|
1
|
Patel S, Homaei A, El-Seedi HR and Akhtar
N: Cathepsins: Proteases that are vital for survival but can also
be fatal. Biomed Pharmacother. 105:526–532. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cocchiaro P, De Pasquale V, Della Morte R,
Tafuri S, Avallone L, Pizard A, Moles A and Pavone LM: The
multifaceted role of the lysosomal protease cathepsins in kidney
disease. Front Cell Dev Biol. 5:1142017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brix K, Dunkhorst A, Mayer K and Jordans
S: Cysteine cathepsins: Cellular roadmap to different functions.
Biochimie. 90:194–207. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vidak E, Javoršek U, Vizovišek M and Turk
B: Cysteine cathepsins and their extracellular roles: Shaping the
microenvironment. Cells. 8:2642019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G
and Luo B: Protective mechanisms of CA074-me (other than
cathepsin-B inhibition) against programmed necrosis induced by
global cerebral ischemia/reperfusion injury in rats. Brain Res
Bull. 120:97–105. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stoka V, Turk V and Turk B: Lysosomal
cysteine cathepsins: Signaling pathways in apoptosis. Biol Chem.
388:555–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tan GJ, Peng ZK, Lu JP and Tang FQ:
Cathepsins mediate tumor metastasis. World J Biol Chem. 4:91–101.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hook G, Jacobsen JS, Grabstein K, Kindy M
and Hook V: Cathepsin B is a new drug target for traumatic brain
injury therapeutics: Evidence for E64d as a promising lead drug
candidate. Front Neurol. 6:1782015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ben-Ari Z, Mor E, Azarov D, Sulkes J, Tor
R, Cheporko Y, Hochhauser E and Pappo O: Cathepsin B inactivation
attenuates the apoptotic injury induced by ischemia/reperfusion of
mouse liver. Apoptosis. 10:1261–1269. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yadati T, Houben T, Bitorina A and
Shiri-Sverdlov R: The Ins and outs of cathepsins: Physiological
function and role in disease management. Cells. 9:16792020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chevriaux A, Pilot T, Derangère V, Simonin
H, Martine P, Chalmin F, Ghiringhelli F and Rébé C: Cathepsin B is
required for NLRP3 inflammasome activation in macrophages, through
NLRP3 interaction. Front Cell Dev Biol. 8:1672020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li
ZL, Wu M, Wang FM, Crowley SD and Liu BC: Hydroxychloroquine
attenuates renal ischemia/reperfusion injury by inhibiting
cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis.
9:3512018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Korkmaz B, Caughey GH, Chapple I, Gauthier
F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS,
Lauritzen C, et al: Therapeutic targeting of cathepsin C: From
pathophysiology to treatment. Pharmacol Ther. 190:202–236. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rehm SRT, Smirnova NF, Morrone C,
Götzfried J, Feuchtinger A, Pedersen J, Korkmaz B, Yildirim AÖ and
Jenne DE: Premedication with a cathepsin C inhibitor alleviates
early primary graft dysfunction in mouse recipients after lung
transplantation. Sci Rep. 9:99252019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dennemärker J, Lohmüller T, Müller S,
Aguilar SV, Tobin DJ, Peters C and Reinheckel T: Impaired turnover
of autophagolysosomes in cathepsin L deficiency. Biol Chem.
391:913–922. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
McComb S, Shutinoski B, Thurston S,
Cessford E, Kumar K and Sad S: Cathepsins limit macrophage
necroptosis through cleavage of Rip1 kinase. J Immunol.
192:5671–5678. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Figueiredo JL, Aikawa M, Zheng C, Aaron J,
Lax L, Libby P, de Lima Filho JL, Gruener S, Fingerle J, Haap W, et
al: Selective cathepsin S inhibition attenuates atherosclerosis in
apolipoprotein E-deficient mice with chronic renal disease. Am J
Pathol. 185:1156–1166. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nakanishi H: Neuronal and microglial
cathepsins in aging and age-related diseases. Ageing Res Rev.
2:367–381. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kos J, Sekirnik A, Premzl A, Zavasnik
Bergant V, Langerholc T, Turk B, Werle B, Golouh R, Repnik U, Jeras
M and Turk V: Carboxypeptidases cathepsins X and B display distinct
protein profile in human cells and tissues. Exp Cell Res.
306:103–113. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Polcyn R, Capone M, Hossain A, Matzelle D,
Banik NL and Haque A: Neuron specific enolase is a potential target
for regulating neuronal cell survival and death: Implications in
neurodegeneration and regeneration. Neuroimmunol Neuroinflamm.
4:254–257. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Obermajer N, Premzl A, Zavasnik Bergant T,
Turk B and Kos J: Carboxypeptidase cathepsin X mediates
beta2-integrin-dependent adhesion of differentiated U-937 cells.
Exp Cell Res. 312:2515–2527. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ondr JK and Pham CT: Characterization of
murine cathepsin W and its role in cell-mediated cytotoxicity. J
Biol Chem. 279:27525–27533. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wex T, Wex H, Hartig R, Wilhelmsen S and
Malfertheiner P: Functional involvement of cathepsin W in the
cytotoxic activity of NK-92 cells. FEBS Lett. 552:115–119. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stoeckle C, Gouttefangeas C, Hammer M,
Weber E, Melms A and Tolosa E: Cathepsin W expressed exclusively in
CD8+ T cells and NK cells, is secreted during target cell killing
but is not essential for cytotoxicity in human CTLs. Exp Hematol.
37:266–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kakehashi H, Nishioku T, Tsukuba T,
Kadowaki T, Nakamura S and Yamamoto K: Differential regulation of
the nature and functions of dendritic cells and macrophages by
cathepsin E. J Immunol. 179:5728–5737. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chain BM, Free P, Medd P, Swetman C, Tabor
AB and Terrazzini N: The expression and function of cathepsin E in
dendritic cells. J Immunol. 174:1791–1800. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yamamoto K, Kawakubo T, Yasukochi A and
Tsukuba T: Emerging roles of cathepsin E in host defense
mechanisms. Biochim Biophys Acta. 1824:105–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Deussing J, Roth W, Saftig P, Peters C,
Ploegh HL and Villadangos JA: Cathepsins B and D are dispensable
for major histocompatibility complex class II-mediated antigen
presentation. Proc Natl Acad Sci USA. 95:4516–4521. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Droga-Mazovec G, Bojic L, Petelin A,
Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V and Turk
B: Cysteine cathepsins trigger caspase-dependent cell death through
cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem.
283:19140–19150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Conus S, Perozzo R, Reinheckel T, Peters
C, Scapozza L, Yousefi S and Simon HU: Caspase-8 is activated by
cathepsin D initiating neutrophil apoptosis during the resolution
of inflammation. J Exp Med. 205:685–698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bidère N, Lorenzo HK, Carmona S, Laforge
M, Harper F, Dumont C and Senik A: Cathepsin D triggers Bax
activation, resulting in selective apoptosis-inducing factor (AIF)
relocation in T lymphocytes entering the early commitment phase to
apoptosis. J Biol Chem. 278:31401–31411. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Seyrantepe V, Hinek A, Peng J, Fedjaev M,
Ernest S, Kadota Y, Canuel M, Itoh K, Morales CR, Lavoie J, et al:
Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is
required for proper elastic fiber formation and inactivation of
endothelin-1. Circulation. 117:1973–1981. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jackman HL, Massad MG, Sekosan M, Tan F,
Brovkovych V, Marcic BM and Erdös EG: Angiotensin 1–9 and 1–7
release in human heart: Role of cathepsin A. Hypertension.
39:976–981. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Burster T, Macmillan H, Hou T, Boehm BO
and Mellins ED: Cathepsin G: Roles in antigen presentation and
beyond. Mol Immunol. 47:658–665. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Meyer-Hoffert U: Neutrophil-derived serine
proteases modulate innate immune responses. Front Biosci (Landmark
Ed). 14:3409–3418. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pintucci G, Iacoviello L, Castelli MP,
Amore C, Evangelista V, Cerletti C and Donati MB: Cathepsin
G-induced release of PAI-1 in the culture medium of endothelial
cells: A new thrombogenic role for polymorphonuclear leukocytes? J
Lab Clin Med. 122:69–79. 1993.PubMed/NCBI
|
|
37
|
Richter R, Bistrian R, Escher S, Forssmann
WG, Vakili J, Henschler R, Spodsberg N, Frimpong-Boateng A and
Forssmann U: Quantum proteolytic activation of chemokine CCL15 by
neutrophil granulocytes modulates mononuclear cell adhesiveness. J
Immunol. 175:1599–1608. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Miao Z, Premack BA, Wei Z, Wang Y, Gerard
C, Showell H, Howard M, Schall TJ and Berahovich R: Proinflammatory
proteases liberate a discrete high-affinity functional FPRL1
(CCR12) ligand from CCL23. J Immunol. 178:7395–7404. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Brignone C, Munoz O, Batoz M,
Rouquette-Jazdanian A and Cousin JL: Proteases produced by
activated neutrophils are able to release soluble CD23 fragments
endowed with proinflammatory effects. FASEB J. 15:2027–2029. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang Z, Weian C, Susu H and Hanmin W:
Protective effects of mangiferin on cerebral ischemia-reperfusion
injury and its mechanisms. Eur J Pharmacol. 771:145–151. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Seyfried DM, Veyna R, Han Y, Li K, Tang N,
Betts RL, Weinsheimer S, Chopp M and Anagli J: A selective cysteine
protease inhibitor is non-toxic and cerebroprotective in rats
undergoing transient middle cerebral artery ischemia. Brain Res.
901:94–101. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Benchoua A, Braudeau J, Reis A, Couriaud C
and Onténiente B: Activation of proinflammatory caspases by
cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab.
24:1272–1279. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Guicciardi ME, Deussing J, Miyoshi H,
Bronk SF, Svingen PA, Peters C, Kaufmann SH and Gores GJ: Cathepsin
B contributes to TNF-alpha-mediated hepatocyte apoptosis by
promoting mitochondrial release of cytochrome c. J Clin Invest.
106:1127–1137. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tsubokawa T, Solaroglu I, Yatsushige H,
Cahill J, Yata K and Zhang JH: Cathepsin and calpain inhibitor E64d
attenuates matrix metalloproteinase-9 activity after focal cerebral
ischemia in rats. Stroke. 37:1888–1894. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Qin XF, Lu XJ, Ge JB, Xu HZ, Qin HD and Xu
F: Ginkgolide B prevents cathepsin-mediated cell death following
cerebral ischemia/reperfusion injury. Neuroreport. 25:267–273.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wei R, Wang J, Xu Y, Yin B, He F, Du Y,
Peng G and Luo B: Probenecid protects against cerebral
ischemia/reperfusion injury by inhibiting lysosomal and
inflammatory damage in rats. Neuroscience. 301:168–177. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhu YM, Gao X, Ni Y, Li W, Kent TA, Qiao
SG, Wang C, Xu XX and Zhang HL: Sevoflurane postconditioning
attenuates reactive astrogliosis and glial scar formation after
ischemia-reperfusion brain injury. Neuroscience. 356:125–141. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cui DR, Wang L, Jiang W, Qi AH, Zhou QH
and Zhang XL: Propofol prevents cerebral ischemia-triggered
autophagy activation and cell death in the rat hippocampus through
the NF-κB/p53 signaling pathway. Neuroscience. 246:117–132. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ahsan A, Zheng Y, Ma S, Liu M, Cao M, Li
Y, Zheng W, Zhou X, Xin M, Hu WW, et al: Tomatidine protects
against ischemic neuronal injury by improving lysosomal function.
Eur J Pharmacol. 882:1732802020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kilinc M, Gürsoy-Ozdemir Y, Gürer G,
Erdener SE, Erdemli E, Can A and Dalkara T: Lysosomal rupture,
necroapoptotic interactions and potential crosstalk between
cysteine proteases in neurons shortly after focal ischemia.
Neurobiol Dis. 40:293–302. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang F, Gómez-Sintes R and Boya P:
Lysosomal membrane permeabilization and cell death. Traffic.
19:918–931. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kirkegaard T, Roth AG, Petersen NH,
Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K,
Arenz C, et al: Hsp70 stabilizes lysosomes and reverts Niemann-Pick
disease-associated lysosomal pathology. Nature. 463:549–553. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yamashima T: Hsp70.1 and related lysosomal
factors for necrotic neuronal death. J Neurochem. 120:477–494.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Heusch G and Gersh BJ: The pathophysiology
of acute myocardial infarction and strategies of protection beyond
reperfusion: A continual challenge. Eur Heart J. 38:774–784.
2017.PubMed/NCBI
|
|
55
|
Vander Heide RS and Steenbergen C:
Cardioprotection and myocardial reperfusion: Pitfalls to clinical
application. Circ Res. 113:464–477. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Frangogiannis NG: Regulation of the
inflammatory response in cardiac repair. Circ Res. 110:159–173.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kain V, Prabhu SD and Halade GV:
Inflammation revisited: Inflammation versus resolution of
inflammation following myocardial infarction. Basic Res Cardiol.
109:4442014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Meyer-Hoffert U and Wiedow O: Neutrophil
serine proteases: Mediators of innate immune responses. Curr Opin
Hematol. 18:19–24. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sabri A, Alcott SG, Elouardighi H, Pak E,
Derian C, Andrade-Gordon P, Kinnally K and Steinberg SF: Neutrophil
cathepsin G promotes detachment-induced cardiomyocyte apoptosis via
a protease-activated receptor-independent mechanism. J Biol Chem.
278:23944–23954. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Iacoviello L, Kolpakov V, Salvatore L,
Amore C, Pintucci G, de Gaetano G and Donati MB: Human endothelial
cell damage by neutrophil-derived cathepsin G. Role of cytoskeleton
rearrangement and matrix-bound plasminogen activator inhibitor-1.
Arterioscler Thromb Vasc Biol. 15:2037–2046. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hooshdaran B, Kolpakov MA, Guo X, Miller
SA, Wang T, Tilley DG, Rafiq K and Sabri A: Dual inhibition of
cathepsin G and chymase reduces myocyte death and improves cardiac
remodeling after myocardial ischemia reperfusion injury. Basic Res
Cardiol. 112:622017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Taleb S, Cancello R, Clément K and Lacasa
D: Cathepsin S promotes human preadipocyte differentiation:
Possible involvement of fibronectin degradation. Endocrinology.
147:4950–4959. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen H, Wang J, Xiang MX, Lin Y, He A, Jin
CN, Guan J, Sukhova GK, Libby P, Wang JA and Shi GP: Cathepsin
S-mediated fibroblast trans-differentiation contributes to left
ventricular remodelling after myocardial infarction. Cardiovasc
Res. 100:84–94. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Peng K, Liu H, Yan B, Meng XW, Song SY, Ji
FH and Xia Z: Inhibition of cathepsin S attenuates myocardial
ischemia/reperfusion injury by suppressing inflammation and
apoptosis. J Cell Physiol. 236:1309–1320. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Linz D, Hohl M, Dhein S, Ruf S, Reil JC,
Kabiri M, Wohlfart P, Verheule S, Böhm M, Sadowski T and Schotten
U: Cathepsin A mediates susceptibility to atrial tachyarrhythmia
and impairment of atrial emptying function in Zucker diabetic fatty
rats. Cardiovasc Res. 110:371–380. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hohl M, Erb K, Lang L, Ruf S, Hübschle T,
Dhein S, Linz W, Elliott AD, Sanders P, Zamyatkin O, et al:
Cathepsin A mediates ventricular remote remodeling and atrial
cardiomyopathy in rats with ventricular ischemia/reperfusion. JACC
Basic Transl Sci. 4:332–344. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Turski WA and Zasłonka J: Activity of
cathepsin D and L in the heart muscle of coronary patients during
coronary-aortal bypass graft operation. Med Sci Monit. 6:853–860.
2000.PubMed/NCBI
|
|
68
|
Turski WA and Zasłonka J: Effects of
Bretschneider cardioplegic fluid on the lysosomal cathepsins D and
L of myocardium of coronary patients during coronary-aortal bypass
graft operation. Med Sci Monit. 6:861–866. 2000.PubMed/NCBI
|
|
69
|
Zhai Y, Petrowsky H, Hong JC, Busuttil RW
and Kupiec-Weglinski JW: Ischaemia-reperfusion injury in liver
transplantation-from bench to bedside. Nat Rev Gastroenterol
Hepatol. 10:79–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Baskin-Bey ES, Canbay A, Bronk SF,
Werneburg N, Guicciardi ME, Nyberg SL and Gores GJ: Cathepsin B
inactivation attenuates hepatocyte apoptosis and liver damage in
steatotic livers after cold ischemia-warm reperfusion injury. Am J
Physiol Gastrointest Liver Physiol. 288:G396–G402. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guicciardi ME, Miyoshi H, Bronk SF and
Gores GJ: Cathepsin B knockout mice are resistant to tumor necrosis
factor-alpha-mediated hepatocyte apoptosis and liver injury:
Implications for therapeutic applications. Am J Pathol.
159:2045–2054. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou H, Zhou S, Shi Y, Wang Q, Wei S, Wang
P, Cheng F, Auwerx J, Schoonjans K and Lu L: TGR5/Cathepsin E
signaling regulates macrophage innate immune activation in liver
ischemia and reperfusion injury. Am J Transplant. 21:1453–1464.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mehta RL, Kellum JA, Shah SV, Molitoris
BA, Ronco C, Warnock DG and Levin A; Acute Kidney Injury Network, :
Acute Kidney Injury Network: Report of an initiative to improve
outcomes in acute kidney injury. Crit Care. 11:R312007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Eltzschig HK, Bonney SK and Eckle T:
Attenuating myocardial ischemia by targeting A2B adenosine
receptors. Trends Mol Med. 19:345–354. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yap SC and Lee HT: Adenosine and
protection from acute kidney injury. Curr Opin Nephrol Hypertens.
21:24–32. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Suzuki C, Tanida I, Ohmuraya M, Oliva
Trejo JA, Kakuta S, Sunabori T and Uchiyama Y: Lack of Cathepsin D
in the renal proximal tubular cells resulted in increased
sensitivity against renal ischemia/reperfusion injury. Int J Mol
Sci. 20:17112019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cocchiaro P, Fox C, Tregidgo NW, Howarth
R, Wood KM, Situmorang GR, Pavone LM, Sheerin NS and Moles A:
Lysosomal protease cathepsin D; a new driver of apoptosis during
acute kidney injury. Sci Rep. 6:271122016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fox C, Cocchiaro P, Oakley F, Howarth R,
Callaghan K, Leslie J, Luli S, Wood KM, Genovese F, Sheerin NS and
Moles A: Inhibition of lysosomal protease cathepsin D reduces renal
fibrosis in murine chronic kidney disease. Sci Rep. 6:201012016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Shimoda N, Fukazawa N, Nonomura K and
Fairchild RL: Cathepsin G is required for sustained inflammation
and tissue injury after reperfusion of ischemic kidneys. Am J
Pathol. 170:930–940. 2007. View Article : Google Scholar : PubMed/NCBI
|