Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2022 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review

Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review)

  • Authors:
    • Lingyi Huang
    • Dongqiong Xiao
    • Hao Sun
    • Yi Qu
    • Xiaojuan Su
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
  • Article Number: 183
    |
    Published online on: March 28, 2022
       https://doi.org/10.3892/mmr.2022.12699
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Behavioral assessment is the dominant approach for evaluating whether animal models of brain diseases can successfully mimic the clinical characteristics of diseases. At present, most research regarding brain diseases involves the use of rodent models. While studies have reported numerous methods of behavioral assessments in rodent models of brain diseases, each with different principles, procedures, and assessment criteria, only few reviews have focused on characterizing and differentiating these methods based on applications for which they are most appropriate. Therefore, in the present review, the representative behavioral tests in rodent models of brain diseases were compared and differentiated, aiming to provide convenience for researchers in selecting the optimal methods for their studies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Sun P, Liu DZ, Jickling GC, Sharp FR and Yin KJ: MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab. 38:1125–1148. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Garofalo M, Pandini C, Bordoni M, Pansarasa O, Rey F, Costa A, Minafra B, Diamanti L, Zucca S, Carelli S, et al: Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis gene expression patterns divergence reveals different grade of RNA metabolism involvement. Int J Mol Sci. 21:95002020. View Article : Google Scholar : PubMed/NCBI

3 

Bednarova A, Cizmarikova M, Habalova V and Jarcuskova D: Evaluation of 5-HTTLPR (insertion/deletion) and BDNF (rs6265) genetic variations in the Slovakian individuals suffering from affective disorders. General Physiol Biophys. 40:365–376. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Velosky AG, Tucker LB, Fu AH, Liu J and McCabe JT: Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries. Behav Brain Res. 324:115–124. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, et al: Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 national heart, lung, and blood institute and national institute of neurological disorders and stroke workshop. Alzheimers Dement. 16:1714–1733. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Yakovleva OV, Poluektov MG, Lyashenko EA and Levin OS: Sleep and cognitive impairment in neurodegenerative diseases. Zh Nevrol Psikhiatr Im SS Korsakova. 119:89–98. 2019.(In Russian). View Article : Google Scholar : PubMed/NCBI

7 

Dehn LB and Beblo T: Depressed, biased, forgetful: The interaction of emotional and cognitive dysfunctions in depression. Neuropsychiatr. 33:123–130. 2019.(In German). View Article : Google Scholar : PubMed/NCBI

8 

Hamdy N, Eide S, Sun HS and Feng ZP: Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol. 334:1134572020. View Article : Google Scholar : PubMed/NCBI

9 

Wintler T, Schoch H, Frank MG and Peixoto L: Sleep, brain development, and autism spectrum disorders: Insights from animal models. J Neurosci Res. 98:1137–1149. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Leader RW and Padgett GA: The genesis and validation of animal models. Am J Pathol. 101 (Suppl 3):S11–S16. 1980.PubMed/NCBI

11 

Cox TC: Utility and limitations of animal models for the functional validation of human sequence variants. Mol Genet Genomic Med. 3:375–382. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Morris RG, Garrud P, Rawlins JN and O'Keefe J: Place navigation impaired in rats with hippocampal lesions. Nature. 297:681–683. 1982. View Article : Google Scholar : PubMed/NCBI

13 

Chao OY, de Souza Silva MA, Yang YM and Huston JP: The medial prefrontal cortex-hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev. 113:373–407. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Sabariego M, Tabrizi NS, Marshall GJ, McLagan AN, Jawad S and Hales JB: In the temporal organization of episodic memory, the hippocampus supports the experience of elapsed time. Hippocampus. 31:46–55. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Pereira IT and Burwell RD: Using the spatial learning index to evaluate performance on the water maze. Behav Neurosci. 129:533–539. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Urbach A, Baum E, Braun F and Witte OW: Cortical spreading depolarization increases adult neurogenesis, and alters behavior and hippocampus-dependent memory in mice. J Cereb Blood Flow Metab. 37:1776–1790. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Holmberg P, Liljequist S and Wägner A: Secondary brain injuries in thalamus and hippocampus after focal ischemia caused by mild, transient extradural compression of the somatosensori cortex in the rat. Curr Neurovasc Res. 6:1–11. 2009. View Article : Google Scholar : PubMed/NCBI

18 

D'Hooge R and De Deyn PP: Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 36:60–90. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Mulder GB and Pritchett K: The Morris water maze. Contemp Top Lab Anim Sci. 42:49–50. 2003.

20 

Barry DN and Commins S: A novel control condition for spatial learning in the Morris water maze. J Neurosci Methods. 318:1–5. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Shah D, Verhoye M, Van der Linden A and D'Hooge R: Acquisition of spatial search strategies and reversal learning in the Morris water maze depend on disparate brain functional connectivity in mice. Cereb Cortex. 29:4519–4529. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Yuan Z, Zhou H, Zhou N, Dong D, Chu Y, Shen J, Han Y, Chu XP and Zhu K: Dynamic evaluation indices in spatial learning and memory of rat vascular dementia in the Morris water maze. Sci Rep. 9:72242019. View Article : Google Scholar : PubMed/NCBI

23 

Kim H, Seo JS, Lee SY, Ha KT, Choi BT, Shin YI, Yun YJ and Shin HK: AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav Immun. 87:765–776. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Tucker LB, Velosky AG and McCabe JT: Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev. 88:187–200. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC and Moffat SD: The application of a rodent-based morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci. 131:470–482. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Schneider CB, Linse K, Schönfeld R, Brown S, Koch R, Reichmann H, Leplow B and Storch A: Spatial learning deficits in Parkinson's disease with and without mild cognitive impairment. Parkinsonism Relat Disord. 36:83–88. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Deng-Bryant Y, Leung LY, Caudle K, Tortella F and Shear D: Cognitive evaluation using Morris water maze in neurotrauma. Methods Mol Biol. 1462:539–551. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Britten RA, Duncan VD, Fesshaye A, Rudobeck E, Nelson GA and Vlkolinsky R: Altered cognitive flexibility and synaptic plasticity in the rat prefrontal cortex after exposure to low (≤15 cGy) doses of 28Si radiation. Radiat Res. 193:223–235. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Zhang R, Xue G, Wang S, Zhang L, Shi C and Xie X: Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model. J Alzheimers Dis. 31:801–812. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Sadegzadeh F, Sakhaie N, Dehghany R, Adak O and Saadati H: Effects of adolescent administration of fluoxetine on novel object recognition memory, anxiety-like behaviors, and hippocampal brain-derived neurotrophic factor level. Life Sci. 260:1183382020. View Article : Google Scholar : PubMed/NCBI

31 

Chen W, Xia M, Guo C, Jia Z, Wang J, Li C, Li M, Tang X, Hu R, Chen Y, et al: Modified behavioural tests to detect white matter injury-induced motor deficits after intracerebral haemorrhage in mice. Sci Rep. 9:169582019. View Article : Google Scholar : PubMed/NCBI

32 

Uematsu A, Tsuchiya K, Suzuki S and Hortobágyi T: Cognitive dual-tasking augments age-differences in dynamic balance quantified by beam walking distance: A pilot study. Exp Gerontol. 114:27–31. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Gyengesi E, Rangel A, Ullah F, Liang H, Niedermayer G, Asgarov R, Venigalla M, Gunawardena D, Karl T and Münch G: Chronic microglial activation in the GFAP-IL6 mouse contributes to age-dependent cerebellar volume loss and impairment in motor function. Front Neurosci. 13:3032019. View Article : Google Scholar : PubMed/NCBI

34 

Mychasiuk R, Farran A and Esser MJ: Assessment of an experimental rodent model of pediatric mild traumatic brain injury. J Neurotrauma. 31:749–757. 2014. View Article : Google Scholar : PubMed/NCBI

35 

El-Sahar AE, Rastanawi AA, El-Yamany MF and Saad MA: Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci. 257:1180762020. View Article : Google Scholar : PubMed/NCBI

36 

Sun J, Li H, Jin Y, Yu J, Mao S, Su KP, Ling Z and Liu J: Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway. Brain Behav Immun. 91:703–715. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Marques-Carneiro JE, Faure JB, Cosquer B, Koning E, Ferrandon A, de Vasconcelos AP, Cassel JC and Nehlig A: Anxiety and locomotion in genetic absence epilepsy rats from strasbourg (GAERS): Inclusion of Wistar rats as a second control. Epilepsia. 55:1460–1468. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Bohr A, Schuhmann MK, Papp L, Volkmann J and Fluri F: Deep brain stimulation for stroke: Continuous stimulation of the pedunculopontine tegmental nucleus has no impact on skilled walking in rats after photothrombotic stroke. Curr Neurovasc Res. 17:636–643. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A and Chellian J: Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis. Res Pharm Sci. 15:602–611. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Dong W and Zhang L, Sun C, Gao X, Guan F, Li J, Chen W, Ma Y and Zhang L: Knock in of a hexanucleotide repeat expansion in the C9orf72 gene induces ALS in rats. Animal Model Exp Med. 3:237–244. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Hayashi T, Onozato T, Wanajo I, Hayashi M, Takeda H and Fujimori Y: Longitudinal analysis of motor symptoms and histopathology in woozy mice, a model of cerebellar ataxia. Neuroreport. 28:779–787. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Main SL and Kulesza RJ: Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience. 340:34–47. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Park G, Suh JH and Han SJ: Transcranial direct current stimulation for balance and gait in repetitive mild traumatic brain injury in rats. BMC Neurosci. 22:262021. View Article : Google Scholar : PubMed/NCBI

44 

Owfard M, Bigdeli MR, Safari A, Haghani M and Namavar MR: Effect of dimethyl fumarate on the motor function and spatial arrangement of primary motor cortical neurons in the sub-acute phase of stroke in a rat model. J Stroke Cerebrovasc Dis. 30:1056302021. View Article : Google Scholar : PubMed/NCBI

45 

Chkhartishvili E, Maglakelidze N, Babilodze M, Chijavadze E and Nachkebia N: Changes of open field behavior in animal model of depression. Georgian Med News. 11:107–112. 2011.PubMed/NCBI

46 

Lecorps B, Rödel HG and Féron C: Assessment of anxiety in open field and elevated plus maze using infrared thermography. Physiol Behav. 157:209–216. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Su X, Yuan H, Bai Y, Chen J, Sui M, Zhang X, Liang Y, Feng W, Dou Z and Zhu H: Clobetasol attenuates white matter injury by promoting oligodendrocyte precursor cell differentiation. Pediatr Neurosurg. 55:188–196. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Shoji H and Miyakawa T: Effects of test experience, closed-arm wall color, and illumination level on behavior and plasma corticosterone response in an elevated plus maze in male C57BL/6J mice: A challenge against conventional interpretation of the test. Mol Brain. 14:342021. View Article : Google Scholar : PubMed/NCBI

49 

Ren C, Li LX, Dong AQ, Zhang YT, Hu H, Mao CJ, Wang F and Liu CF: Depression induced by chronic unpredictable mild stress increases susceptibility to Parkinson's disease in mice via neuroinflammation mediated by P2X7 receptor. ACS Chem Neurosci. 12:1262–1272. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Castagné V, Moser P, Roux S and Porsolt RD: Rodent models of depression: Forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci. 8:Unit 8.10A. 2011.PubMed/NCBI

51 

Wang W, Wang J, Tang Q, Zhu X, Zhu R, Cui D, Wei C, Liu X, Liu X, Ran S, et al: CX3CR1 deficiency aggravates brain white matter injury and affects expression of the CD36/15LO/NR4A1 signal. Biochem Biophys Res Commun. 549:47–53. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Ráez A, Oliveras I, Río-Álamos C, Díaz-Morán S, Cañete T, Blázquez G, Tobeña A and Fernández-Teruel A: A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats. Behav Processes. 177:1041422020. View Article : Google Scholar : PubMed/NCBI

53 

Richler JJ, Wilmer JB and Gauthier I: General object recognition is specific: Evidence from novel and familiar objects. Cognition. 166:42–55. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Ishikawa H, Yamada K, Pavlides C and Ichitani Y: Sleep deprivation impairs spontaneous object-place but not novel-object recognition in rats. Neurosci Lett. 580:114–118. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Miedel CJ, Patton JM, Miedel AN, Miedel ES and Levenson JM: Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology. J Vis Exp. 28:555232017.

56 

Antunes M and Biala G: The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn Process. 13:93–110. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Grayson B, Leger M, Piercy C, Adamson L, Harte M and Neill JC: Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav Brain Res. 285:176–193. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Cohen SJ and Stackman RW Jr: Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res. 285:105–117. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Da Cruz JFO, Gomis-Gonzalez M, Maldonado R, Marsicano G, Ozaita A and Busquets-Garcia A: An alternative maze to assess novel object recognition in mice. Bio Protoc. 10:e36512020.PubMed/NCBI

60 

Lueptow LM: Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp. 126:557182017.PubMed/NCBI

61 

Luong TN, Carlisle HJ, Southwell A and Patterson PH: Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp. 49:23762011.

62 

Hortobágyi T, Uematsu A, Sanders L, Kliegl R, Tollár J, Moraes R and Granacher U: Beam walking to assess dynamic balance in health and disease: A protocol for the ‘BEAM’ multicenter observational study. Gerontology. 65:332–339. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR and Reynolds DS: The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J Psychopharmacol. 19:221–227. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Seashore HG: The development of a beam-walking test and its use in measuring development of balance in children. Res Q. 18:246–259. 1947.PubMed/NCBI

65 

Sawers A and Hafner B: Validation of the narrowing beam walking test in lower limb prosthesis users. Arch Phys Med Rehabil. 99:1491–1498.e1. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Castillo JT, Welch GW and Sarver CM: Walking a high beam: The balance between employment stability, workplace flexibility, and nonresident father involvement. Am J Mens Health. 6:120–131. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Sawers A and Ting LH: Beam walking can detect differences in walking balance proficiency across a range of sensorimotor abilities. Gait Posture. 41:619–623. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Kaur H, Kumar A, Jaggi AS and Singh N: Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice. J Surg Res. 197:191–200. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Monville C, Torres EM and Dunnett SB: Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods. 158:219–223. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S and Hattori N: A rotarod test for evaluation of motor skill learning. J Neurosci Methods. 189:180–185. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Matias M, Silvestre S, Falcão A and Alves G: Considerations and pitfalls in selecting the drug vehicles for evaluation of new drug candidates: Focus on in vivo pharmaco-toxicological assays based on the rotarod performance test. J Pharm Pharm Sci. 21:110–118. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Kirschbaum KM, Hiemke C and Schmitt U: Rotarod impairment: Catalepsy-like screening test for antipsychotic side effects. Int J Neurosci. 119:1509–1522. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Tkáč I, Benneyworth MA, Nichols-Meade T, Steuer EL, Larson SN, Metzger GJ and Uğurbil K: Long-term behavioral effects observed in mice chronically exposed to static ultra-high magnetic fields. Magn Reson Med. 86:1544–1559. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Toklu HZ, Yang Z, Ersahin M and Wang KKW: Neurological exam in rats following stroke and traumatic brain injury. Methods Mol Biol. 2011:371–381. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Jeffery ND, Brakel K, Aceves M, Hook MA and Jeffery UB: Variability in open-field locomotor scoring following force-defined spinal cord injury in rats: Quantification and implications. Front Neurol. 11:6502020. View Article : Google Scholar : PubMed/NCBI

76 

Miller CK, Halbing AA, Patisaul HB and Meitzen J: Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiol Behav. 228:1132032021. View Article : Google Scholar : PubMed/NCBI

77 

Sturman O, Germain PL and Bohacek J: Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 21:443–452. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Kraeuter AK, Guest PC and Sarnyai Z: The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol. 1916:99–103. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Tartar JL, Ward CP, Cordeira JW, Legare SL, Blanchette AJ, McCarley RW and Strecker RE: Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behav Brain Res. 197:450–453. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Walz N, Mühlberger A and Pauli P: A human open field test reveals thigmotaxis related to agoraphobic fear. Biol Psychiatry. 80:390–397. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Walsh RN and Cummins RA: The open-field test: A critical review. Psychol Bull. 83:482–504. 1976. View Article : Google Scholar : PubMed/NCBI

82 

Knight P, Chellian R, Wilson R, Behnood-Rod A, Panunzio S and Bruijnzeel AW: Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav. 204:1731682021. View Article : Google Scholar : PubMed/NCBI

83 

Justel N, Salguero A, Marengo L, Psyrdellis M and Pautassi RM: Open field exposure facilitates the expression of a spatial, recognition memory. Neurosci Lett. 757:1359972021. View Article : Google Scholar : PubMed/NCBI

84 

Snyder CN, Brown AR and Buffalari D: Similar tests of anxiety-like behavior yield different results: Comparison of the open field and free exploratory rodent procedures. Physiol Behav. 230:1132462021. View Article : Google Scholar : PubMed/NCBI

85 

Hogg S: A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav. 54:21–30. 1996. View Article : Google Scholar : PubMed/NCBI

86 

Carobrez AP and Bertoglio LJ: Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 29:1193–1205. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Bespalov A and Steckler T: Pharmacology of anxiety or pharmacology of elevated plus maze? Biol Psychiatry. 89:e732021. View Article : Google Scholar : PubMed/NCBI

88 

Holmes A, Li Q, Koenig EA, Gold E, Stephenson D, Yang RJ, Dreiling J, Sullivan T and Crawley JN: Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology (Berl). 178:276–285. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Shao S, Cui Y, Chen ZB, Zhang B, Huang SM and Liu XW: Androgen deficit changes the response to antidepressant drugs in tail suspension test in mice. Aging Male. 23:1259–1265. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Iyer KA, Alix K, Eltit JM, Solis E Jr, Pan X, Argade MD, Khatri S, Felice LJD, Sweet DH, Schulte MK and Dukat M: Multi-modal antidepressant-like action of 6- and 7-chloro-2-aminodihydroquinazolines in the mouse tail suspension test. Psychopharmacology (Berl). 236:2093–2104. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Poleszak E, Szopa A, Bogatko K, Wyska E, Wośko S, Świader K, Doboszewska U, Wlaź A, Wróbel A, Wlaź P and Serefko A: Antidepressant-like activity of typical antidepressant drugs in the forced swim test and tail suspension test in mice is augmented by DMPX, an adenosine A2A receptor antagonist. Neurotox Res. 35:344–352. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Pelloux Y, Hagues G, Costentin J and Duterte-Boucher D: Helplessness in the tail suspension test is associated with an increase in ethanol intake and its rewarding effect in female mice. Alcohol Clin Exp Res. 29:378–388. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Kale PP, Addepalli V and Ghadawale SR: Impact of pre-exposure of tail suspension on behavioural parameters like locomotion, exploration, and anxiety in mice. Indian J Exp Biol. 51:732–738. 2013.PubMed/NCBI

94 

Reis-Silva TM, Sandini TM, Calefi AS, Orlando BCG, Moreira N, Lima APN, Florio JC, Queiroz-Hazarbassanov NGT and Bernardi MM: Stress resilience evidenced by grooming behaviour and dopamine levels in male mice selected for high and low immobility using the tail suspension test. Eur J Neurosci. 50:2942–2954. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Nomura S, Naruse R and Okada H: The tail suspension test: Its theory and practical application. Yakubutsu Seishin Kodo. 12:207–213. 1992.(In Japanese). PubMed/NCBI

96 

Rosa I, Di Censo D, Ranieri B, Di Giovanni G, Scarnati E, Alecci M, Galante A and Florio TM: Comparison between tail suspension swing test and standard rotation test in revealing early motor behavioral changes and neurodegeneration in 6-OHDA hemiparkinsonian rats. Int J Mol Sci. 21:28742020. View Article : Google Scholar : PubMed/NCBI

97 

Stukalin Y, Lan A and Einat H: Revisiting the validity of the mouse tail suspension test: Systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci Biobehav Rev. 112:39–47. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Vieira C, De Lima TC, de Pádua Carobrez A and Lino-de-Oliveira C: Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test. Neurosci Lett. 445:170–173. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Flores-Serrano AG, Zaldivar-Rae J, Salgado H and Pineda JC: Immobility time during the forced swimming test predicts sensitivity to amitriptyline, whereas traveled distance in the circular corridor indicates resistance to treatment in female Wistar rats. Neuroreport. 26:233–238. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Petit-Demouliere B, Chenu F and Bourin M: Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl). 177:245–255. 2005. View Article : Google Scholar : PubMed/NCBI

101 

Herbst LS, Gaigher T, Siqueira AA, Joca SRL, Sampaio KN and Beijamini V: New evidence for refinement of anesthetic choice in procedures preceding the forced swimming test and the elevated plus-maze. Behav Brain Res. 368:1118972019. View Article : Google Scholar : PubMed/NCBI

102 

Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W and Wang Y: Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuropsychopharmacol Biol Psychiatry. 33:1417–1424. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Rebolledo-Solleiro D, Crespo-Ramírez M, Roldán-Roldán G, Hiriart M and de la Mora M: Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test. Physiol Behav. 120:130–135. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Lucki I, Dalvi A and Mayorga AJ: Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl). 155:315–322. 2001. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang L, Xiao D, Sun H, Qu Y and Su X: Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Mol Med Rep 25: 183, 2022.
APA
Huang, L., Xiao, D., Sun, H., Qu, Y., & Su, X. (2022). Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Molecular Medicine Reports, 25, 183. https://doi.org/10.3892/mmr.2022.12699
MLA
Huang, L., Xiao, D., Sun, H., Qu, Y., Su, X."Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review)". Molecular Medicine Reports 25.5 (2022): 183.
Chicago
Huang, L., Xiao, D., Sun, H., Qu, Y., Su, X."Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review)". Molecular Medicine Reports 25, no. 5 (2022): 183. https://doi.org/10.3892/mmr.2022.12699
Copy and paste a formatted citation
x
Spandidos Publications style
Huang L, Xiao D, Sun H, Qu Y and Su X: Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Mol Med Rep 25: 183, 2022.
APA
Huang, L., Xiao, D., Sun, H., Qu, Y., & Su, X. (2022). Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Molecular Medicine Reports, 25, 183. https://doi.org/10.3892/mmr.2022.12699
MLA
Huang, L., Xiao, D., Sun, H., Qu, Y., Su, X."Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review)". Molecular Medicine Reports 25.5 (2022): 183.
Chicago
Huang, L., Xiao, D., Sun, H., Qu, Y., Su, X."Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review)". Molecular Medicine Reports 25, no. 5 (2022): 183. https://doi.org/10.3892/mmr.2022.12699
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team