|
1
|
Friedenstein AJ, Chailakhyan RK and
Gerasimov UV: Bone marrow osteogenic stem cells: In vitro
cultivation and transplantation in diffusion chambers. Cell Tissue
Kinet. 20:263–272. 1987.
|
|
2
|
Kim N and Cho SG: Clinical applications of
mesenchymal stem cells. Korean J Intern Med. 28:387–402. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Alves H, Mentink A, Le B, van Blitterswijk
CA and de Boer J: Effect of antioxidant supplementation on the
total yield, oxidative stress levels, and multipotency of bone
marrow-derived human mesenchymal stromal cells. Tissue Eng Part A.
19:928–937. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ren C, Gong W, Li F and Xie M: Pilose
antler aqueous extract promotes the proliferation and osteogenic
differentiation of bone marrow mesenchymal stem cells by
stimulating the BMP-2/Smad1, 5/Runx2 signaling pathway. Chin J Nat
Med. 17:756–767. 2019.PubMed/NCBI
|
|
5
|
Furuta T, Miyaki S, Ishitobi H, Ogura T,
Kato Y, Kamei N, Miyado K, Higashi Y and Ochi M: Mesenchymal stem
cell-derived exosomes promote fracture healing in a mouse model.
Stem Cells Transl Med. 5:1620–1630. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Watanabe Y, Tsuchiya A, Seino S, Kawata Y,
Kojima Y, Ikarashi S, Starkey Lewis PJ, Lu WY, Kikuta J, Kawai H,
et al: Mesenchymal stem cells and induced bone marrow-derived
macrophages synergistically improve liver fibrosis in mice. Stem
Cells Transl Med. 8:271–284. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ferrari G, Cusella-De Angelis G, Coletta
M, Paolucci E, Stornaiuolo A, Cossu G and Mavilio F: Muscle
regeneration by bone marrow-derived myogenic progenitors. Science.
279:1528–1530. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Petersen BE, Bowen WC, Patrene KD, Mars
WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS and Goff JP:
Bone marrow as a potential source of hepatic oval cells. Science.
284:1168–1170. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sanchez-Ramos J, Song S, Cardozo-Pelaez F,
Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W,
Patel N, et al: Adult bone marrow stromal cells differentiate into
neural cells in vitro. Exp Neurol. 164:247–256. 2000. View Article : Google Scholar
|
|
10
|
Owen M and Friedenstein AJ: Stromal stem
cells: Marrow-derived osteogenic precursors. Ciba Found Symp.
136:42–60. 1988.PubMed/NCBI
|
|
11
|
Prockop DJ: Marrow stromal cells as stem
cells for nonhematopoietic tissues. Science. 276:71–74. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lasda E and Parker R: Circular RNAs:
Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yu CX and Sun S: An emerging role for
circular RNAs in osteoarthritis. Yonsei Med J. 59:349–355. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kos A, Dijkema R, Arnberg AC, van der
Meide PH and Schellekens H: The hepatitis delta (delta) virus
possesses a circular RNA. Nature. 323:558–560. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Salzman J, Gawad C, Wang PL, Lacayo N and
Brown PO: Circular RNAs are the predominant transcript isoform from
hundreds of human genes in diverse cell types. PLoS One.
7:e307332012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hou LD and Zhang J: Circular RNAs: An
emerging type of RNA in cancer. Int J Immunopathol Pharmacol.
30:1–6. 2017. View Article : Google Scholar
|
|
20
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar
|
|
21
|
Vicens Q and Westhof E: Biogenesis of
circular RNAs. Cell. 159:13–14. 2014. View Article : Google Scholar
|
|
22
|
Wang Y and Wang Z: Efficient backsplicing
produces translatable circular mRNAs. RNA. 21:172–179. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen I, Chen CY and Chuang TJ: Biogenesis,
identification, and function of exonic circular RNAs. Wiley
Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar
|
|
25
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar
|
|
26
|
Conn SJ, Pillman KA, Toubia J, Conn VM,
Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and
Goodall GJ: The RNA binding protein quaking regulates formation of
circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar
|
|
27
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar
|
|
28
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
You X, Vlatkovic I, Babic A, Will T,
Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al:
Neural circular RNAs are derived from synaptic genes and regulated
by development and plasticity. Nat Neurosci. 18:603–610. 2015.
View Article : Google Scholar
|
|
31
|
Huang S, Yang B, Chen BJ, Bliim N,
Ueberham U, Arendt T and Janitz M: The emerging role of circular
RNAs in transcriptome regulation. Genomics. 109:401–407. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen X, Han P, Zhou T, Guo X, Song X and
Li Y: circRNADb: A comprehensive database for human circular RNAs
with protein-coding annotations. Sci Rep. 6:349852016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Granados-Riveron JT and Aquino-Jarquin G:
The complexity of the translation ability of circRNAs. Biochim
Biophys Acta. 1859:1245–1251. 2016. View Article : Google Scholar
|
|
34
|
Ebert MS and Sharp PA: MicroRNA sponges:
Progress and possibilities. RNA. 16:2043–2050. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Abdelmohsen K, Kuwano Y, Kim HH and
Gorospe M: Posttranscriptional gene regulation by RNA-binding
proteins during oxidative stress: Implications for cellular
senescence. Biol Chem. 389:243–255. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW,
Carmichael GG and Chen LL: Long noncoding RNAs with snoRNA ends.
Mol Cell. 48:219–230. 2012. View Article : Google Scholar
|
|
37
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar
|
|
38
|
Chen CY and Sarnow P: Initiation of
protein synthesis by the eukaryotic translational apparatus on
circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017. View Article : Google Scholar
|
|
41
|
Lin Z, Tang X, Wan J, Zhang X, Liu C and
Liu T: Functions and mechanisms of circular RNAs in regulating stem
cell differentiation. RNA Biol. 18:2136–2149. 2021. View Article : Google Scholar
|
|
42
|
Fu M, Fang L, Xiang X, Fan X, Wu J and
Wang J: Microarray analysis of circRNAs sequencing profile in
exosomes derived from bone marrow mesenchymal stem cells in
postmenopausal osteoporosis patients. J Clin Lab Anal.
36:e239162022. View Article : Google Scholar
|
|
43
|
Zhang Y, Jia S, Wei Q, Zhuang Z, Li J, Fan
Y, Zhang L, Hong Z, Ma X, Sun R, et al: CircRNA_25487 inhibits bone
repair in trauma-induced osteonecrosis of femoral head by sponging
miR-134-3p through p21. Regen Ther. 16:23–31. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen W, Zhang B and Chang X: Emerging
roles of circular RNAs in osteoporosis. J Cell Mol Med.
25:9089–9101. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang M, Jia L and Zheng Y: circRNA
expression profiles in human bone marrow stem cells undergoing
osteoblast differentiation. Stem Cell Rev Rep. 15:126–138. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z,
Zhang G and Song Y: Circular RNA CDR1as promotes adipogenic and
suppresses osteogenic differentiation of BMSCs in steroid-induced
osteonecrosis of the femoral head. Bone. 133:1152582020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rademacher S and Eickholt BJ: PTEN in
Autism and neurodevelopmental disorders. Cold Spring Harb Perspect
Med. 9:a0367802019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kuang MJ, Xing F, Wang D, Sun L, Ma JX and
Ma XL: CircUSP45 inhibited osteogenesis in glucocorticoid-induced
osteonecrosis of femoral head by sponging miR-127-5p through
PTEN/AKT signal pathway: Experimental studies. Biochem Biophys Res
Commun. 509:255–261. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Geng Y, Chen J, Chang C, Zhang Y, Duan L,
Zhu W, Mou L, Xiong J and Wang D: Systematic analysis of mRNAs and
ncRNAs in BMSCs of senile osteoporosis patients. Front Genet.
12:7769842021. View Article : Google Scholar
|
|
50
|
Seppala M, Thivichon-Prince B, Xavier GM,
Shaffie N, Sangani I, Birjandi AA, Rooney J, Lau JNS, Dhaliwal R,
Rossi O, et al: Gas1 regulates patterning of the murine and human
dentitions through sonic hedgehog. J Dent Res. 101:473–482. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang X, Chen T, Deng Z, Gao W, Liang T,
Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, et al: Melatonin promotes bone
marrow mesenchymal stem cell osteogenic differentiation and
prevents osteoporosis development through modulating circ_0003865
that sponges miR-3653-3p. Stem Cell Res Ther. 12:1502021.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xiang S, Li Z and Weng X: Changed cellular
functions and aberrantly expressed miRNAs and circRNAs in bone
marrow stem cells in osteonecrosis of the femoral head. Int J Mol
Med. 45:805–815. 2020.PubMed/NCBI
|
|
53
|
Komori T: Roles of Runx2 in skeletal
development. Adv Exp Med Biol. 962:83–93. 2017. View Article : Google Scholar
|
|
54
|
Komori T: Regulation of proliferation,
differentiation and functions of osteoblasts by Runx2. Int J Mol
Sci. 20:16942019. View Article : Google Scholar
|
|
55
|
Ji H, Cui X, Yang Y and Zhou X: CircRNA
hsa_circ_0006215 promotes osteogenic differentiation of BMSCs and
enhances osteogenesis-angiogenesis coupling by competitively
binding to miR-942-5p and regulating RUNX2 and VEGF. Aging (Albany
NY). 13:10275–10288. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cao G, Meng X, Han X and Li J: Exosomes
derived from circRNA Rtn4-modified BMSCs attenuate TNF-α-induced
cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging
miR-146a. Biosci Rep. 40:BSR201934362020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mikami R, Mizutani K, Aoki A, Tamura Y,
Aoki K and Izumi Y: Low-level ultrahigh-frequency and
ultrashort-pulse blue laser irradiation enhances osteoblast
extracellular calcification by upregulating proliferation and
differentiation via transient receptor potential vanilloid 1.
Lasers Surg Med. 50:340–352. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rosa AP, de Sousa LG, Regalo SC, Issa JP,
Barbosa AP, Pitol DL, de Oliveira RH, de Vasconcelos PB, Dias FJ,
Chimello DT and Siéssere S: Effects of the combination of low-level
laser irradiation and recombinant human bone morphogenetic
protein-2 in bone repair. Lasers Med Sci. 27:971–977. 2012.
View Article : Google Scholar
|
|
59
|
Hou JF, Zhang H, Yuan X, Li J, Wei YJ and
Hu SS: In vitro effects of low-level laser irradiation for bone
marrow mesenchymal stem cells: Proliferation, growth factors
secretion and myogenic differentiation. Lasers Surg Med.
40:726–733. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Abramovitch-Gottlib L, Gross T, Naveh D,
Geresh S, Rosenwaks S, Bar I and Vago R: Low level laser
irradiation stimulates osteogenic phenotype of mesenchymal stem
cells seeded on a three-dimensional biomatrix. Lasers Med Sci.
20:138–146. 2005. View Article : Google Scholar
|
|
61
|
Kipshidze N, Nikolaychik V, Keelan MH,
Shankar LR, Khanna A, Kornowski R, Leon M and Moses J: Low-power
helium: Neon laser irradiation enhances production of vascular
endothelial growth factor and promotes growth of endothelial cells
in vitro. Lasers Surg Med. 28:355–364. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu N, Lu W, Qu X and Zhu C: LLLI promotes
BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med
Sci. 37:849–856. 2022. View Article : Google Scholar
|
|
63
|
Zheng J, Lin Y, Tang F, Guo H, Yan L, Hu S
and Wu H: Promotive role of CircATRNL1 on chondrogenic
differentiation of BMSCs mediated by miR-338-3p. Arch Med Res.
52:514–522. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wen X, Zhang J, Yang W, Nie X, Gui R, Shan
D, Huang R and Deng H: CircRNA-016901 silencing attenuates
irradiation-induced injury in bone mesenchymal stem cells via
regulating the miR-1249-5p/HIPK2 axis. Exp Ther Med. 21:3552021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li X, Chen R, Lei X, Wang P, Zhu X, Zhang
R and Yang L: Quercetin regulates ERα mediated differentiation of
BMSCs through circular RNA. Gene. 769:1451722021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao YS, Lin P, Tu YC, An T, Wu YP and Li
XF: Lentivirus mediated siRNA hsa-circ-0000885 transfection of
BMSCs and osteoclast co-culture system on cell differentiation,
proliferation and apoptosis. Zhongguo Gu Shang. 34:978–984.
2021.(In Chinese). PubMed/NCBI
|
|
67
|
Wang H, Zhou K, Xiao F, Huang Z, Xu J,
Chen G, Liu Y and Gu H: Identification of circRNA-associated ceRNA
network in BMSCs of OVX models for postmenopausal osteoporosis. Sci
Rep. 10:108962020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lin C, Chen Z, Guo D, Zhou L, Lin S, Li
C..Li S, Wang X, Lin B and Ding Y: Increased expression of
osteopontin in subchondral bone promotes bone turnover and
remodeling, and accelerates the progression of OA in a mouse model.
Aging (Albany NY). 14:253–271. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu Z, Liu Q, Chen S, Su H and Jing T:
Circular RNA Circ_0005564 promotes osteogenic differentiation of
bone marrow mesenchymal cells in osteoporosis. Bioengineered.
12:4911–4923. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chia W, Liu J, Huang YG and Zhang C: A
circular RNA derived from DAB1 promotes cell proliferation and
osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death
Dis. 11:3722020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhong W, Li X, Pathak JL, Chen L, Cao W,
Zhu M, Luo Q, Wu A, Chen Y, Yi L, et al: Dicalcium silicate
microparticles modulate the differential expression of circRNAs and
mRNAs in BMSCs and promote osteogenesis via circ_1983-miR-6931-Gas7
interaction. Biomater Sci. 8:3664–3677. 2020. View Article : Google Scholar
|
|
72
|
Hao Y, Lu C, Zhang B, Xu Z, Guo H and
Zhang G: CircPVT1 up-regulation attenuates steroid-induced
osteonecrosis of the femoral head through regulating
miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med.
25:4608–4622. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou R, Miao S, Xu J, Sun L and Chen Y:
Circular RNA circ_0000020 promotes osteogenic differentiation to
reduce osteoporosis via sponging microRNA miR-142-5p to up-regulate
bone morphogenetic protein BMP2. Bioengineered. 12:3824–3836. 2021.
View Article : Google Scholar : PubMed/NCBI
|