|
1
|
Razin A and Cedar H: DNA methylation and
gene expression. Microbiol Rev. 55:451–458. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Covelo-Molares H, Bartosovic M and
Vanacova S: RNA methylation in nuclear pre-mRNA processing. Wiley
Interdiscip Rev RNA. 9:e14892018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han
D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell.
161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ehrlich M: DNA hypermethylation in
disease: Mechanisms and clinical relevance. Epigenetics.
14:1141–1163. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang C, Hu Y, Zhou B, Bao Y, Li Z, Gong C,
Yang H, Wang S and Xiao Y: The role of m6A modification
in physiology and disease. Cell Death Dis. 11:9602020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jones PA: Functions of DNA methylation:
Islands, start sites, gene bodies and beyond. Nat Rev Genet.
13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Breiling A and Lyko F: Epigenetic
regulatory functions of DNA modifications: 5-methylcytosine and
beyond. Epigenetics Chromatin. 8:242015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sobiak B and Leśniak W: The effect of
single CpG demethylation on the pattern of DNA-protein binding. Int
J Mol Sci. 20:9142019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cedar H and Bergman Y: Programming of DNA
methylation patterns. Ann Rev Biochem. 81:97–117. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Okano M, Bell DW, Haber DA and Li E: DNA
methyltransferases Dnmt3a and Dnmt3b are essential for de novo
methylation and mammalian development. Cell. 99:247–257. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Goll MG and Bestor TH: Eukaryotic cytosine
methyltransferases. Ann Rev Biochem. 74:481–514. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gibbons RJ, McDowell TL, Raman S, O'Rourke
DM, Garrick D, Ayyub H and Higgs DR: Mutations in ATRX, encoding a
SWI/SNF-like protein, cause diverse changes in the pattern of DNA
methylation. Nat Genet. 24:368–371. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shamma A, Suzuki M, Hayashi N, Kobayashi
M, Sasaki N, Nishiuchi T, Doki Y, Okamoto T, Kohno S, Muranaka H,
et al: ATM mediates pRB function to control DNMT1 protein stability
and DNA methylation. Mol Cell Biol. 33:3113–3124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bhutani N, Burns DM and Blau HM: DNA
demethylation dynamics. Cell. 146:866–872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dean W: Pathways of DNA demethylation. Adv
Exp Med Biol. 945:247–274. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bochtler M, Kolano A and Xu GL: DNA
demethylation pathways: Additional players and regulators.
Bioessays. 39:1–13. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nan X, Ng HH, Johnson CA, Laherty CD,
Turner BM, Eisenman RN and Bird A: Transcriptional repression by
the methyl-CpG-binding protein MeCP2 involves a histone deacetylase
complex. Nature. 393:386–389. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zheng Y, He L, Wan Y and Song J:
H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: An
epigenetic signature for spontaneous transformation of rat
mesenchymal stem cells. Stem Cells Dev. 22:256–267. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gujar H, Weisenberger DJ and Liang G: The
roles of Human DNA methyltransferases and their isoforms in shaping
the epigenome. Genes (Basel). 10:1722019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen Z and Zhang Y: Role of mammalian DNA
methyltransferases in development. Ann Rev Biochem. 89:135–158.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang FL, Yang Y, Liu ZY, Qin Y and Jin T:
Correlation between methylation of the p16 promoter and cervical
cancer incidence. Eur Rev Med Pharmacol Sci. 21:2351–2356.
2017.PubMed/NCBI
|
|
24
|
Allameh A, Moazeni-Roodi A, Harirchi I,
Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A and
Mesbah-Namin SA: Promoter DNA methylation and mRNA expression level
of p16 gene in oral squamous cell carcinoma: Correlation with
Clinicopathological characteristics. Pathol Oncol Res.
25:1535–1543. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Y, Zhang T, Zhang H, Wang X, Liu X,
Huang Q and Li L: Clinical significance of P16 gene methylation in
lung cancer. Adv Exp Med Biol. 1255:133–142. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang H, Weng H, Deng X and Chen J: RNA
modifications in cancer: Functions, mechanisms, and therapeutic
implications. Ann Rev Cancer Biol. 4:221–240. 2020. View Article : Google Scholar
|
|
27
|
Karthiya R and Khandelia P: m6A RNA
methylation: Ramifications for gene expression and human health.
Mol Biotechnol. 62:467–484. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zaccara S, Ries RJ and Jaffrey SR:
Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell
Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen X, Sun YZ, Liu H, Zhang L, Li JQ and
Meng J: RNA methylation and diseases: Experimental results,
databases, Web servers and computational models. Brief Bioinform.
20:896–917. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lan Q, Liu PY, Haase J, Bell JL,
Hüttelmaier S and Liu T: The critical role of RNA m6A
methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ferreira HJ, Davalos V, de Moura MC, Soler
M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A
and Esteller M: Circular RNA CpG island hypermethylation-associated
silencing in human cancer. Oncotarget. 9:29208–29219. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Su H, Wang G, Wu L, Ma X, Ying K and Zhang
R: Transcriptome-wide map of m6A circRNAs identified in a rat model
of hypoxia mediated pulmonary hypertension. BMC Genomics.
21:392020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li P, Yu H, Zhang G, Kang L, Qin B, Cao Y,
Luo J, Chen X, Wang Y, Qin M, et al: Identification and
characterization of N6-methyladenosine circRNAs and
methyltransferases in the lens epithelium cells from age-related
cataract. Invest Ophthalmol Vis Sci. 61:132020. View Article : Google Scholar
|
|
34
|
Zhou M, Li H, Chen K, Ding W, Yang C and
Wang X: CircSKA3 downregulates miR-1 through methylation in
glioblastoma to promote cancer cell proliferation. Cancer Manag
Res. 13:509–514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang C, Wang J, Geng X, Tu J, Gao H, Li
L, Zhou X, Wu H, Jing J, Pan W and Mou Y: Circular RNA expression
profile and m6A modification analysis in poorly differentiated
adenocarcinoma of the stomach. Epigenomics. 12:1027–1040. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Niu X, Xu J, Liu J, Chen L, Qiao X and
Zhong M: Landscape of N6-methyladenosine modification
patterns in human ameloblastoma. Front Oncol. 10:5564972020.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Roundtree IA, Luo GZ, Zhang Z, Wang X,
Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1
mediates nuclear export of N6-methyladenosine methylated
mRNAs. Elife. 6:e313112017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou C, Molinie B, Daneshvar K, Pondick
JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen
AC: Genome-wide maps of m6A circRNAs identify widespread and
cell-type-specific methylation patterns that are distinct from
mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Di Timoteo G, Dattilo D, Centrón-Broco A,
Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica
A, Morlando M and Bozzoni I: Modulation of circRNA Metabolism by
m6A modification. Cell Rep. 31:1076412020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ,
Ma XD, Han K, Chen JW, Judde JG, Deas O, et al:
N6-methyladenosine modification of circNSUN2 facilitates
cytoplasmic export and stabilizes HMGA2 to promote colorectal liver
metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L,
Gorshkov K, Mao Q, Xia S, Cen D, et al:
N6-methyladenosine-modified circRNA-SORE sustains
sorafenib resistance in hepatocellular carcinoma by regulating
β-catenin signaling. Mol Cancer. 19:1632020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Coots RA, Liu XM, Mao Y, Dong L, Zhou J,
Wan J, Zhang X and Qian SB: m6A Facilitates
eIF4F-independent mRNA translation. Mol Cell. 68:504–514.e7. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li A, Chen YS, Ping XL, Yang X, Xiao W,
Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic
m6A reader YTHDF3 promotes mRNA translation. Cell Res.
27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu
PJ, Liu C and He C: YTHDF3 facilitates translation and decay of
N6-methyladenosine-modified RNA. Cell Res. 27:315–328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jakobi T, Siede D, Eschenbach J, Heumüller
AW, Busch M, Nietsch R, Meder B, Most P, Dimmeler S, Backs J, et
al: Deep characterization of circular RNAs from human
cardiovascular cell models and cardiac tissue. Cells. 9:16162020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kmietczyk V, Riechert E, Kalinski L,
Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E,
Jürgensen L, et al: m6A-mRNA methylation regulates
cardiac gene expression and cellular growth. Life Sci Alliance.
2:e2018002332019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M,
Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through
direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun.
7:126262016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Park OH, Ha H, Lee Y, Boo SH, Kwon DH,
Song HK and Kim YK: Endoribonucleolytic cleavage of
m6A-containing RNAs by RNase P/MRP complex. Mol Cell.
74:494–507.e8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee Y, Choe J, Park OH and Kim YK:
Molecular mechanisms driving mRNA degradation by m6A
modification. Trends Genet. 36:177–188. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen C, Yuan W, Zhou Q, Shao B, Guo Y,
Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al:
N6-methyladenosine-induced circ1662 promotes metastasis of
colorectal cancer by accelerating YAP1 nuclear localization.
Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu H, Lan T, Li H, Xu L, Chen X, Liao H,
Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits
MMP1-mediated liver cancer progression via interaction with HuR.
Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rao X, Lai L, Li X, Wang L, Li A and Yang
Q: N6-methyladenosine modification of circular RNA
circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular
carcinoma via sponging miR-1305. IUBMB Life. 73:408–417. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhao J, Lee EE, Kim J, Yang R, Chamseddin
B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming
activity of an oncoprotein-encoding circular RNA from human
papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen Z, Ling K, Zhu Y, Deng L, Li Y and
Liang Z: circ0000069 promotes cervical cancer cell proliferation
and migration by inhibiting miR-4426. Biochem Biophys Res Commun.
551:114–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H,
Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small
cell lung cancer progression via destabilizing IGF2BPs and
activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nan A, Chen L, Zhang N, Jia Y, Li X, Zhou
H, Ling Y, Wang Z, Yang C, Liu S and Jiang Y: Circular RNA
circNOL10 inhibits lung cancer development by promoting
SCLM1-mediated transcriptional regulation of the humanin
polypeptide family. Adv Sci (Weinh). 6:18006542019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Marur S and Forastiere AA: Head and neck
squamous cell carcinoma: Update on epidemiology, diagnosis, and
treatment. Mayo Clinic Proc. 91:386–396. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X
and Fan Y: N6-methyladenosine modification of circCUX1 confers
radioresistance of hypopharyngeal squamous cell carcinoma through
caspase1 pathway. Cell Death Dis. 12:2982021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Z, Yang HY, Dai XY, Zhang X, Huang YZ,
Shi L, Wei JF and Ding Q: CircMETTL3, upregulated in a
m6A-dependent manner, promotes breast cancer progression. Int J
Biol Sci. 17:1178–1190. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L,
Zhou Q and Cao X: Mettl3-mediated mRNA m6A methylation
promotes dendritic cell activation. Nat Commun. 10:18982019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi
SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al:
N6-methyladenosine modification controls circular RNA immunity. Mol
Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Guo M, Yan R, Yao H, Duan L, Sun M, Xue Z
and Jia Y: IFN regulatory Factor 1 mediates macrophage pyroptosis
induced by oxidized low-density lipoprotein in patients with acute
coronary syndrome. Mediators Inflamm. 2019:29171282019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Guo M, Yan R, Ji Q, Yao H, Sun M, Duan L,
Xue Z and Jia Y: IFN regulatory Factor-1 induced macrophage
pyroptosis by modulating m6A modification of circ_0029589 in
patients with acute coronary syndrome. Int Immunopharmacol.
86:1068002020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li X, Tian G and Wu J: Novel circGFRα1
promotes self-renewal of female germline stem cells mediated by
m6A Writer METTL14. Front Cell Dev Biol. 9:6404022021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tang C, Xie Y, Yu T, Liu N, Wang Z,
Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al:
m6A-dependent biogenesis of circular RNAs in male germ
cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
He Y, Zhang Q, Zheng Q, Yu X and Guo W:
Distinct 5-methylcytosine profiles of circular RNA in human
hepatocellular carcinoma. Am J Transl Res. 12:5719–5729.
2020.PubMed/NCBI
|
|
70
|
Zhao Z, Song J, Tang B, Fang S, Zhang D,
Zheng L, Wu F, Gao Y, Chen C, Hu X, et al: CircSOD2 induced
epigenetic alteration drives hepatocellular carcinoma progression
through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer
Res. 39:2592020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao
W, Quan J and Fan X: circRNA-5692 inhibits the progression of
hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP
expression. Cell Death Dis. 10:9002019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
An J, Rao A and Ko M: TET family
dioxygenases and DNA demethylation in stem cells and cancers. Exp
Mol Med. 49:e3232017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pei YF, Tao R, Li JF, Su LP, Yu BQ, Wu XY,
Yan M, Gu QL, Zhu ZG and Liu BY: TET1 inhibits gastric cancer
growth and metastasis by PTEN demethylation and re-expression.
Oncotarget. 7:31322–31335. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou
D, Peng W, Tang J, Jiang Y, Ren G and Xiang T: TET1 exerts its
anti-tumor functions via demethylating DACT2 and SFRP2 to
antagonize Wnt/β-catenin signaling pathway in nasopharyngeal
carcinoma cells. Clin Epigenetics. 10:1032018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang PF, Wei CY, Huang XY, Peng R, Yang
X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA
circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress
hepatocellular carcinoma progression. Mol Cancer. 18:1052019.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dong ZR, Ke AW, Li T, Cai JB, Yang YF,
Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter
methylation and expression of TCF21 to regulate hepatocellular
carcinoma progression and sorafenib treatment sensitivity. Mol
Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sun S, Gao J, Zhou S, Li Y, Wang Y, Jin L,
Li J, Liu B, Zhang B, Han S, et al: A novel circular RNA circ-LRIG3
facilitates the malignant progression of hepatocellular carcinoma
by modulating the EZH2/STAT3 signaling. J Exp Clin Cancer Res.
39:2522020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chi F, Cao Y and Chen Y: Analysis and
validation of circRNA-miRNA network in regulating m6A
RNA methylation modulators reveals CircMAP2K4/miR-139-5p/YTHDF1
axis involving the proliferation of hepatocellular carcinoma. Front
Oncol. 11:5605062021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Miao B, Bauer AS, Hufnagel K, Wu Y,
Trajkovic-Arsic M, Pirona AC, Giese N, Taipale J, Siveke JT,
Hoheisel JD and Lueong S: The transcription factor FLI1 promotes
cancer progression by affecting cell cycle regulation. Int J
Cancer. 147:189–201. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang
S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular
RNA promotes metastasis in breast cancer by coordinately regulating
TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xie F, Huang C, Liu F, Zhang H, Xiao X,
Sun J, Zhang X and Jiang G: CircPTPRA blocks the recognition of RNA
N6-methyladenosine through interacting with IGF2BP1 to
suppress bladder cancer progression. Mol Cancer. 20:682021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Huang ZM, Wang H and Ji ZG: circRNA-100284
activates aurora kinase B by inducing methylation of HSP70 via
microRNA-217 to promote proliferation of bladder cancer cells. J
Cancer Res Clin Oncol. 147:703–712. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mo WL, Deng LJ, Cheng Y, Yu WJ, Yang YH
and Gu WD: Circular RNA hsa_circ_0072309 promotes tumorigenesis and
invasion by regulating the miR-607/FTO axis in non-small cell lung
carcinoma. Aging. 13:11629–11645. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang Z, Zhu H and Hu J: circRAB11FIP1
promoted autophagy flux of ovarian cancer through DSC1 and miR-129.
Cell Death Dis. 12:2192021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lin J, Zhang Y, Zeng X, Xue C and Lin X:
circRNA circRIMS acts as a MicroRNA sponge to promote gastric
cancer metastasis. ACS Omega. 5:23237–23246. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wan H, Yuan B, Jiang K, Wei J, Feng X, Sun
B and Wang F: circRNA circRIMS is overexpressed in esophageal
squamous cell carcinoma and downregulate miR-613 through
methylation to increase cell proliferation. Cancer Manag Res.
13:4587–4595. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang P, Yun K and Zhang R: circRNA
circ-ATAD1 is downregulated in endometrial cancer and suppresses
cell invasion and migration by downregulating miR-10a through
methylation. Mamm Genome. 32:488–494. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu W, Zhou J, Wu Y, Tang X and Zhu W:
Overexpression of circRNA circFAT1 in endometrial cancer cells
increases their stemness by upregulating miR-21 through
methylation. Cancer Biother Radiopharm. Jul 27–2021.(Epub ahead of
print). doi: 10.1089/cbr.2020.4506. View Article : Google Scholar
|
|
89
|
Du WW, Yang W, Li X, Fang L, Wu N, Li F,
Chen Y, He Q, Liu E, Yang Z, et al: The circular RNA circSKA3 binds
integrin β1 to induce invadopodium formation enhancing breast
cancer invasion. Mol Ther. 28:1287–1298. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu
D, Gupta S, Yang W and Yang BB: The circular RNA interacts with
STAT3, increasing its nuclear translocation and wound repair by
modulating Dnmt3a and miR-17 function. Mol Ther. 25:2062–2074.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Domingues RG and Hepworth MR:
Immunoregulatory sensory circuits in group 3 innate lymphoid cell
(ILC3) function and tissue homeostasis. Front Immunol. 11:1162020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu B, Liu N, Zhu X, Yang L, Ye B, Li H,
Zhu P, Lu T, Tian Y and Fan Z: Circular RNA circZbtb20 maintains
ILC3 homeostasis and function via Alkbh5-dependent m6A
demethylation of Nr4a1 mRNA. Cell Mol Immunol. 18:1412–1424. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang X, Zhang C, Wu Z, Chen Y and Shi W:
CircIBTK inhibits DNA demethylation and activation of AKT signaling
pathway via miR-29b in peripheral blood mononuclear cells in
systemic lupus erythematosus. Arthritis Res Ther. 20:1182018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H,
Luo Y, Richardson B and Lu Q: Epigenetics and SLE: RFX1
downregulation causes CD11a and CD70 overexpression by altering
epigenetic modifications in lupus CD4+ T cells. J
Autoimmun. 35:58–69. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang C, Wang X, Chen Y, Wu Z, Zhang C and
Shi W: The down-regulation of hsa_circ_0012919, the sponge for
miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in
CD4+ T cells of systemic lupus erythematous. Clin Sci
(Lond). 132:2285–2298. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Corsetti G, Chen-Scarabelli C, Romano C,
Pasini E, Dioguardi FS, Onorati F, Knight R, Patel H, Saravolatz L,
Faggian G and Scarabelli TM: Autophagy and Oncosis/Necroptosis are
enhanced in cardiomyocytes from heart failure patients. Med Sci
Monit Basic Res. 25:33–44. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang
YH, Zhang RC, Liu CY, Dong YH, Wang M, et al: The circular RNA ACR
attenuates myocardial ischemia/reperfusion injury by suppressing
autophagy via modulation of the Pink1/FAM65B pathway. Cell Death
Differ. 26:1299–1315. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen
B, Yang L, Wang Y, Zhang H, Zhang H, et al:
N6-Methyladenosine modification of fatty acid amide
hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte
dysfunction and depressive-like behaviors. Biol Psychiatry.
88:392–404. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang H, Ge J and Lu X: CircFADS2 is
downregulated in osteoarthritis and suppresses LPS-induced
apoptosis of chondrocytes by regulating miR-195-5p methylation.
Arch Gerontol Geriatr. 96:1044772021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tang Z, Li X, Zhao J, Qian F, Feng C, Li
Y, Zhang J, Jiang Y, Yang Y, Wang Q and Li C: TRCirc: A resource
for transcriptional regulation information of circRNAs. Brief
Bioinform. 20:2327–2333. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huang W, Ling Y, Zhang S, Xia Q, Cao R,
Fan X, Fang Z, Wang Z and Zhang G: TransCirc: An interactive
database for translatable circular RNAs based on multi-omics
evidence. Nucleic Acids Res. 49:D236–D242. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie
Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional
variants involved in m6A modification. Nucleic Acids Res.
46:D139–D145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J
and Zuo Z: RMVar: An updated database of functional variants
involved in RNA modifications. Nucleic Acids Res. 49:D1405–D1412.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q:
SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based
on sequence-derived features. Nucleic Acids Res. 44:e912016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu H, Flores MA, Meng J, Zhang L, Zhao X,
Rao MK, Chen Y and Huang Y: MeT-DB: A database of transcriptome
methylation in mammalian cells. Nucleic Acids Res. 43:(Database
Issue). D197–D203. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liu M, Wang Q, Shen J, Yang BB and Ding X:
Circbank: A comprehensive database for circRNA with standard
nomenclature. RNA Biol. 16:899–905. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tate JG, Bamford S, Jubb HC, Sondka Z,
Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E,
et al: COSMIC: The catalogue of somatic mutations in cancer.
Nucleic Acids Res. 47:D941–D947. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin
D, Liu J and Sun Z: The role of N 6-methyladenosine (m 6A)
modification in the regulation of circRNAs. Mol Cancer. 19:1052020.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang Z, Zhang Y, Dai K, Liang Z, Zhu M,
Zhang M, Pan J, Hu X, Zhang X, Xue R, et al: circEgg regulates
histone H3K9me3 by sponging bmo-miR-3391-5p and encoding
circEgg-P122 protein in the silkworm, Bombyx mori. Insect Biochem
Mol Biol. 124:1034302020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yu A, Li M, Xing C, Chen D, Wang C, Xiao
Q, Zhang L, Pang Y, Wang Y, Zu X and Liu L: A Comprehensive
analysis identified the key differentially expressed circular
ribonucleic acids and methylation-related function in
pheochromocytomas and paragangliomas. Front Genet. 11:152020.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Mehta SL, Dempsey RJ and Vemuganti R: Role
of circular RNAs in brain development and CNS diseases. Prog
Neurobiol. 186:1017462020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Smith ZD and Meissner A: DNA methylation:
Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013.
View Article : Google Scholar : PubMed/NCBI
|