Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2022 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2

  • Authors:
    • Feng Zheng
    • Fucai Zhang
    • Furong Wang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China, Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
    Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 292
    |
    Published online on: July 29, 2022
       https://doi.org/10.3892/mmr.2022.12808
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis (OP) is a bone metabolic disease, in which low bone mass and the microarchitectural deterioration of bone tissue contribute to the fragility of bones and increase the risk of fracture. The aim of the present study was to determine the role of microRNA (miR)‑98‑5p in high glucose (HG)‑induced preosteoblasts. HG was used to induce preosteoblasts treated in a differentiation medium to establish an in vitro OP model. Next, miR‑98‑5p expression was determined using reverse transcription‑quantitative PCR. Following the transfection of an miR‑98‑5p inhibitor into HG‑treated osteoblasts, cell viability was assessed using a Cell Counting Kit‑8 assay, while alkaline phosphatase (ALP) activity, differentiation ability and the expression of differentiation‑regulated genes osteocalcin and osteopontin were measured using the corresponding ALP, Alizarin red staining, reverse transcription‑quantitative PCR and western blotting assays. The association between miR‑98‑5p and the PI3K/AKT/GSK3β signaling pathway was determined using western blotting. Next, the binding relationship between miR‑98‑5p and bone morphogenetic protein 2 (BMP2) was predicted and verified, and the role of BMP2 in the regulation of the PI3K/AKT/GSK3β signaling pathway was explored using western blotting. The results revealed that miR‑98‑5p expression was upregulated in HG‑induced osteoblasts, and the inhibition of miR‑98‑5p resulted in enhanced cell viability, alkaline phosphatase activity and differentiation in osteoblasts following HG induction. It was also discovered that miR‑98‑5p inhibition activated PI3K/AKT/GSK3β signaling, while knockdown of BMP2, which binds to miR‑98‑5p, enhanced the activation of this signaling pathway and the differentiation ability of osteoblasts. In conclusion, the findings of the present study suggested that the inhibition of miR‑98‑5p expression may activate PI3K/AKT/GSK3β signaling to promote HG‑induced suppression of preosteoblast viability and differentiation by targeting BMP2, which provides a novel insight into future potential molecular markers for OP treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Kerschan-Schindl K: Prevention and rehabilitation of osteoporosis. Wien Med Wochenschr. 166:22–27. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ensrud KE and Crandall CJ: Osteoporosis. Ann Intern Med. 167:ITC17–ITC32. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Christiansen C: Osteoporosis: Diagnosis and management today and tomorrow. Bone. 17 (Suppl 5):513S–516S. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Miller PD: Management of severe osteoporosis. Expert Opin Pharmacother. 17:473–488. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Anthamatten A and Parish A: Clinical update on osteoporosis. J Midwifery Womens Health. 64:265–275. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Lee WC, Guntur AR, Long F and Rosen CJ: Energy metabolism of the osteoblast: Implications for osteoporosis. Endocr Rev. 38:255–266. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Verhaeghe J, Thomsen JS, van Bree R, van Herck E, Bouillon R and Mosekilde L: Effects of exercise and disuse on bone remodeling, bone mass, and biomechanical competence in spontaneously diabetic female rats. Bone. 27:249–256. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Whiting DR, Guariguata L, Weil C and Shaw J: IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 94:311–321. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Ying X, Chen X, Liu H, Nie P, Shui X, Shen Y, Yu K and Cheng S: Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling. Eur J Pharmacol. 765:394–401. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Botolin S and McCabe LR: Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 99:411–424. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM and Srinivasan N: Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 84:93–101. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Mohr AM and Mott JL: Overview of microRNA biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Awasthi R, Rathbone MJ, Hansbro PM, Bebawy M and Dua K: Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug Deliv Transl Res. 8:97–110. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Papaioannou G, Mirzamohammadi F and Kobayashi T: MicroRNAs involved in bone formation. Cell Mol Life Sci. 71:4747–4761. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Pan BL, Tong ZW, Li SD, Wu L, Liao JL, Yang YX, Li HH, Dai YJ, Li JE and Pan L: Decreased microRNA-182-5p helps alendronate promote osteoblast proliferation and differentiation in osteoporosis via the Rap1/MAPK pathway. Biosci Rep. 38:BSR201806962018. View Article : Google Scholar : PubMed/NCBI

17 

Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, et al: MiR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 287:42084–42092. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM and Mishina Y: Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res. 25:200–210. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Xu R, Zhao M, Yang Y, Huang Z, Shi C, Hou X, Zhao Y, Chen B, Xiao Z, Liu J, et al: MicroRNA-449c-5p inhibits osteogenic differentiation of human VICs through Smad4-mediated pathway. Sci Rep. 7:87402017. View Article : Google Scholar : PubMed/NCBI

20 

Liu Q, Guo Y, Wang Y, Zou X and Yan Z: MiR-98-5p promotes osteoblast differentiation in MC3T3-E1 cells by targeting CKIP-1. Mol Med Rep. 17:4797–4802. 2018.PubMed/NCBI

21 

Jafari M, Ghadami E, Dadkhah T and Akhavan-Niaki H: PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol. 234:2373–2385. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Xia P and Xu XY: P13K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI

23 

Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the P13K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Sun K, Luo J, Guo J, Yao X, Jing X and Guo F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage. 28:400–409. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Method. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Tong W, Li J, Feng X, Wang C, Xu Y, He C and Xu W: Kaiso regulates osteoblast differentiation and mineralization via the Itga10/P13K/AKT signaling pathway. Int Mol Med. 47:412021. View Article : Google Scholar : PubMed/NCBI

27 

Hou QC, Wang JW, Yuan G, Wang YP, Xu KQ, Zhang L, Xu XF, Mao WJ and Liu Y: AGEs promote calcification of HASMCs by mediating P13k/AKT-GSK3β signaling. Front Biosci (Landmark Ed). 26:125–134. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Tang P, Xiong Q, Ge W and Zhang L: The role of microRNAs in osteoclasts and osteoporosis. RNA Biol. 11:1355–1363. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Liu B, Li JY and Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform. 15:1–19. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Gamez B, Rodriguez-Carballo E and Ventura F: MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol. 52:R179–R197. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 8:212–227. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP and Luo XH: A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 119:3666–3677. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH and Lim SK: MiR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res. 27:1669–1679. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Li W, Zhang S, Liu J, Liu Y and Liang Q: Vitamin K2 stimulates MC3T3E1 osteoblast differentiation and mineralization through autophagy induction. Mol Med Rep. 19:3676–3684. 2019.PubMed/NCBI

35 

Janus JM, O'Shaughnessy RFL, Harwood CA and Maffucci T: Phosphoinositide 3-Kinase-dependent signalling pathways in cutaneous squamous cell carcinomas. Cancers (Basel). 9:862017. View Article : Google Scholar : PubMed/NCBI

36 

Shen ZH, Hu XQ, Hu MJ, Pan XK, Lu HG, Chen B, Wu B and Chen G: Activation of AKT signaling via small molecule natural compound prevents against osteoblast apoptosis and osteonecrosis of the femoral head. Am J Transl Res. 12:7211–7222. 2020.PubMed/NCBI

37 

Ersahin T, Tuncbag N and Cetin-Atalay R: The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 11:1946–1954. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Zhao R, Tao L, Qiu S, Shen L, Tian Y, Gong Z, Tao ZB and Zhu Y: Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways. Life Sci. 257:1180442020. View Article : Google Scholar : PubMed/NCBI

39 

Ren Q, Zhou J, Wang MG and Chen KM: Pulsed electromagnetic fields stimulating osteogenic differentiation and maturation involves primary cilia-PI3K/AKT pathway. Beijing Da Xue Xue Bao Yi Xue Ban. 51:245–251. 2019.(In Chinese). PubMed/NCBI

40 

Price LC, Shao D, Meng C, Perros F, Garfield BE, Zhu J, Montani D, Dorfmuller P, Humbert M, Adcock IM and Wort SJ: Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respir Res. 16:1142015. View Article : Google Scholar : PubMed/NCBI

41 

Neis VB, Moretti M, Rosa PB, Dalsenter YO, Werle I, Platt N, Kaufmann FN, Rosado AF, Besen MH and Rodrigues ALS: The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav. 198:1730202020. View Article : Google Scholar : PubMed/NCBI

42 

Donnelly H, Smith CA, Sweeten PE, Gadegaard N, Meek RD, D'Este M, Mata A, Eglin D and Dalby MJ: Bone and cartilage differentiation of a single stem cell population driven by material interface. J Tissue Eng. May 15–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

43 

Hart CG and Karimi-Abdolrezaee S: Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol. 334:1134552020. View Article : Google Scholar : PubMed/NCBI

44 

Lauzon MA, Drevelle O, Daviau A and Faucheux N: Effects of BMP-9 and BMP-2 on the PI3K/Akt pathway in MC3T3-E1 preosteoblasts. Tissue Eng Part A. 22:1075–1085. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zheng F, Zhang F and Wang F: Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2. Mol Med Rep 26: 292, 2022.
APA
Zheng, F., Zhang, F., & Wang, F. (2022). Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2. Molecular Medicine Reports, 26, 292. https://doi.org/10.3892/mmr.2022.12808
MLA
Zheng, F., Zhang, F., Wang, F."Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2". Molecular Medicine Reports 26.3 (2022): 292.
Chicago
Zheng, F., Zhang, F., Wang, F."Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2". Molecular Medicine Reports 26, no. 3 (2022): 292. https://doi.org/10.3892/mmr.2022.12808
Copy and paste a formatted citation
x
Spandidos Publications style
Zheng F, Zhang F and Wang F: Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2. Mol Med Rep 26: 292, 2022.
APA
Zheng, F., Zhang, F., & Wang, F. (2022). Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2. Molecular Medicine Reports, 26, 292. https://doi.org/10.3892/mmr.2022.12808
MLA
Zheng, F., Zhang, F., Wang, F."Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2". Molecular Medicine Reports 26.3 (2022): 292.
Chicago
Zheng, F., Zhang, F., Wang, F."Inhibition of miR‑98‑5p promotes high glucose‑induced suppression of preosteoblast proliferation and differentiation via the activation of the PI3K/AKT/GSK3β signaling pathway by targeting BMP2". Molecular Medicine Reports 26, no. 3 (2022): 292. https://doi.org/10.3892/mmr.2022.12808
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team