJ, Berim A, Zhang S, Wang S, Wang B, et al:
AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in
the Prdm16 promoter and brown adipogenesis. Cell Metab. 24:542–554.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Z, Gan L, Zhang T, Ren Q and Sun C:
Melatonin alleviates adipose inflammation through elevating
α-ketoglutarate and diverting adipose-derived exosomes to
macrophages in mice. J Pineal Res. 64:2018. View Article : Google Scholar
|
|
55
|
Shamburek RD and Farrar JT: Disorders of
the digestive system in the elderly. N Engl J Med. 322:438–443.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Geboes K, Geboes KP and Maleux G: Vascular
anatomy of the gastrointestinal tract. Best Pract Res Clin
Gastroenterol. 15:1–14. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH,
Yun J, Cho YK, Lee G and Han SU: Quantitative measurement of
organic acids in tissues from gastric cancer patients indicates
increased glucose metabolism in gastric cancer. PLoS One.
9:e985812014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim KB, Yang JY, Kwack SJ, Park KL, Kim
HS, Ryu DH, Kim YJ, Hwang GS and Lee BM: Toxicometabolomics of
urinary biomarkers for human gastric cancer in a mouse model. J
Toxicol Environ Health A. 73:1420–1430. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cui P, Huang C, Guo J, Wang Q, Liu Z, Zhuo
H and Lin D: Metabolic profiling of tumors, sera, and skeletal
muscles from an orthotopic murine model of gastric cancer
associated-cachexia. J Proteome Res. 18:1880–1892. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tomaszewska E, Dobrowolski P and Puzio I:
Postnatal administration of 2-oxoglutaric acid improves the
intestinal barrier affected by the prenatal action of dexamethasone
in pigs. Nutrition. 28:190–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
He L, Huang N, Li H, Tian J, Zhou X, Li T,
Yao K, Wu G and Yin Y: AMPK/α-ketoglutarate axis regulates
intestinal water and ion homeostasis in young pigs. J Agric Food
Chem. 65:2287–2298. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Junghans P, Derno M, Pierzynowski S,
Hennig U, Eberhard Rudolph P and Souffrant WB: Intraduodenal
infusion of alpha-ketoglutarate decreases whole body energy
expenditure in growing pigs. Clin Nutr. 25:489–496. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hou Y, Yao K, Wang L, Ding B, Fu D, Liu Y,
Zhu H, Liu J, Li Y, Kang P, et al: Effects of α-ketoglutarate on
energy status in the intestinal mucosa of weaned piglets
chronically challenged with lipopolysaccharide. Br J Nutr.
106:357–363. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
He L, Wu J, Tang W, Zhou X, Lin Q, Luo F,
Yin Y and Li T: Prevention of oxidative stress by
alpha-ketoglutarate via activation of CAR signaling and modulation
of the expression of key antioxidant-associated targets in vivo and
in vitro. J Agric Food Chem. 66:11273–11283. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang Z, He C, Zhang L, Zhu T, Lv D, Li G,
Song Y, Wang J, Wu H, Ji P and Liu G: Alpha-ketoglutarate affects
murine embryo development through metabolic and epigenetic
modulations. Reproduction. 158:123–133. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Z, He C, Gao Y, Zhang L, Song Y, Zhu
T, Zhu K, Lv D, Wang J, Tian X, et al: α-ketoglutarate delays
age-related fertility decline in mammals. Aging Cell.
20:e132912021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tanaka K, Hayashi Y, Takehara A,
Ito-Matsuoka Y, Tachibana M, Yaegashi N and Matsui Y: Abnormal
early folliculogenesis due to impeded pyruvate metabolism in mouse
oocytesdagger. Biol Reprod. 105:64–75. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Teng X, Emmett MJ, Lazar MA, Goldberg E
and Rabinowitz JD: Lactate dehydrogenase C produces
S-2-hydroxyglutarate in mouse testis. ACS Chem Biol. 11:2420–2427.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Plaitakis A, Kalef-Ezra E, Kotzamani D,
Zaganas I and Spanaki C: The glutamate dehydrogenase pathway and
its roles in cell and tissue biology in health and disease. Biology
(Basel). 6:112017.PubMed/NCBI
|
|
70
|
Li SF, Liu HX, Zhang YB, Yan YC and Li YP:
The protective effects of alpha-ketoacids against oxidative stress
on rat spermatozoa in vitro. Asian J Androl. 12:247–256. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kalawaj K, Slawinska-Brych A,
Mizerska-Kowalska M, Żurek A, Bojarska-Junak A, Kandefer-Szerszeń M
and Zdzisińska B: Alpha ketoglutarate exerts in vitro
anti-osteosarcoma effects through inhibition of cell proliferation,
induction of apoptosis via the JNK and caspase 9-dependent
mechanism, and suppression of TGF-β and VEGF production and
metastatic potential of cells. Int J Mol Sci. 21:94062020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Demidenko O, Barardo D, Budovskii V,
Finnemore R, Palmer FR, Kennedy BK and Budovskaya YV: Rejuvant(R),
a potential life-extending compound formulation with
alpha-ketoglutarate and vitamins, conferred an average 8 year
reduction in biological aging, after an average of 7 months of use,
in the TruAge DNA methylation test. Aging (Albany NY).
13:24485–24499. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gou L, Lee J, Yang JM, Park YD, Zhou HM,
Zhan Y and Lü ZR: The effect of alpha-ketoglutaric acid on
tyrosinase activity and conformation: Kinetics and molecular
dynamics simulation study. Int J Biol Macromol. 105:1654–1662.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bayliak MM, Hrynkiv OV, Knyhynytska RV and
Lushchak VI: Alpha-ketoglutarate enhances freeze-thaw tolerance and
prevents carbohydrate-induced cell death of the yeast Saccharomyces
cerevisiae. Arch Microbiol. 200:33–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen J, Zhang H, Gao H, Kang B, Chen F, Li
Y, Fu C and Yao K: Effects of dietary supplementation of
alpha-ketoglutarate in a low-protein diet on fatty acid composition
and lipid metabolism related gene expression in muscles of growing
pigs. Animals (Basel). 9:8382019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bayliak MM and Lushchak VI: Pleiotropic
effects of alpha-ketoglutarate as a potential anti-ageing agent.
Ageing Res Rev. 66:1012372021. View Article : Google Scholar : PubMed/NCBI
|