|
1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tennant DA, Durán RV and Gottlieb E:
Targeting metabolic transformation for cancer therapy. Nat Rev
Cancer. 10:267–277. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Madhusudhan N, Hu B, Mishra P,
Calva-Moreno JF, Patel K, Boriack R, Ready JM and Nijhawan D:
Target discovery of selective non-small-cell lung cancer toxins
reveals inhibitors of mitochondrial complex I. ACS Chem Biol.
15:158–170. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang M, Han J, Xing H, Zhang H, Li Z,
Liang L, Li C, Dai S, Wu M, Shen F and Yang T: Dysregulated fatty
acid metabolism in hepatocellular carcinoma. Hepat Oncol.
3:241–251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mancini R, Noto A, Pisanu ME, De Vitis C,
Maugeri-Saccà M and Ciliberto G: Metabolic features of cancer stem
cells: The emerging role of lipid metabolism. Oncogene.
37:2367–2378. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xia C, Fu Z, Battaile KP and Kim JP:
Crystal structure of human mitochondrial trifunctional protein, a
fatty acid β-oxidation metabolon. Proc Natl Acad Sci USA.
116:6069–6074. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liang K, Li N, Wang X, Dai J, Liu P, Wang
C, Chen XW, Gao N and Xiao J: Cryo-EM structure of human
mitochondrial trifunctional protein. Proc Natl Acad Sci USA.
115:7039–7044. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
El-Fakhri M and Middleton B: The existence
of an inner-membrane-bound, long acyl-chain-specific
3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim
Biophys Acta. 713:270–279. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
L IJ, Ruiter JP, Hoovers JM, Jakobs ME and
Wanders RJ: Common missense mutation G1528C in long-chain
3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and
expression of the mutant protein, mutation analysis on genomic DNA
and chromosomal localization of the mitochondrial trifunctional
protein alpha subunit gene. J Clin Invest. 98:1028–1033. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ushikubo S, Aoyama T, Kamijo T, Wanders
RJ, Rinaldo P, Vockley J and Hashimoto T: Molecular
characterization of mitochondrial trifunctional protein deficiency:
Formation of the enzyme complex is important for stabilization of
both alpha- and beta-subunits. Am J Hum Genet. 58:979–988.
1996.PubMed/NCBI
|
|
11
|
Schwab KO, Ensenauer R, Matern D, Uyanik
G, Schnieders B, Wanders RA and Lehnert W: Complete deficiency of
mitochondrial trifunctional protein due to a novel mutation within
the beta-subunit of the mitochondrial trifunctional protein gene
leads to failure of long-chain fatty acid beta-oxidation with fatal
outcome. Eur J Pediatr. 162:90–95. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yang J, Yuan D, Tan X, Zeng Y, Tang N,
Chen D, Tan J, Cai R, Huang J and Yan T: Analysis of a family with
mitochondrial trifunctional protein deficiency caused by HADHA gene
mutations. Mol Med Rep. 25:472022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Taïb B, Aboussalah AM, Moniruzzaman M,
Chen S, Haughey NJ, Kim SF and Ahima RS: Lipid accumulation and
oxidation in glioblastoma multiforme. Sci Rep. 9:195932019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan
Y, Hamsafar Y, Evans AC, Huang J, Zhou W, et al: Fatty acid
oxidation fuels glioblastoma radioresistance with CD47-mediated
immune evasion. Nat Commun. 13:15112022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yang K and Rich JN: A delicate initiation:
Lipolysis of lipid droplets fuels glioblastoma. Mol Cell.
81:2686–2687. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang Y, Zhang T, Li C, Guo J, Xu B and Xue
L: Telmisartan attenuates human glioblastoma cells proliferation
and oncogenicity by inducing the lipid oxidation. Asia Pac J Clin
Oncol. 18:217–223. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Marur S and Forastiere AA: Head and neck
squamous cell carcinoma: Update on epidemiology, diagnosis, and
treatment. Mayo Clin Proc. 91:386–396. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shetty SR, Babu S, Kumari S, Shetty P,
Hegde S and Castelino R: Status of salivary lipid peroxidation in
oral cancer and precancer. Indian J Med Paediatr Oncol. 35:156–158.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Malik UU, Siddiqui IA, Hashim Z and Zarina
S: Measurement of serum paraoxonase activity and MDA concentrations
in patients suffering with oral squamous cell carcinoma. Clin Chim
Acta. 430:38–42. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kaur J, Politis C and Jacobs R: Salivary
8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin
E in oral pre-cancer and cancer: Diagnostic value and free radical
mechanism of action. Clin Oral Investig. 20:315–319. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Huang ZD, Yao YY, Chen TY, Zhao YF, Zhang
C and Niu YM: Construction of prognostic risk prediction model of
oral squamous cell carcinoma based on nine survival-associated
metabolic genes. Front Physiol. 12:6097702021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zemanova M, Vecka M, Petruželka L,
Staňková B, Žák A and Zeman M: Plasma phosphatidylcholines fatty
acids in men with squamous cell esophageal cancer:
Chemoradiotherapy improves abnormal profile. Med Sci Monit.
22:4092–4099. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zuijdgeest-van Leeuwen SD, van der Heijden
MS, Rietveld T, van den Berg JW, Tilanus HW, Burgers JA, Wilson JH
and Dagnelie PC: Fatty acid composition of plasma lipids in
patients with pancreatic, lung and oesophageal cancer in comparison
with healthy subjects. Clin Nutr. 21:225–230. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang AH, Liu Y, Wang B, He YX, Fang YX and
Yan YP: Epidemiological studies of esophageal cancer in the era of
genome-wide association studies. World J Gastrointest Pathophysiol.
5:335–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Abbas G and Krasna M: Overview of
esophageal cancer. Ann Cardiothorac Surg. 6:131–136. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang F, Zhang L, Xu Y, Xie Y and Li S:
Comprehensive analysis and identification of key driver genes for
distinguishing between esophageal adenocarcinoma and squamous cell
carcinoma. Front Cell Dev Biol. 9:6761562021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen D, Zhang Y, Wang W, Chen H, Ling T,
Yang R, Wang Y, Duan C, Liu Y, Guo X, et al: Identification and
characterization of robust hepatocellular carcinoma prognostic
subtypes based on an integrative metabolite-protein interaction
network. Adv Sci (Weinh). 8:e21003112021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tanaka M, Masaki Y, Tanaka K, Miyazaki M,
Kato M, Sugimoto R, Nakamura K, Aishima S, Shirabe K, Nakamuta M,
et al: Reduction of fatty acid oxidation and responses to hypoxia
correlate with the progression of de-differentiation in HCC. Mol
Med Rep. 7:365–370. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Khare T, Khare S, Angdisen JJ, Zhang Q,
Stuckel A, Mooney BP, Ridenhour SE, Gitan RS, Hammoud GM and Ibdah
JA: Defects in long-chain 3-hydroxy acyl-CoA dehydrogenase lead to
hepatocellular carcinoma: A novel etiology of hepatocellular
carcinoma. Int J Cancer. 147:1461–1473. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu Y, Lu LL, Wen D, Liu DL, Dong LL, Gao
DM, Bian XY, Zhou J, Fan J and Wu WZ: MiR-612 regulates invadopodia
of hepatocellular carcinoma by HADHA-mediated lipid reprogramming.
J Hematol Oncol. 13:122020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shi Q, Liu Y, Lu M, Lei QY, Chen Z, Wang L
and He X: A pathway-guided strategy identifies a metabolic
signature for prognosis prediction and precision therapy for
hepatocellular carcinoma. Comput Biol Med. 144:1053762022.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hao X, Ren Y, Feng M, Wang Q and Wang Y:
Metabolic reprogramming due to hypoxia in pancreatic cancer:
Implications for tumor formation, immunity, and more. Biomed
Pharmacother. 141:1117982021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Di Carlo C, Brandi J and Cecconi D:
Pancreatic cancer stem cells: Perspectives on potential therapeutic
approaches of pancreatic ductal adenocarcinoma. World J Stem Cells.
10:172–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Di Carlo C, Sousa BC, Manfredi M, Brandi
J, Dalla Pozza E, Marengo E, Palmieri M, Dando I, Wakelam MJO,
Lopez-Clavijo AF and Cecconi D: Integrated lipidomics and
proteomics reveal cardiolipin alterations, upregulation of HADHA
and long chain fatty acids in pancreatic cancer stem cells. Sci
Rep. 11:132972021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen L, Vasoya RP, Toke NH, Parthasarathy
A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X and Verzi MP:
HNF4 regulates fatty acid oxidation and is required for renewal of
intestinal stem cells in mice. Gastroenterology. 158:985–999.e9.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Voloshanenko O, Schwartz U, Kranz D,
Rauscher B, Linnebacher M, Augustin I and Boutros M:
β-catenin-independent regulation of Wnt target genes by RoR2 and
ATF2/ATF4 in colon cancer cells. Sci Rep. 8:31782018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou Y, Li X, Guan A, Zhou H, Zhu Y, Wang
R and Li R: EPHX2 inhibits colon cancer progression by promoting
fatty acid degradation. Front Oncol. 12:8707212022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nassar D and Blanpain C: Cancer stem
cells: Basic concepts and therapeutic implications. Annu Rev
Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Du Z, Zhang X, Gao W and Yang J:
Differentially expressed genes PCCA, ECHS1, and HADH are potential
prognostic biomarkers for gastric cancer. Sci Prog.
104:3685042110113442021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moehler M, Baltin CT, Ebert M, Fischbach
W, Gockel I, Grenacher L, Hölscher AH, Lordick F, Malfertheiner P,
Messmann H, et al: International comparison of the German
evidence-based S3-guidelines on the diagnosis and multimodal
treatment of early and locally advanced gastric cancer, including
adenocarcinoma of the lower esophagus. Gastric Cancer. 18:550–563.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shen C, Song YH, Xie Y, Wang X, Wang Y,
Wang C, Liu S, Xue SL, Li Y, Liu B, et al: Downregulation of HADH
promotes gastric cancer progression via Akt signaling pathway.
Oncotarget. 8:76279–76289. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gao T, Li M, Mu G, Hou T, Zhu WG and Yang
Y: PKCζ phosphorylates SIRT6 to mediate fatty acid β-oxidation in
colon cancer cells. Neoplasia. 21:61–73. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Croner RS, Sevim M, Metodiev MV, Jo P,
Ghadimi M, Schellerer V, Brunner M, Geppert C, Rau T, Stürzl M, et
al: Identification of predictive markers for response to
neoadjuvant chemoradiation in rectal carcinomas by proteomic
isotope coded protein label (ICPL) analysis. Int J Mol Sci.
17:2092016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhu Y, Lu H, Zhang D, Li M, Sun X, Wan L,
Yu D, Tian Y, Jin H, Lin A, et al: Integrated analyses of
multi-omics reveal global patterns of methylation and
hydroxymethylation and screen the tumor suppressive roles of HADHB
in colorectal cancer. Clin Epigenetics. 10:302018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Peng WF, Bai F, Shao K, Shen LS, Li HH and
Huang S: The key genes underlying pathophysiology association
between the type 2-diabetic and colorectal cancer. J Cell Physiol.
233:8551–8557. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hu TT, Yang JW, Yan Y, Chen YY, Xue HB,
Xiang YQ and Ye LC: Detection of genes responsible for cetuximab
sensitization in colorectal cancer cells using CRISPR-Cas9. Biosci
Rep. 40:BSR202011252020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ren J, Feng J, Song W, Wang C, Ge Y and Fu
T: Development and validation of a metabolic gene signature for
predicting overall survival in patients with colon cancer. Clin Exp
Med. 20:535–544. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Krause JR: WHO classification of tumours
of haematopoietic and lymphoid tissues: An overview. Crit Values.
2:30–32. 2009. View Article : Google Scholar
|
|
49
|
Yamamoto K, Abe S, Honda A, Hashimoto J,
Aizawa Y, Ishibashi S, Takemura T, Hanagata N, Yamamoto M, Miura O,
et al: Fatty acid beta oxidation enzyme HADHA is a novel potential
therapeutic target in malignant lymphoma. Lab Invest. 100:353–362.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sekine Y, Yamamoto K, Kurata M, Honda A,
Onishi I, Kinowaki Y, Kawade G, Watabe S, Nomura S, Fukuda S, et
al: HADHB, a fatty acid beta-oxidation enzyme, is a potential
prognostic predictor in malignant lymphoma. Pathology. 54:286–293.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hensley CT, Faubert B, Yuan Q, Lev-Cohain
N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al:
Metabolic heterogeneity in human lung tumors. Cell. 164:681–694.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Amoedo ND, Sarlak S, Obre E, Esteves P,
Bégueret H, Kieffer Y, Rousseau B, Dupis A, Izotte J, Bellance N,
et al: Targeting the mitochondrial trifunctional protein restrains
tumor growth in oxidative lung carcinomas. J Clin Invest.
131:e1330812021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ginsburg O, Bray F, Coleman MP, Vanderpuye
V, Eniu A, Kotha SR, Sarker M, Huong TT, Allemani C, Dvaladze A, et
al: The global burden of women's cancers: A grand challenge in
global health. Lancet. 389:847–860. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pauwels EK and Kairemo K: Fatty acid
facts, part II: Role in the prevention of carcinogenesis, or, more
fish on the dish? Drug News Perspect. 21:504–510. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhou Z, Zhou J and Du Y: Estrogen receptor
beta interacts and colocalizes with HADHB in mitochondria. Biochem
Biophys Res Commun. 427:305–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhou Z, Zhou J and Du Y: Estrogen receptor
alpha interacts with mitochondrial protein HADHB and affects
beta-oxidation activity. Mol Cell Proteomics. 11:M111.011056. 2012.
View Article : Google Scholar
|
|
57
|
Mamtani M and Kulkarni H: Association of
HADHA expression with the risk of breast cancer: Targeted subset
analysis and meta-analysis of microarray data. BMC Res Notes.
5:252012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ji C, Hu J, Wang X, Zheng W, Deng X, Song
H, Yu Y, Luo Q, Hua K, Zhou X and Fang L: Hsa_circ_0053063 inhibits
breast cancer cell proliferation via
hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY).
13:9627–9645. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Massari F, Ciccarese C, Santoni M,
Brunelli M, Piva F, Modena A, Bimbatti D, Fantinel E, Santini D,
Cheng L, et al: Metabolic alterations in renal cell carcinoma.
Cancer Treat Rev. 41:767–776. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Du W, Zhang L, Brett-Morris A, Aguila B,
Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, et
al: HIF drives lipid deposition and cancer in ccRCC via repression
of fatty acid metabolism. Nat Commun. 8:17692017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu Y, Wang HK, Zhang HL, Yao XD, Zhang
SL, Dai B, Shen YJ, Liu XH, Zhou LP and Ye DW: Visceral obesity and
risk of high grade disease in clinical t1a renal cell carcinoma. J
Urol. 189:447–453. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gebhard RL, Clayman RV, Prigge WF,
Figenshau R, Staley NA, Reesey C and Bear A: Abnormal cholesterol
metabolism in renal clear cell carcinoma. J Lipid Res.
28:1177–1184. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wettersten HI, Hakimi AA, Morin D, Bianchi
C, Johnstone ME, Donohoe DR, Trott JF, Aboud OA, Stirdivant S, Neri
B, et al: Grade-dependent metabolic reprogramming in kidney cancer
revealed by combined proteomics and metabolomics analysis. Cancer
Res. 75:2541–2552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhao Z, Lu J, Han L, Wang X, Man Q and Liu
S: Prognostic significance of two lipid metabolism enzymes, HADHA
and ACAT2, in clear cell renal cell carcinoma. Tumour Biol.
37:8121–8130. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu S, Liu X, Wu F, Zhang X, Zhang H, Gao
D, Bi D, Qu H, Ge J, Xu Y and Zhao Z: HADHA overexpression disrupts
lipid metabolism and inhibits tumor growth in clear cell renal cell
carcinoma. Exp Cell Res. 384:1115582019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao Z, Liu Y, Liu Q, Wu F, Liu X, Qu H,
Yuan Y, Ge J, Xu Y and Wang H: The mRNA expression signature and
prognostic analysis of multiple fatty acid metabolic enzymes in
clear cell renal cell carcinoma. J Cancer. 10:6599–6607. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ramburan A, Chetty R, Hadley GP, Naidoo R
and Govender D: Microsatellite analysis of the DCC gene in
nephroblastomas: Pathologic correlations and prognostic
implications. Mod Pathol. 17:89–95. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wu X, Feng R, Wang X, Guo F and Liu W:
Roles of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme
complex subunit alpha, a lipid metabolism enzyme, in Wilms tumor
patients. J Cancer Res Ther. 17:1281–1285. 2021.PubMed/NCBI
|
|
69
|
Wang X, Du G, Wu Y, Zhang Y, Guo F, Liu W
and Wu R: Association between different levels of lipid
metabolism-related enzymes and fatty acid synthase in Wilms' tumor.
Int J Oncol. 56:568–580. 2020.PubMed/NCBI
|
|
70
|
Aoyama T, Wakui K, Orii KE, Hashimoto T
and Fukushima Y: Fluorescence in situ hybridization mapping of the
alpha and beta subunits (HADHA and HADHB) of human mitochondrial
fatty acid beta-oxidation multienzyme complex to 2p23 and their
evolution. Cytogenet Cell Genet. 79:221–224. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Maeyashiki C, Oshima S, Otsubo K,
Kobayashi M, Nibe Y, Matsuzawa Y, Onizawa M, Nemoto Y, Nagaishi T,
Okamoto R, et al: HADHA, the alpha subunit of the mitochondrial
trifunctional protein, is involved in long-chain fatty acid-induced
autophagy in intestinal epithelial cells. Biochem Biophys Res
Commun. 484:636–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Soliman E, Elhassanny AEM, Malur A, McPeek
M, Bell A, Leffler N, Van Dross R, Jones JL, Malur AG and Thomassen
MJ: Impaired mitochondrial function of alveolar macrophages in
carbon nanotube-induced chronic pulmonary granulomatous disease.
Toxicology. 445:1525982020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jiang H, Chen H, Wan P and Chen N:
Decreased expression of HADH is related to poor prognosis and
immune infiltration in kidney renal clear cell carcinoma. Genomics.
113:3556–3564. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhelev Z, Aoki I, Lazarova D, Vlaykova T,
Higashi T and Bakalova R: A ‘weird’ mitochondrial fatty acid
oxidation as a metabolic ‘secret’ of cancer. Oxid Med Cell Longev.
2022:23395842022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zeng W, Liu P, Pan W, Singh SR and Wei Y:
Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer
Lett. 356:263–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Denko NC: Hypoxia, HIF1 and glucose
metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Milane L, Duan Z and Amiji M: Role of
hypoxia and glycolysis in the development of multi-drug resistance
in human tumor cells and the establishment of an orthotopic
multi-drug resistant tumor model in nude mice using hypoxic
pre-conditioning. Cancer Cell Int. 11:32011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang K, Han ES, Dellinger TH, Lu J, Nam
S, Anderson RA, Yim JH and Wen W: Cinnamon extract reduces VEGF
expression via suppressing HIF-1α gene expression and inhibits
tumor growth in mice. Mol Carcinog. 56:436–446. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yin J, Miyazaki K, Shaner RL, Merrill AH
Jr and Kannagi R: Altered sphingolipid metabolism induced by tumor
hypoxia-new vistas in glycolipid tumor markers. FEBS Lett.
584:1872–1878. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ezzeddini R, Taghikhani M, Salek Farrokhi
A, Somi MH, Samadi N, Esfahani A and Rasaee MJ: Downregulation of
fatty acid oxidation by involvement of HIF-1α and PPARγ in human
gastric adenocarcinoma and related clinical significance. J Physiol
Biochem. 77:249–260. 2021. View Article : Google Scholar : PubMed/NCBI
|