|
1
|
Papafilippou L, Claxton A, Dark P,
Kostarelos K and Hadjidemetriou M: Nanotools for sepsis diagnosis
and treatment. Adv Healthc Mater. 10:e20013782021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rudd KE, Johnson SC, Agesa KM, Shackelford
KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer
S, et al: Global, regional, and national sepsis incidence and
mortality, 1990–2017: Analysis for the global burden of disease
study. Lancet. 395:200–211. 2020. View Article : Google Scholar
|
|
3
|
Cohen J, Vincent JL, Adhikari NK, Machado
FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S,
et al: Sepsis: A roadmap for future research. Lancet Infect Dis.
15:581–614. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Maslove DM and Wong HR: Gene expression
profiling in sepsis: Timing, tissue, and translational
considerations. Trends Mol Med. 20:204–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Levy MM, Fink MP, Marshall JC, Abraham E,
Angus D, Cook D, Cohen J, Opal SM, Vincent JL and Ramsay G;
International Sepsis Definitions Conference, : 2001
SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions
conference. Intensive Care Med. 29:530–538. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
American College of Chest
Physicians/Society of Critical Care Medicine Consensus Conference,
. Definitions for sepsis and organ failure and guidelines for the
use of innovative therapies in sepsis. Crit Care Med. 20:864–874.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang R, Wang JM and Gao Y: Advances of
microfluidic technologies applied in diagnosis and treatment of
sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 31:789–792. 2019.(In
Chinese). PubMed/NCBI
|
|
8
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar
|
|
9
|
Tsitsiou E and Lindsay MA: microRNAs and
the immune response. Curr Opin Pharmacol. 9:514–520. 2009.
View Article : Google Scholar
|
|
10
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nana-Sinkam SP and Croce CM: Non-coding
RNAs in cancer initiation and progression and as novel biomarkers.
Mol Oncol. 5:483–491. 2011. View Article : Google Scholar
|
|
12
|
Liu YY, Jiao WY, Li T and Bao YY:
MiRNA-409-5p dysregulation promotes imatinib resistance and disease
progression in children with chronic myeloid leukemia. Eur Rev Med
Pharmacol Sci. 23:8468–8475. 2019.
|
|
13
|
Slattery ML, Herrick JS, Pellatt DF,
Stevens JR, Mullany LE, Wolff E, Hoffman MD, Samowitz WS and Wolff
RK: MicroRNA profiles in colorectal carcinomas, adenomas and normal
colonic mucosa: Variations in miRNA expression and disease
progression. Carcinogenesis. 37:245–261. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Valsecchi V, Boido M, De Amicis E, Piras A
and Vercelli A: Expression of muscle-specific MiRNA 206 in the
progression of disease in a murine SMA model. PLoS One.
10:e01285602015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Han Y, Dai QC, Shen HL and Zhang XW:
Diagnostic value of elevated serum miRNA-143 levels in sepsis. J
Int Med Res. 44:875–881. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang H, Zhang P, Chen W, Feng D, Jia Y and
Xie L: Serum microRNA signatures identified by Solexa sequencing
predict sepsis patients' mortality: A prospective observational
study. PLoS One. 7:e388852012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Juul SE, Beyer RP, Bammler TK, McPherson
RJ, Wilkerson J and Farin FM: Microarray analysis of high-dose
recombinant erythropoietin treatment of unilateral brain injury in
neonatal mouse hippocampus. Pediatr Res. 65:485–492. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J R Statist Soc B. 57:289–300. 1995.
|
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lassen KG, McKenzie CI, Mari M, Murano T,
Begun J, Baxt LA, Goel G, Villablanca EJ, Kuo SY, Huang H, et al:
Genetic coding variant in GPR65 alters lysosomal pH and links
lysosomal dysfunction with colitis risk. Immunity. 44:1392–1405.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cochet F and Peri F: The role of
carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4
(TLR4) signalling. Int J Mol Sci. 18:23182017. View Article : Google Scholar
|
|
23
|
Plociennikowska A, Hromada-Judycka A,
Borzecka K and Kwiatkowska K: Co-operation of TLR4 and raft
proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life
Sci. 72:557–581. 2015. View Article : Google Scholar
|
|
24
|
Wang DW, Yin YM and Yao YM: Vagal
modulation of the inflammatory response in sepsis. Int Rev Immunol.
35:415–433. 2016. View Article : Google Scholar
|
|
25
|
Farah QY, Ali HA and Neihaya HZ: Using of
TLR2 and TLR4 as biomarker for detection the severity of sepsis.
Int J Psychosoc. 24:4431–4442. 2020.
|
|
26
|
Stan RC, Soriano FG and de Camargo MM: A
mathematical model relates intracellular TLR4 oscillations to
sepsis progression. bioRxiv. 2018.https://doi.org/10.1101/164137
|
|
27
|
Mogi C, Tobo M, Tomura H, Murata N, He XD,
Sato K, Kimura T, Ishizuka T, Sasaki T, Sato T, et al: Involvement
of proton-sensing TDAG8 in extracellular acidification-induced
inhibition of proinflammatory cytokine production in peritoneal
macrophages. J Immunol. 182:3243–3251. 2009. View Article : Google Scholar
|
|
28
|
Miron J, Picard C, Frappier J, Dea D,
Théroux L and Poirier J: TLR4 gene expression and pro-inflammatory
cytokines in Alzheimer's disease and in response to hippocampal
deafferentation in rodents. J Alzheimers Dis. 63:1547–1556. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Eidson LN, Inoue K, Young LJ, Tansey MG
and Murphy AZ: Toll-like receptor 4 mediates morphine-induced
neuroinflammation and tolerance via soluble tumor necrosis factor
signaling. Neuropsychopharmacology. 42:661–670. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ahmad S, Ahmed MM, Hasan PMZ, Sharma A,
Bilgrami AL, Manda K, Ishrat R and Syed MA: Identification and
validation of potential miRNAs, as biomarkers for sepsis and
associated lung injury: A network-based approach. Genes (Basel).
11:13272020. View Article : Google Scholar
|
|
31
|
Szilágyi B, Fejes Z, Pócsi M, Kappelmayer
J and Nagy B Jr: Role of sepsis modulated circulating microRNAs.
EJIFCC. 30:128–145. 2019.
|
|
32
|
Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen
J, Shen B and Wang J: Identification of microRNA as sepsis
biomarker based on miRNAs regulatory network analysis. Biomed Res
Int. 2014:5943502014.
|
|
33
|
Rahmel T, Schäfer ST, Frey UH, Adamzik M
and Peters J: Increased circulating microRNA-122 is a biomarker for
discrimination and risk stratification in patients defined by
sepsis-3 criteria. PLoS One. 13:e01976372018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang M, Wang C, Wu J, Ha X, Deng Y, Zhang
X, Wang J, Chen K, Feng J, Zhu J, et al: The effect and mechanism
of KLF7 in the TLR4/NF-κB/IL-6 inflammatory signal pathway of
adipocytes. Mediators Inflamm. 2018:17564942018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu GJ, Lin YW, Chuang CY, Tsai HC and Chen
RM: Liver nitrosation and inflammation in septic rats were
suppressed by propofol via downregulating TLR4/NF-κB-mediated iNOS
and IL-6 gene expressions. Life Sci. 195:25–32. 2018. View Article : Google Scholar
|
|
36
|
Wang X, Jiang X, Deng B, Xiao J, Jin J and
Huang Z: Lipopolysaccharide and palmitic acid synergistically
induced MCP-1 production via MAPK-meditated TLR4 signaling pathway
in RAW264.7 cells. Lipids Health Dis. 18:712019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dai SP, Huang YH, Chang CJ, Huang YF,
Hsieh WS, Tabata Y, Ishii S and Sun WH: TDAG8 involved in
initiating inflammatory hyperalgesia and establishing hyperalgesic
priming in mice. Sci Rep. 7:414152017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tcymbarevich I, Richards SM, Russo G,
Kühn-Georgijevic J, Cosin-Roger J, Baebler K, Lang S, Bengs S,
Atrott K, Bettoni C, et al: Lack of the pH-sensing receptor TDAG8
[GPR65] in macrophages plays a detrimental role in murine models of
inflammatory bowel disease. J Crohns Colitis. 13:245–258. 2019.
View Article : Google Scholar : PubMed/NCBI
|