Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2023 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway

  • Authors:
    • Shilin Xiao
    • Ying Zhou
    • Huibin Gao
    • Dong Yang
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
    Copyright: © Xiao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 2
    |
    Published online on: November 2, 2022
       https://doi.org/10.3892/mmr.2022.12889
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Allergic asthma is a chronic inflammatory disease in which oxidative stress serves a pivotal role. In clinical practice, dexmedetomidine (DEX), an α‑2‑adrenergic receptor agonist, is used as a sedative. DEX exhibits antioxidative and organ‑protective properties. In a murine model of asthma, DEX has a therapeutic effect via the toll like receptor 4/NF‑кB signaling pathway; however, whether DEX can exert an antioxidative effect on asthma has yet to be elucidated. In the present study, a T helper (Th)2‑dominant murine asthma model was established. DEX treatment significantly reduced eosinophilic airway inflammation, mucus overproduction and airway hyperresponsiveness, as well as the concentrations of Th2 cytokines. The lung tissues of mice with asthma were characterized by redox imbalance (increased oxidative stress and impaired antioxidant capacity). DEX treatment alleviated this imbalance by decreasing the levels of malondialdehyde and reactive oxygen species, and increasing the levels of glutathione. Furthermore, the nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling pathway was inhibited in the lung tissues of asthmatic mice; these effects were noted in its downstream genes, heme oxygenase 1 and glutathione peroxidase 4. In mice with asthma, DEX treatment induced the expression of these antioxidant genes and the activation of Nrf2, whereas ML385 (an inhibitor of Nrf2) partially abrogated the antioxidative and therapeutic effects of DEX. To the best of our knowledge, the present study is the first to demonstrate the protective effect of DEX on Th2‑dominant asthma through the activation of the Nrf2 signaling pathway. The results suggested that the antioxidative properties of DEX could be beneficial in clinical application of DEX for the relief of asthmatic symptoms.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Ribeiro A, Aguiar R and Morais-Almeida M: Biological therapies, asthma and coronavirus disease 2019. Curr Opin Allergy Clin Immunol. 21:597–601. 2021. View Article : Google Scholar : PubMed/NCBI

2 

O'Byrne P, Fabbri LM, Pavord ID, Papi A, Petruzzelli S and Lange P: Asthma progression and mortality: The role of inhaled corticosteroids. Eur Respir J. 54:19004912019. View Article : Google Scholar : PubMed/NCBI

3 

Miller RL, Grayson MH and Strothman K: Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol. 148:1430–1441. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Chipps BE, Murphy KR and Oppenheimer J: 2020 NAEPP guidelines update and GINA 2021-asthma care differences, overlap, and challenges. J Allergy Clin Immunol Pract. 10((1S)): S19–S30. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Nakagome K and Nagata M: Involvement and possible role of eosinophils in asthma exacerbation. Front Immunol. 9:22202018. View Article : Google Scholar : PubMed/NCBI

6 

Djukanovic R: Airway inflammation in asthma and its consequences: Implications for treatment in children and adults. J Allergy Clin Immunol. 109 (6 Suppl):S539–S548. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A: Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017:84167632017. View Article : Google Scholar : PubMed/NCBI

8 

de Groot LES, Sabogal Piñeros YS, Bal SM, van de Pol MA, Hamann J, Sterk PJ, Kulik W and Lutter R: Do eosinophils contribute to oxidative stress in mild asthma? Clin Exp Allergy. 49:929–931. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Checa J and Aran JM: Airway redox homeostasis and inflammation gone awry: From molecular pathogenesis to emerging therapeutics in respiratory pathology. Int J Mol Sci. 21:93172020. View Article : Google Scholar : PubMed/NCBI

10 

Riedl MA and Nel AE: Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol. 8:49–56. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Fatani SH: Biomarkers of oxidative stress in acute and chronic bronchial asthma. J Asthma. 51:578–584. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Wang P, Geng J, Gao J, Zhao H, Li J, Shi Y, Yang B, Xiao C, Linghu Y, Sun X, et al: Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun. 10:7552019. View Article : Google Scholar : PubMed/NCBI

13 

Dang X, He B, Ning Q, Liu Y, Guo J, Niu G and Chen M: Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways. Respir Res. 21:952020. View Article : Google Scholar : PubMed/NCBI

14 

Liu J, Xu Y, Yan M, Yu Y and Guo Y: 18β-Glycyrrhetinic acid suppresses allergic airway inflammation through NF-κB and Nrf2/HO-1 signaling pathways in asthma mice. Sci Rep. 12:31212022. View Article : Google Scholar : PubMed/NCBI

15 

Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN and Biswal S: Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med. 202:47–59. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Sussan TE, Gajghate S, Chatterjee S, Mandke P, McCormick S, Sudini K, Kumar S, Breysse PN, Diette GB, Sidhaye VK and Biswal S: Nrf2 reduces allergic asthma in mice through enhanced airway epithelial cytoprotective function. Am J Physiol Lung Cell Mol Physiol. 309:L27–L36. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Gertler R, Brown HC, Mitchell DH and Silvius EN: Dexmedetomidine: A novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 14:13–21. 2001.PubMed/NCBI

18 

Bao Y, Zhu Y, He G, Ni H, Liu C, Ma L, Zhang L and Shi D: Dexmedetomidine attenuates neuroinflammation In LPS-stimulated BV2 microglia cells through upregulation of miR-340. Drug Des Devel Ther. 13:3465–3475. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Xue BB, Chen BH, Tang YN, Weng CW and Lin LN: Dexmedetomidine protects against lung injury induced by limb ischemia-reperfusion via the TLR4/MyD88/NF-κB pathway. Kaohsiung J Med Sci. 35:672–678. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Zhou Z, Chen Q, Wan L, Zheng D, Li Z and Wu Z: Dexmedetomidine protects hepatic cells against oxygen-glucose deprivation/reperfusion injury via lncRNA CCAT1. Cell Biol Int. 42:1250–1258. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Geng Y, Li R, He SX, Yang HH, Deng QT, Shao XY, Wu YS, Xu WW and Ma Q: Dexmedetomidine attenuates acute lung injury induced by heatstroke and improve outcome. Shock. 52:532–539. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Feng X, Ma W, Zhu J, Jiao W and Wang Y: Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol Med Rep. 24:6612021. View Article : Google Scholar : PubMed/NCBI

23 

Zhao Y, Kong GY, Pei WM, Zhou B, Zhang QQ and Pan BB: Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway. Eur Cytokine Netw. 30:88–97. 2019.PubMed/NCBI

24 

Li F, Wang X, Zhang Z, Zhang X and Gao P: Dexmedetomidine attenuates neuroinflammatory-induced apoptosis after traumatic brain injury via Nrf2 signaling pathway. Ann Clin Transl Neurol. 6:1825–1835. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Xiao S, Wang Q, Gao H, Zhao X, Zhi J and Yang D: Dexmedetomidine alleviates airway hyperresponsiveness and allergic airway inflammation through the TLR4/NF-κB signaling pathway in mice. Mol Med Rep. 25:742022. View Article : Google Scholar : PubMed/NCBI

26 

Van Hoecke L, Job ER, Saelens X and Roose K: Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. J Vis Exp. 4:553982017.PubMed/NCBI

27 

Marty GD: Blank-field correction for achieving a uniform white background in brightfield digital photomicrographs. Biotechniques. 42:7167187202007. View Article : Google Scholar : PubMed/NCBI

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Davarinejad H: Quantifications of western blots with imageJ. http://www.yorku.ca/yisheng/Internal/Protocols/ImageJ.pdf

30 

Lambrecht BN, Hammad H and Fahy JV: The cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Townley RG and Horiba M: Airway hyperresponsiveness: A story of mice and men and cytokines. Clin Rev Allergy Immunol. 24:85–110. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Comhair SA and Erzurum SC: Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 12:93–124. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y, Ginebaugh SP, Christenson SA, Woodruff PG, Fahy JV, et al: 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J Clin Invest. 132:e1516852022. View Article : Google Scholar : PubMed/NCBI

34 

Baird L and Yamamoto M: The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol. 40:e00099–20. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y and Wu W: Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med. 25:9983–9994. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Cui J, Zhao H, Wang C, Sun JJ, Lu K and Ma D: Dexmedetomidine attenuates oxidative stress induced lung alveolar epithelial cell apoptosis in vitro. Oxid Med Cell Longev. 2015:3583962015. View Article : Google Scholar : PubMed/NCBI

37 

Casaro M, Souza VR, Oliveira FA and Ferreira CM: OVA-induced allergic airway inflammation mouse model. Methods Mol Biol. 1916:297–301. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Bosnjak B, Stelzmueller B, Erb KJ and Epstein MM: Treatment of allergic asthma: Modulation of Th2 cells and their responses. Respir Res. 12:1142011. View Article : Google Scholar : PubMed/NCBI

39 

King MR, Ismail AS, Davis LS and Karp DR: Oxidative stress promotes polarization of human T cell differentiation toward a T helper 2 phenotype. J Immunol. 176:2765–2772. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Mishra V, Banga J and Silveyra P: Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther. 181:169–182. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Wu W, Samoszuk MK, Comhair SA, Thomassen MJ, Farver CF, Dweik RA, Kavuru MS, Erzurum SC and Hazen SL: Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest. 105:1455–1463. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Reczek CR and Chandel NS: ROS-dependent signal transduction. Curr Opin Cell Biol. 33:8–13. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Cho YS and Moon HB: The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2:183–187. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Casalino-Matsuda SM, Monzón ME and Forteza RM: Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am J Respir Cell Mol Biol. 34:581–591. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, et al: Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 136:769–780. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, Li S, Chen Y, Wu Y, Ling Z, et al: TRPC6-dependent Ca2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis. 11:1702020. View Article : Google Scholar : PubMed/NCBI

47 

Park CS, Kim TB, Lee KY, Moon KA, Bae YJ, Jang MK, Cho YS and Moon HB: Increased oxidative stress in the airway and development of allergic inflammation in a mouse model of asthma. Ann Allergy Asthma Immunol. 103:238–247. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA, Song W, Hazen SL, Bleecker ER, Busse WW, Chung KF, et al: Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med. 172:306–313. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Sharma A, Bansal S and Nagpal RK: Lipid peroxidation in bronchial asthma. Indian J Pediatr. 70:715–717. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Fitzpatrick AM, Jones DP and Brown LA: Glutathione redox control of asthma: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 17:375–408. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Comhair SA, Bhathena PR, Dweik RA, Kavuru M and Erzurum SC: Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet. 355:6242000. View Article : Google Scholar : PubMed/NCBI

52 

Liu Q, Gao Y and Ci X: Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev. 2019:70905342019.PubMed/NCBI

53 

Park YH, Park HP, Kim E, Lee H, Hwang JW, Jeon YT and Lim YJ: The antioxidant effect of preischemic dexmedetomidine in a rat model: Increased expression of Nrf2/HO-1 via the PKC pathway. Braz J Anesthesiol. S0104-0014(21)00331-6. 2021.(Epub ahead of print).

54 

Kopacz A, Kloska D, Forman HJ, Jozkowicz A and Grochot-Przeczek A: Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med. 157:63–74. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Kansanen E, Kuosmanen SM, Leinonen H and Levonen AL: The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 1:45–49. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Wu W, Du Z and Wu L: Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: Possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol Int. 46:1036–1046. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Sun Z, Huang Z and Zhang DD: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One. 4:e65882009. View Article : Google Scholar : PubMed/NCBI

58 

Cheng D, Wu R, Guo Y and Kong AN: Regulation of Keap1-Nrf2 signaling: The role of epigenetics. Curr Opin Toxicol. 1:134–138. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Lee OH, Jain AK, Papusha V and Jaiswal AK: An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J Biol Chem. 282:36412–36420. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Cullinan SB, Gordan JD, Jin J, Harper JW and Diehl JA: The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 24:8477–8486. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Kopacz A, Klóska D, Proniewski B, Cysewski D, Personnic N, Piechota-Polańczyk A, Kaczara P, Zakrzewska A, Forman HJ, Dulak J, et al: Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biol. 28:1013042020. View Article : Google Scholar : PubMed/NCBI

62 

Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H and Yamamoto M: Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA. 109:13561–13566. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Liu Y, Liu W, Wang XQ, Wan ZH, Liu YQ and Zhang MJ: Dexmedetomidine relieves neuropathic pain in rats with chronic constriction injury via the Keap1-Nrf2 pathway. Front Cell Dev Biol. 9:7149962021. View Article : Google Scholar : PubMed/NCBI

64 

Rockwell CE, Jin Y, Boss AP, Kaiser LM and Awali S: The complicated role of nuclear factor erythroid-derived 2-like 2 in allergy and asthma. Drug Metab Dispos. 50:500–507. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Ammar M, Bahloul N, Amri O, Omri R, Ghozzi H, Kammoun S, Zeghal K and Ben Mahmoud L: Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J Clin Lab Anal. 36:e243452022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xiao S, Zhou Y, Gao H and Yang D: Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway. Mol Med Rep 27: 2, 2023.
APA
Xiao, S., Zhou, Y., Gao, H., & Yang, D. (2023). Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway. Molecular Medicine Reports, 27, 2. https://doi.org/10.3892/mmr.2022.12889
MLA
Xiao, S., Zhou, Y., Gao, H., Yang, D."Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway". Molecular Medicine Reports 27.1 (2023): 2.
Chicago
Xiao, S., Zhou, Y., Gao, H., Yang, D."Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway". Molecular Medicine Reports 27, no. 1 (2023): 2. https://doi.org/10.3892/mmr.2022.12889
Copy and paste a formatted citation
x
Spandidos Publications style
Xiao S, Zhou Y, Gao H and Yang D: Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway. Mol Med Rep 27: 2, 2023.
APA
Xiao, S., Zhou, Y., Gao, H., & Yang, D. (2023). Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway. Molecular Medicine Reports, 27, 2. https://doi.org/10.3892/mmr.2022.12889
MLA
Xiao, S., Zhou, Y., Gao, H., Yang, D."Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway". Molecular Medicine Reports 27.1 (2023): 2.
Chicago
Xiao, S., Zhou, Y., Gao, H., Yang, D."Dexmedetomidine attenuates airway inflammation and oxidative stress in asthma via the Nrf2 signaling pathway". Molecular Medicine Reports 27, no. 1 (2023): 2. https://doi.org/10.3892/mmr.2022.12889
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team