You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K; International Forum of Acute Care Trialists, : Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 193:259–272. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, et al: Evidence for cardiomyocyte renewal in humans. Science. 324:98–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nedeva C: Inflammation and cell death of the innate and adaptive immune system during sepsis. Biomolecules. 11:10112021. View Article : Google Scholar : PubMed/NCBI | |
|
Picca A, Calvani R, Coelho-Junior HJ and Marzetti E: Cell death and inflammation: The role of mitochondria in health and disease. Cells. 10:5372021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
|
Pinheiro Da Silva F and Nizet V: Cell death during sepsis: Integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis. 14:509–521. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lengeler JW: Metabolic networks: A signal-oriented approach to cellular models. Biol Chem. 381:911–920. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hotchkiss RS, Strasser A, McDunn JE and Swanson PE: Cell death. N Engl J Med. 361:1570–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Raff M: Cell suicide for beginners. Nature. 396:119–122. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Norbury CJ and Hickson ID: Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 41:367–401. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 9:459–470. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R and Li G: Tanshinone modulates the expression of Bcl-2 and Bax in cardiomyocytes and has a protective effect in a rat model of myocardial ischemia-reperfusion. Hellenic J Cardiol. 59:323–328. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Savill J and Fadok V: Corpse clearance defines the meaning of cell death. Nature. 407:784–788. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Haslett C: Granulocyte apoptosis and inflammatory disease. Br Med Bull. 53:669–683. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Zorc-Pleskovic R, Alibegović A, Zorc M, Milutinović A, Radovanović N and Petrović D: Apoptosis of cardiomyocytes in myocarditis. Folia Biol (Praha). 52:6–9. 2006.PubMed/NCBI | |
|
Fajardo G, Zhao M, Powers J and Bernstein D: Differential cardiotoxic/cardioprotective effects of beta-adrenergic receptor subtypes in myocytes and fibroblasts in doxorubicin cardiomyopathy. J Mol Cell Cardiol. l40:375–383. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zechendorf E, O'riordan CE, Stiehler L, Wischmeyer N, Chiazza F, Collotta D, Denecke B, Ernst S, Müller-Newen G, Coldewey SM, et al: Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis. JCI Insight. 5:e1315712020. View Article : Google Scholar : PubMed/NCBI | |
|
Díez J: Apoptosis in cardiovascular diseases. Rev Esp Cardiol. 53:267–274. 2000.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
|
Chao J, Yin H, Yao YY, Shen B, Smith RS Jr and Chao L: Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther. 17:1201–1213. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R and Rokosh G: Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: Role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation. 116:654–663. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Saxena A, Fish JE, White MD, Yu S, Smyth JW, Shaw RM, Dimaio JM and Srivastava D: Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation. 117:2224–2231. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Shen L, Sun X, Tong G, Sun D, Han T, Yang G, Zhang J, Cao F, Yao L and Wang H: Variation of NDRG2 and c-Myc expression in rat heart during the acute stage of ischemia/reperfusion injury. Histochem Cell Biol. 135:27–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Oberholzer C, Oberholzer A, Clare-Salzler M and Moldawer LL: Apoptosis in sepsis: A new target for therapeutic exploration. FASEB J. 15:879–892. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC and Kitsis RN: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 111:1497–1504. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nevière R, Fauvel H, Chopin C, Formstecher P and Marchetti P: Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med. 163:218–225. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Manetti AC, Maiese A, Paolo MD, Matteis AD, La Russa R, Turillazzi E, Frati P and Fineschi V: MicroRNAs and sepsis-induced cardiac dysfunction: A systematic review. Int J Mol Sci. 22:3212020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv H, Tian M, Hu P, Wang B and Yang L: Overexpression of miR-365a-3p relieves sepsis-induced acute myocardial injury by targeting MyD88/NF-κB pathway. Can J Physiol Pharmacol. 99:1007–1015. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichtenauer M and Jung C: MicroRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: A potential scope for the future? Cells. 8:13522019. View Article : Google Scholar : PubMed/NCBI | |
|
Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Zhong CQ and Zhang DW: Programmed necrosis: Backup to and competitor with apoptosis in the immune system. Nat Immunol. 12:1143–1149. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-Mcnulty B, Carano RaD, Cao TC, Van Bruggen N, Bernstein L, et al: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23:1565–1576. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Christofferson DE and Yuan J: Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 22:263–268. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signalling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H and Sun A: Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 116:125–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Gonzalez G, Vandenabeele P and Krysko DV: Necroptosis: A novel cell death modality and its potential relevance for critical care medicine. Am J Respir Crit Care Med. 194:415–428. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Van Der Poll T, Van De Veerdonk FL, Scicluna BP and Netea MG: The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 17:407–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ and Vandenabeele P: Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol. 2:e9750932015. View Article : Google Scholar : PubMed/NCBI | |
|
Lafont E, Hartwig T and Walczak H: Paving trail's path with ubiquitin. Trends Biochem Sci. 43:44–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Oeckinghaus A, Hayden MS and Ghosh S: Crosstalk in NF-κB signalling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K and Manning G: Necroptosis and inflammation. Annu Rev Biochem. 85:743–763. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, et al: Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23:994–1006. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC, Cuny GD, Yuan J and Savitz SI: Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res. 88:1569–1576. 2010.PubMed/NCBI | |
|
Kaczmarek A, Vandenabeele P and Krysko DV: Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schenck EJ, Ma KC, Price DR, Nicholson T, Oromendia C, Gentzler ER, Sanchez E, Baron RM, Fredenburgh LE, Huh JW, et al: Circulating cell death biomarker trail is associated with increased organ dysfunction in sepsis. JCI Insight. 4:e1271432019. View Article : Google Scholar : PubMed/NCBI | |
|
Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F, Peñaloza HF, Soong G, Bueno S, Parker D and Prince A: Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signalling. Cell Rep. 16:2219–2230. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Vucur M, Roderburg C, Kaiser L, Schneider AT, Roy S, Loosen SH, Luedde M, Trautwein C, Koch A, Tacke F and Luedde T: Elevated serum levels of mixed lineage kinase domain-like protein predict survival of patients during intensive care unit treatment. Dis Markers. 2018:19834212018. View Article : Google Scholar : PubMed/NCBI | |
|
Peng S, Xu J, Ruan W, Li S and Xiao F: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev. 2017:83267492017. View Article : Google Scholar : PubMed/NCBI | |
|
Beno SM, Riegler AN, Gilley RP, Brissac T, Wang Y, Kruckow KL, Jadapalli JK, Wright GM, Shenoy AT, Stoner SN, et al: Inhibition of necroptosis to prevent long-term cardiac damage during pneumococcal pneumonia and invasive disease. J Infect Dis. 222:1882–1893. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zechendorf E, Vaßen P, Zhang J, Hallawa A, Martincuks A, Krenkel O, Müller-Newen G, Schuerholz T, Simon TP, Marx G, et al: Heparan sulfate induces necroptosis in murine cardiomyocytes: A medical-in silico approach combining in vitro experiments and machine learning. Front Immunol. 9:3932018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Yang H, Guo X and Sun Y: Klotho attenuates angiotensin II-induced cardiotoxicity through suppression of necroptosis and oxidative stress. Mol Med Rep. 23:662021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Ruan Y, Huang X, Dou L, Lan M, Cui J, Chen B, Gong H, Wang Q, Yan M, et al: Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun. 523:140–146. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC and Goldberg IJ: Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 6:550–562. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Lu H, Xie H, Zhang B, Nie T, Fan C, Yang T, Xu Y, Su H, Tang W and Zhou B: Potent and selective RIPK1 inhibitors targeting dual-pockets for the treatment of systemic inflammatory response syndrome and sepsis. Angew Chem Int Ed Engl. 61:e2021149222022.PubMed/NCBI | |
|
Fu G, Wang B, He B, Feng M and Yu Y: LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res. 41:32–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al: Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 16:3–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kayar SR and Banchero N: Volume density and distribution of mitochondria in myocardial growth and hypertrophy. Respir Physiol. 70:275–286. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Beretta M, Santos CX, Molenaar C, Hafstad AD, Miller CC, Revazian A, Betteridge K, Schröder K, Streckfuß-Bömeke K, Doroshow JH, et al: Nox4 regulates InsP3 receptor-dependent Ca2+ release into mitochondria to promote cell survival. EMBO J. 39:e1035302020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kwon J, Kim M, Do J, Lee D and Han H: Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J. 48:829–834. 2016. View Article : Google Scholar | |
|
Weiss JN, Korge P, Honda HM and Ping P: Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 93:292–301. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G, Galluzzi L and Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 87:99–163. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G and Galluzzi L: Mitochondrial permeability transition: New findings and persisting uncertainties. Trends Cell Biol. 26:655–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Isoyama S and Nitta-Komatsubara Y: Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 7:63–69. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C and Neviere R: Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 48:377–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nesci S: The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. Med Res Rev. 40:811–817. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bauer TM and Murphy E: Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 126:280–293. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Azzolin L, Antolini N, Calderan A, Ruzza P, Sciacovelli M, Marin O, Mammi S, Bernardi P and Rasola A: Antamanide, a derivative of amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS One. 6:e162802011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Xie M, Zhu J, Yi Q, Tan B, Li Y, Ye L, Zhang X, Zhang Y, Tian J and Xu H: PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ efflux. Stem Cell Res Ther. 12:2692021. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J and Alnemri ES: The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14:1590–1604. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA and Virág L: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI | |
|
Jorgensen I and Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Frank D and Vince JE: Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26:99–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fink SL and Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 8:1812–1825. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Espinosa-Oliva AM, García-Revilla J, Alonso-Bellido IM and Burguillos MA: Brainiac caspases: Beyond the wall of apoptosis. Front Cell Neurosci. 13:5002019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, et al: Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res. 64:e124492018. View Article : Google Scholar | |
|
Vande Walle L and Lamkanfi M: Pyroptosis. Curr Biol. 26:R568–R572. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M, Ran Q, Kroemer G, et al: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 24:97–108.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Z, Xi Q, Liu H, Guo X, Zhang J, Zhang Z, Li Y, Yang G, Zhou D, Yang H, et al: miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 10:4612019. View Article : Google Scholar : PubMed/NCBI | |
|
Hagar JA, Powell DA, Aachoui Y, Ernst RK and Miao EA: Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock. Science. 341:1250–1253. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM, Gao X, An S, Mittal M, Vogel SM, et al: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest. 127:4124–4135. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nierhaus A, Winkler MS, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Schwedhelm E, Daum G, Kluge S and Zoellner C: Sphingosine-1-phosphate is a novel biomarker in sepsis severity. Intensive Care Med Exp. 3 (Suppl 1):A7892015. View Article : Google Scholar | |
|
Song F, Hou J, Chen Z, Cheng B, Lei R, Cui P, Sun Y, Wang H and Fang X: Sphingosine-1-phosphate receptor 2 signalling promotes caspase-11-dependent macrophage pyroptosis and worsens scherichia coli sepsis outcome. Anesthesiology. 129:311–320. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bordon Y: Mucosal immunology: Inflammasomes induce sepsis following community breakdown. Nat Rev Immunol. 12:400–401. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Callaway JB and Ting JP: Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med. 21:677–687. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pu Q, Gan C, Li R, Li Y, Tan S, Li X, Wei Y, Lan L, Deng X, Liang H, et al: Atg7 deficiency intensifies inflammasome activation and pyroptosis in pseudomonas sepsis. J Immunol. 198:3205–3213. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Man SM and Kanneganti TD: Regulation of inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lamkanfi M and Dixit VM: In retrospect: The inflammasome turns 15. Nature. 548:534–535. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM, Dorfleutner A and Stehlik C: The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun. 9:9962018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SK, Kim YS, Bae GH, Lee HY and Bae YS: VU0155069 inhibits inflammasome activation independent of phospholipase D1 activity. Sci Rep. 9:143492019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Jia Y, Feng Y, Cui R, Miao R, Zhang X, Qu K, Liu C and Zhang J: Methane alleviates sepsis-induced injury by inhibiting pyroptosis and apoptosis: In vivo and in vitro experiments. Aging (Albany NY). 11:1226–1239. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 24:1012152019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Zhao N, Shi G and Wang H: Geniposide ameliorated sepsis-induced acute kidney injury by activating PPARγ. Aging (Albany NY). 12:22744–22758. 2020.PubMed/NCBI | |
|
Wong WT, Li LH, Rao YK, Yang SP, Cheng SM, Lin WY, Cheng CC, Chen A and Hua KF: Repositioning of the β-blocker carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Front Immunol. 9:19202018. View Article : Google Scholar : PubMed/NCBI | |
|
Tong R, Jia T, Shi R and Yan F: Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett. 25:62020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Wang B, Lai J, Braunstein Z, He M, Ruan G, Yin Z, Wang J, Cianflone K, Ning Q, et al: Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol. 9:20152018. View Article : Google Scholar : PubMed/NCBI | |
|
Dev S and Babitt JL: Overview of iron metabolism in health and disease. Hemodial Int. 21 (Suppl 1):S6–S20. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Drakesmith H and Prentice AM: Hepcidin and the iron-infection axis. Science. 338:768–772. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S and Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432:917–921. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sheldon JR, Laakso HA and Heinrichs DE: Iron acquisition strategies of bacterial pathogens. Virulence Mech Bact Pathog. 4:43–85. 2016. View Article : Google Scholar | |
|
Liu Q, Wu J, Zhang X, Wu X, Zhao Y and Ren J: Iron homeostasis and disorders revisited in the sepsis. Free Radic Biol Med. 165:1–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ganz T: Iron in innate immunity: Starve the invaders. Curr Opin Immunol. 21:63–67. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hentze MW, Muckenthaler MU and Andrews NC: Balancing acts: Molecular control of mammalian iron metabolism. Cell. 117:285–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, et al: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 14:507–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lei P, Bai T and Sun Y: Mechanisms of ferroptosis and relations with regulated cell death: A review. Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Zhang Q, Sun X, Zeh HJ III, Lotze MT, Kang R and Tang D: HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77:2064–2077. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan H, Li X, Zhang X, Kang R and Tang D: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 478:838–844. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Guo P, Xie X, Wang Y and Chen G: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 21:648–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Park SJ, Cho SS, Kim KM, Yang JH, Kim JH, Jeong EH, Yang JW, Han CY, Ku SK, Cho IJ and Ki SH: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 379:1146652019. View Article : Google Scholar : PubMed/NCBI | |
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bogdan AR, Miyazawa M, Hashimoto K and Tsuji Y: Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem Sci. 41:274–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Santo A, Jia Z and Li YR: GPx4 in bacterial infection and polymicrobial sepsis: Involvement of ferroptosis and pyroptosis. React Oxyg Species (Apex). 7:154–160. 2019.PubMed/NCBI | |
|
Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, et al: Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun. 12:22442021. View Article : Google Scholar : PubMed/NCBI | |
|
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gao G and Chang YZ: Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol. 5:192014. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 127:486–501. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zeng L, Yang Y, Chen C, Wang D and Wang H: Acyl-CoA thioesterase 1 prevents cardiomyocytes from doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis. 11:7562020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Sun L, Wu W, Wu J, Sun Z and Ren Z: USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-P53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol. 11:5513182020. View Article : Google Scholar : PubMed/NCBI | |
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L and Rodrigo R: Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel). 10:6672021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Ma H, Li J, Meng C, Zou J, Wang H, Liu K, Liu M, Xiao X, Zhang H and Wang K: HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol. 150:65–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y and Zhang Z: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 22:175–184. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Antonioli M, Di Rienzo M, Piacentini M and Fimia GM: Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 42:28–41. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kågedal K, Cedazo-Minguez A and Marcusson J: Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy. 7:1528–1545. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Levine B, Mizushima N and Virgin HW: Autophagy in immunity and inflammation. Nature. 469:323–335. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Anand SK, Sharma A, Singh N and Kakkar P: Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst). 86:1027482020. View Article : Google Scholar : PubMed/NCBI | |
|
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Gao M, Wang W, Lang Y, Tong Z, Wang K, Zhang H, Chen G, Liu M, Yao Y and Xiao X: Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy. Int J Mol Sci. 16:2559–2573. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chung MT, Lee YM, Shen HH, Cheng PY, Huang YC, Lin YJ, Huang YY and Lam KK: Activation of autophagy is involved in the protective effect of 17β-oestradiol on endotoxaemia-induced multiple organ dysfunction in ovariectomized rats. J Cell Mol Med. 21:3705–3717. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jia J, Gong X, Zhao Y, Yang Z, Ji K, Luan T, Zang B and Li G: Autophagy enhancing contributes to the organ protective effect of alpha-lipoic acid in septic rats. Front Immunol. 10:14912019. View Article : Google Scholar : PubMed/NCBI | |
|
Lu LH, Chao CH and Yeh TM: Inhibition of autophagy protects against sepsis by concurrently attenuating the cytokine storm and vascular leakage. J Infect. 78:178–186. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cui SN, Chen ZY, Yang XB, Chen L, Yang YY, Pan SW, Wang YX, Xu JQ, Zhou T, Xiao HR, et al: Trichostatin A modulates the macrophage phenotype by enhancing autophagy to reduce inflammation during polymicrobial sepsis. Int Immunopharmacol. 77:1059732019. View Article : Google Scholar : PubMed/NCBI | |
|
Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L, Sakamoto A, Ito C, Toshimori K and Oda S: Suppression of t cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit Care Med. 45:e77–e85. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Patoli D, Mignotte F, Deckert V, Dusuel A, Dumont A, Rieu A, Jalil A, Van Dongen K, Bourgeois T, Gautier T, et al: Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. J Clin Invest. 130:5858–5874. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong G, Si C, Zhang Q, Yan F, Li C, Zhang H, Ma Q, Dai J, Li Z, Shi H, et al: Autophagy regulates accumulation and functional activity of granulocytic myeloid-derived suppressor cells via STAT3 signaling in endotoxin shock. Biochim Biophys Acta Mol Basis Dis. 1863:2796–2807. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Batra S and Jeyaseelan S: Deletion of NLRP3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J Immunol. 198:1253–1262. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Huang M, Dong N and Yao YM: Effect of interleukin-36β on activating autophagy of CD4+CD25+ regulatory T cells and its immune regulation in sepsis. J Infect Dis. 222:1517–1530. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Park SY, Shrestha S, Youn YJ, Kim JK, Kim SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, et al: Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med. 196:577–589. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Napolitano LM: Sepsis 2018: Definitions and guideline changes. Surg Infect (Larchmt). 19:117–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang P and Mizushima N: Autophagy and human diseases. Cell Res. 24:69–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lemasters JJ: Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3–5. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Carchman EH, Whelan S, Loughran P, Mollen K, Stratamirovic S, Shiva S, Rosengart MR and Zuckerbraun BS: Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J. 27:4703–4711. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kubli DA, Quinsay MN, Huang C, Lee Y and Gustafsson AB: Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 295:H2025–H2031. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pohl C and Dikic I: Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 366:818–822. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Wang Y, Zheng D, Wei M, Xu H and Peng T: Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res. 97:77–87. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Zhou XX, Li JZ, Qiang HF, Wang Y and Li G: Pretreatment of cardiac progenitor cells with bradykinin attenuates H2O2-induced cell apoptosis and improves cardiac function in rats by regulating autophagy. Stem Cell Res Ther. 12:4372021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang YJ, Sun SJ, Cao WX, Lan XT, Ni M, Fu H, Li DJ, Wang P and Shen FM: Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR. Biochim Biophys Acta Mol Basis Dis. 1867:1659802021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Lam GY and Brumell JH: Autophagy signalling through reactive oxygen species. Antioxid Redox Signal. 14:2215–2231. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi W, Watanabe E, Fujimura L, Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S and Hatano M: Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit Care. 17:R1602013. View Article : Google Scholar : PubMed/NCBI | |
|
Yen YT, Yang HR, Lo HC, Hsieh YC, Tsai SC, Hong CW and Hsieh CH: Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery. 153:689–698. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, et al: Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 138:2247–2262. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu JJ, Li Y, Yang MS, Chen R and Cen CQ: SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis. Arch Biochem Biophys. 695:1086112020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Yang X, Song Y, Sun X, Li W, Zhang L, Hu X, Wang H, Zhao N, Zhuang R, et al: Astragaloside IV-targeting miRNA-1 attenuates lipopolysaccharide-induced cardiac dysfunction in rats through inhibition of apoptosis and autophagy. Life Sci. 275:1194142021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu B, Song H, Fan M, You F, Zhang L, Luo J, Li J, Wang L, Li C and Yuan M: Luteolin attenuates sepsis-induced myocardial injury by enhancing autophagy in mice. Int J Mol Med. 45:1477–1487. 2020.PubMed/NCBI | |
|
Han W, Wang H, Su L, Long Y, Cui N and Liu D: Inhibition of the mTOR pathway exerts cardioprotective effects partly through autophagy in CLP rats. Mediators Inflamm. 2018:47982092018. View Article : Google Scholar : PubMed/NCBI | |
|
Sang Z, Zhang P, Wei Y and Dong S: miR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway. Biomed Res Int. 2020:14090382020. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh CH, Pai PY, Hsueh HW, Yuan SS and Hsieh YC: Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yu T, Liu D, Gao M, Yang P, Zhang M, Song F, Zhang X and Liu Y: Dexmedetomidine prevents septic myocardial dysfunction in rats via activation of α7nAChR and PI3K/Akt-mediated autophagy. Biomed Pharmacother. 120:1092312019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang E, Zhao X, Zhang L, Li N, Yan J, Tu K, Yan R, Hu J, Zhang M, Sun D and Hou L: Minocycline promotes cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy to prevent sepsis-induced cardiac dysfunction by Akt/mTOR signaling. Apoptosis. 24:369–381. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan X, Chen G, Guo D, Xu L and Gu Y: Polydatin alleviates septic myocardial injury by promoting SIRT6-mediated autophagy. Inflammation. 43:785–795. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Chen X, Shan C, Wang Y, Li P and Shao K: Autophagy in cardiovascular diseases: Role of noncoding RNAs. Mol Ther Nucleic Acids. 23:101–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q and Lu Y: Receptor interacting protein kinases 1/3: The potential therapeutic target for cardiovascular inflammatory diseases. Front Pharmacol. 12:7623342021. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh YC, Athar M and Chaudry IH: When apoptosis meets autophagy: Deciding cell fate after trauma and sepsis. Trends Mol Med. 15:129–138. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida K, Yamaguchi O and Otsu K: Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 103:343–351. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al: Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ. 22:58–73. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Speir M and Lawlor KE: RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol. 109:114–124. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kunchithapautham K and Rohrer B: Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy. 3:433–441. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Humphries F, Yang S, Wang B and Moynagh PN: RIP kinases: Key decision makers in cell death and innate immunity. Cell Death Differ. 22:225–236. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Feoktistova M, Makarov R, Yazdi AS and Panayotova-Dimitrova D: RIPK1 and TRADD regulate TNF-induced signaling and ripoptosome formation. Int J Mol Sci. 22:124592021. View Article : Google Scholar : PubMed/NCBI | |
|
Ofengeim D and Yuan J: Regulation of rip1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 14:727–736. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112–119. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu ZY, Cheng MH, Yu CY, Lin YS, Yeh TM, Chen CL, Chen CC, Wan SW and Chang CP: Dengue nonstructural protein 1 maintains autophagy through retarding caspase-mediated cleavage of beclin-1. Int J Mol Sci. 21:97022020. View Article : Google Scholar : PubMed/NCBI | |
|
Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ and Schlesinger PH: Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7:1166–1173. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Almeida RD, Manadas BJ, Carvalho AP and Duarte CB: Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta. 1704:59–86. 2004.PubMed/NCBI | |
|
Fefelova N, Wongjaikam S, Siri-Angkul N, Gwathmey J, Chattipakorn N, Chattipakorn S and Xie LH: Abstract 15737: Deficiency of mitochondrial calcium uniporter protects mouse hearts from iron overload by attenuating ferroptosis. Circulation. 142 (Suppl 3):A157372020. View Article : Google Scholar | |
|
Yin Z, Ding G, Chen X, Qin X, Xu H, Zeng B, Ren J, Zheng Q and Wang S: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism. 113:1543972020. View Article : Google Scholar : PubMed/NCBI | |
|
Kang R, Zhu S, Zeh HJ, Klionsky DJ and Tang D: BECN1 is a new driver of ferroptosis. Autophagy. 14:2173–2175. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shao W, Yeretssian G, Doiron K, Hussain SN and Saleh M: The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 282:36321–36329. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI | |
|
Mandal P, Feng Y, Lyons JD, Berger SB, Otani S, Delaney A, Tharp GK, Maner-Smith K, Burd EM, Schaeffer M, et al: Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity. 49:42–55.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Russo AJ and Rathinam VAK: Lipid peroxidation adds fuel to pyr(optosis). Cell Host Microbe. 24:8–9. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bruni A, Bornstein S, Linkermann A and Shapiro AMJ: Regulated cell death seen through the lens of islet transplantation. Cell Transplant. 27:890–901. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Chen C, Chen Z, Liu L, Jiang J, Wu Z, Zhao M and Chen Y: NLRP3: A novel mediator in cardiovascular disease. J Immunol Res. 2018:57021032018. View Article : Google Scholar : PubMed/NCBI |