Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2022 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)

  • Authors:
    • Chunlei Zhang
    • Han Cui
    • Chuang Huang
    • Feiyan Kong
    • Qi Yang
    • Pengcheng Miao
    • Zhigang Cao
    • Weijun Zhang
    • Dehui Chang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China, The First Clinic, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China, Department of Urology, Beijing Fengtai Hospital of Integrated Traditional and Modern Medicine, Beijing 100072, P.R. China, Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 169
    |
    Published online on: March 16, 2022
       https://doi.org/10.3892/mmr.2022.12685
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Circular RNA (circRNA) molecules are noncoding RNAs with unique circular covalently closed structures that contribute to gene expression regulation, protein translation and act as microRNA sponges. circRNAs also have important roles in human disease, particularly tumorigenesis and antitumor processes. Methylation is an epigenetic modification that regulates the expression and roles of DNA and coding RNA and their interactions, as well as of noncoding RNA molecules. Previous studies have focused on the effects of methylation modification on circRNA expression, transport, stability, translation and degradation of circRNAs, as well as how circRNA methylation occurs and the influence of circRNAs on methylation modification processes. circRNA and methylation can also regulate disease pathogenesis via these interactions. In the present study, we define the relationship between circRNAs and methylation, as well as the functions and mechanisms of their interactions during disease progression.
View Figures

Figure 1

View References

1 

Razin A and Cedar H: DNA methylation and gene expression. Microbiol Rev. 55:451–458. 1991. View Article : Google Scholar : PubMed/NCBI

2 

Covelo-Molares H, Bartosovic M and Vanacova S: RNA methylation in nuclear pre-mRNA processing. Wiley Interdiscip Rev RNA. 9:e14892018. View Article : Google Scholar : PubMed/NCBI

3 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Ehrlich M: DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics. 14:1141–1163. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Yang C, Hu Y, Zhou B, Bao Y, Li Z, Gong C, Yang H, Wang S and Xiao Y: The role of m6A modification in physiology and disease. Cell Death Dis. 11:9602020. View Article : Google Scholar : PubMed/NCBI

6 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Breiling A and Lyko F: Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 8:242015. View Article : Google Scholar : PubMed/NCBI

10 

Sobiak B and Leśniak W: The effect of single CpG demethylation on the pattern of DNA-protein binding. Int J Mol Sci. 20:9142019. View Article : Google Scholar : PubMed/NCBI

11 

Cedar H and Bergman Y: Programming of DNA methylation patterns. Ann Rev Biochem. 81:97–117. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Goll MG and Bestor TH: Eukaryotic cytosine methyltransferases. Ann Rev Biochem. 74:481–514. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H and Higgs DR: Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet. 24:368–371. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Shamma A, Suzuki M, Hayashi N, Kobayashi M, Sasaki N, Nishiuchi T, Doki Y, Okamoto T, Kohno S, Muranaka H, et al: ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol. 33:3113–3124. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Bhutani N, Burns DM and Blau HM: DNA demethylation dynamics. Cell. 146:866–872. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Dean W: Pathways of DNA demethylation. Adv Exp Med Biol. 945:247–274. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Bochtler M, Kolano A and Xu GL: DNA demethylation pathways: Additional players and regulators. Bioessays. 39:1–13. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Zheng Y, He L, Wan Y and Song J: H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: An epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev. 22:256–267. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Gujar H, Weisenberger DJ and Liang G: The roles of Human DNA methyltransferases and their isoforms in shaping the epigenome. Genes (Basel). 10:1722019. View Article : Google Scholar : PubMed/NCBI

22 

Chen Z and Zhang Y: Role of mammalian DNA methyltransferases in development. Ann Rev Biochem. 89:135–158. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Wang FL, Yang Y, Liu ZY, Qin Y and Jin T: Correlation between methylation of the p16 promoter and cervical cancer incidence. Eur Rev Med Pharmacol Sci. 21:2351–2356. 2017.PubMed/NCBI

24 

Allameh A, Moazeni-Roodi A, Harirchi I, Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A and Mesbah-Namin SA: Promoter DNA methylation and mRNA expression level of p16 gene in oral squamous cell carcinoma: Correlation with Clinicopathological characteristics. Pathol Oncol Res. 25:1535–1543. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Li Y, Zhang T, Zhang H, Wang X, Liu X, Huang Q and Li L: Clinical significance of P16 gene methylation in lung cancer. Adv Exp Med Biol. 1255:133–142. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Huang H, Weng H, Deng X and Chen J: RNA modifications in cancer: Functions, mechanisms, and therapeutic implications. Ann Rev Cancer Biol. 4:221–240. 2020. View Article : Google Scholar

27 

Karthiya R and Khandelia P: m6A RNA methylation: Ramifications for gene expression and human health. Mol Biotechnol. 62:467–484. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Chen X, Sun YZ, Liu H, Zhang L, Li JQ and Meng J: RNA methylation and diseases: Experimental results, databases, Web servers and computational models. Brief Bioinform. 20:896–917. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A and Esteller M: Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 9:29208–29219. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Su H, Wang G, Wu L, Ma X, Ying K and Zhang R: Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics. 21:392020. View Article : Google Scholar : PubMed/NCBI

33 

Li P, Yu H, Zhang G, Kang L, Qin B, Cao Y, Luo J, Chen X, Wang Y, Qin M, et al: Identification and characterization of N6-methyladenosine circRNAs and methyltransferases in the lens epithelium cells from age-related cataract. Invest Ophthalmol Vis Sci. 61:132020. View Article : Google Scholar

34 

Zhou M, Li H, Chen K, Ding W, Yang C and Wang X: CircSKA3 downregulates miR-1 through methylation in glioblastoma to promote cancer cell proliferation. Cancer Manag Res. 13:509–514. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Zhang C, Wang J, Geng X, Tu J, Gao H, Li L, Zhou X, Wu H, Jing J, Pan W and Mou Y: Circular RNA expression profile and m6A modification analysis in poorly differentiated adenocarcinoma of the stomach. Epigenomics. 12:1027–1040. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Niu X, Xu J, Liu J, Chen L, Qiao X and Zhong M: Landscape of N6-methyladenosine modification patterns in human ameloblastoma. Front Oncol. 10:5564972020. View Article : Google Scholar : PubMed/NCBI

37 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar : PubMed/NCBI

39 

Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica A, Morlando M and Bozzoni I: Modulation of circRNA Metabolism by m6A modification. Cell Rep. 31:1076412020. View Article : Google Scholar : PubMed/NCBI

41 

Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI

42 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, et al: N6-methyladenosine-modified circRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 19:1632020. View Article : Google Scholar : PubMed/NCBI

44 

Coots RA, Liu XM, Mao Y, Dong L, Zhou J, Wan J, Zhang X and Qian SB: m6A Facilitates eIF4F-independent mRNA translation. Mol Cell. 68:504–514.e7. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI

48 

Jakobi T, Siede D, Eschenbach J, Heumüller AW, Busch M, Nietsch R, Meder B, Most P, Dimmeler S, Backs J, et al: Deep characterization of circular RNAs from human cardiovascular cell models and cardiac tissue. Cells. 9:16162020. View Article : Google Scholar : PubMed/NCBI

49 

Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, et al: m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2:e2018002332019. View Article : Google Scholar : PubMed/NCBI

50 

Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI

51 

Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK and Kim YK: Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 74:494–507.e8. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Lee Y, Choe J, Park OH and Kim YK: Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. 36:177–188. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Liu H, Lan T, Li H, Xu L, Chen X, Liao H, Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Rao X, Lai L, Li X, Wang L, Li A and Yang Q: N6-methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life. 73:408–417. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI

57 

Chen Z, Ling K, Zhu Y, Deng L, Li Y and Liang Z: circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun. 551:114–120. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI

59 

Nan A, Chen L, Zhang N, Jia Y, Li X, Zhou H, Ling Y, Wang Z, Yang C, Liu S and Jiang Y: Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family. Adv Sci (Weinh). 6:18006542019. View Article : Google Scholar : PubMed/NCBI

60 

Marur S and Forastiere AA: Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clinic Proc. 91:386–396. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X and Fan Y: N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis. 12:2982021. View Article : Google Scholar : PubMed/NCBI

62 

Li Z, Yang HY, Dai XY, Zhang X, Huang YZ, Shi L, Wei JF and Ding Q: CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int J Biol Sci. 17:1178–1190. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q and Cao X: Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun. 10:18982019. View Article : Google Scholar : PubMed/NCBI

64 

Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Guo M, Yan R, Yao H, Duan L, Sun M, Xue Z and Jia Y: IFN regulatory Factor 1 mediates macrophage pyroptosis induced by oxidized low-density lipoprotein in patients with acute coronary syndrome. Mediators Inflamm. 2019:29171282019. View Article : Google Scholar : PubMed/NCBI

66 

Guo M, Yan R, Ji Q, Yao H, Sun M, Duan L, Xue Z and Jia Y: IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome. Int Immunopharmacol. 86:1068002020. View Article : Google Scholar : PubMed/NCBI

67 

Li X, Tian G and Wu J: Novel circGFRα1 promotes self-renewal of female germline stem cells mediated by m6A Writer METTL14. Front Cell Dev Biol. 9:6404022021. View Article : Google Scholar : PubMed/NCBI

68 

Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al: m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI

69 

He Y, Zhang Q, Zheng Q, Yu X and Guo W: Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma. Am J Transl Res. 12:5719–5729. 2020.PubMed/NCBI

70 

Zhao Z, Song J, Tang B, Fang S, Zhang D, Zheng L, Wu F, Gao Y, Chen C, Hu X, et al: CircSOD2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 39:2592020. View Article : Google Scholar : PubMed/NCBI

71 

Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J and Fan X: circRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10:9002019. View Article : Google Scholar : PubMed/NCBI

72 

An J, Rao A and Ko M: TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med. 49:e3232017. View Article : Google Scholar : PubMed/NCBI

73 

Pei YF, Tao R, Li JF, Su LP, Yu BQ, Wu XY, Yan M, Gu QL, Zhu ZG and Liu BY: TET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression. Oncotarget. 7:31322–31335. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G and Xiang T: TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenetics. 10:1032018. View Article : Google Scholar : PubMed/NCBI

75 

Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer. 18:1052019. View Article : Google Scholar : PubMed/NCBI

76 

Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI

77 

Sun S, Gao J, Zhou S, Li Y, Wang Y, Jin L, Li J, Liu B, Zhang B, Han S, et al: A novel circular RNA circ-LRIG3 facilitates the malignant progression of hepatocellular carcinoma by modulating the EZH2/STAT3 signaling. J Exp Clin Cancer Res. 39:2522020. View Article : Google Scholar : PubMed/NCBI

78 

Chi F, Cao Y and Chen Y: Analysis and validation of circRNA-miRNA network in regulating m6A RNA methylation modulators reveals CircMAP2K4/miR-139-5p/YTHDF1 axis involving the proliferation of hepatocellular carcinoma. Front Oncol. 11:5605062021. View Article : Google Scholar : PubMed/NCBI

79 

Miao B, Bauer AS, Hufnagel K, Wu Y, Trajkovic-Arsic M, Pirona AC, Giese N, Taipale J, Siveke JT, Hoheisel JD and Lueong S: The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation. Int J Cancer. 147:189–201. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI

81 

Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X and Jiang G: CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 20:682021. View Article : Google Scholar : PubMed/NCBI

82 

Huang ZM, Wang H and Ji ZG: circRNA-100284 activates aurora kinase B by inducing methylation of HSP70 via microRNA-217 to promote proliferation of bladder cancer cells. J Cancer Res Clin Oncol. 147:703–712. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Mo WL, Deng LJ, Cheng Y, Yu WJ, Yang YH and Gu WD: Circular RNA hsa_circ_0072309 promotes tumorigenesis and invasion by regulating the miR-607/FTO axis in non-small cell lung carcinoma. Aging. 13:11629–11645. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Zhang Z, Zhu H and Hu J: circRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 12:2192021. View Article : Google Scholar : PubMed/NCBI

85 

Lin J, Zhang Y, Zeng X, Xue C and Lin X: circRNA circRIMS acts as a MicroRNA sponge to promote gastric cancer metastasis. ACS Omega. 5:23237–23246. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Wan H, Yuan B, Jiang K, Wei J, Feng X, Sun B and Wang F: circRNA circRIMS is overexpressed in esophageal squamous cell carcinoma and downregulate miR-613 through methylation to increase cell proliferation. Cancer Manag Res. 13:4587–4595. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Yang P, Yun K and Zhang R: circRNA circ-ATAD1 is downregulated in endometrial cancer and suppresses cell invasion and migration by downregulating miR-10a through methylation. Mamm Genome. 32:488–494. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Wu W, Zhou J, Wu Y, Tang X and Zhu W: Overexpression of circRNA circFAT1 in endometrial cancer cells increases their stemness by upregulating miR-21 through methylation. Cancer Biother Radiopharm. Jul 27–2021.(Epub ahead of print). doi: 10.1089/cbr.2020.4506. View Article : Google Scholar

89 

Du WW, Yang W, Li X, Fang L, Wu N, Li F, Chen Y, He Q, Liu E, Yang Z, et al: The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion. Mol Ther. 28:1287–1298. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, Gupta S, Yang W and Yang BB: The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 25:2062–2074. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Domingues RG and Hepworth MR: Immunoregulatory sensory circuits in group 3 innate lymphoid cell (ILC3) function and tissue homeostasis. Front Immunol. 11:1162020. View Article : Google Scholar : PubMed/NCBI

92 

Liu B, Liu N, Zhu X, Yang L, Ye B, Li H, Zhu P, Lu T, Tian Y and Fan Z: Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m6A demethylation of Nr4a1 mRNA. Cell Mol Immunol. 18:1412–1424. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Wang X, Zhang C, Wu Z, Chen Y and Shi W: CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthritis Res Ther. 20:1182018. View Article : Google Scholar : PubMed/NCBI

94 

Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H, Luo Y, Richardson B and Lu Q: Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun. 35:58–69. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Zhang C, Wang X, Chen Y, Wu Z, Zhang C and Shi W: The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4+ T cells of systemic lupus erythematous. Clin Sci (Lond). 132:2285–2298. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Corsetti G, Chen-Scarabelli C, Romano C, Pasini E, Dioguardi FS, Onorati F, Knight R, Patel H, Saravolatz L, Faggian G and Scarabelli TM: Autophagy and Oncosis/Necroptosis are enhanced in cardiomyocytes from heart failure patients. Med Sci Monit Basic Res. 25:33–44. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, Zhang RC, Liu CY, Dong YH, Wang M, et al: The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ. 26:1299–1315. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B, Yang L, Wang Y, Zhang H, Zhang H, et al: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry. 88:392–404. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Zhang H, Ge J and Lu X: CircFADS2 is downregulated in osteoarthritis and suppresses LPS-induced apoptosis of chondrocytes by regulating miR-195-5p methylation. Arch Gerontol Geriatr. 96:1044772021. View Article : Google Scholar : PubMed/NCBI

100 

Tang Z, Li X, Zhao J, Qian F, Feng C, Li Y, Zhang J, Jiang Y, Yang Y, Wang Q and Li C: TRCirc: A resource for transcriptional regulation information of circRNAs. Brief Bioinform. 20:2327–2333. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, Fang Z, Wang Z and Zhang G: TransCirc: An interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res. 49:D236–D242. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J and Zuo Z: RMVar: An updated database of functional variants involved in RNA modifications. Nucleic Acids Res. 49:D1405–D1412. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q: SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 44:e912016. View Article : Google Scholar : PubMed/NCBI

105 

Liu H, Flores MA, Meng J, Zhang L, Zhao X, Rao MK, Chen Y and Huang Y: MeT-DB: A database of transcriptome methylation in mammalian cells. Nucleic Acids Res. 43:(Database Issue). D197–D203. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Liu M, Wang Q, Shen J, Yang BB and Ding X: Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol. 16:899–905. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, et al: COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 47:D941–D947. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N 6-methyladenosine (m 6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar : PubMed/NCBI

109 

Wang Z, Zhang Y, Dai K, Liang Z, Zhu M, Zhang M, Pan J, Hu X, Zhang X, Xue R, et al: circEgg regulates histone H3K9me3 by sponging bmo-miR-3391-5p and encoding circEgg-P122 protein in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 124:1034302020. View Article : Google Scholar : PubMed/NCBI

110 

Yu A, Li M, Xing C, Chen D, Wang C, Xiao Q, Zhang L, Pang Y, Wang Y, Zu X and Liu L: A Comprehensive analysis identified the key differentially expressed circular ribonucleic acids and methylation-related function in pheochromocytomas and paragangliomas. Front Genet. 11:152020. View Article : Google Scholar : PubMed/NCBI

111 

Mehta SL, Dempsey RJ and Vemuganti R: Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 186:1017462020. View Article : Google Scholar : PubMed/NCBI

112 

Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang C, Cui H, Huang C, Kong F, Yang Q, Miao P, Cao Z, Zhang W and Chang D: Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Mol Med Rep 25: 169, 2022.
APA
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P. ... Chang, D. (2022). Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Molecular Medicine Reports, 25, 169. https://doi.org/10.3892/mmr.2022.12685
MLA
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P., Cao, Z., Zhang, W., Chang, D."Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)". Molecular Medicine Reports 25.5 (2022): 169.
Chicago
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P., Cao, Z., Zhang, W., Chang, D."Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)". Molecular Medicine Reports 25, no. 5 (2022): 169. https://doi.org/10.3892/mmr.2022.12685
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang C, Cui H, Huang C, Kong F, Yang Q, Miao P, Cao Z, Zhang W and Chang D: Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Mol Med Rep 25: 169, 2022.
APA
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P. ... Chang, D. (2022). Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Molecular Medicine Reports, 25, 169. https://doi.org/10.3892/mmr.2022.12685
MLA
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P., Cao, Z., Zhang, W., Chang, D."Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)". Molecular Medicine Reports 25.5 (2022): 169.
Chicago
Zhang, C., Cui, H., Huang, C., Kong, F., Yang, Q., Miao, P., Cao, Z., Zhang, W., Chang, D."Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)". Molecular Medicine Reports 25, no. 5 (2022): 169. https://doi.org/10.3892/mmr.2022.12685
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team