Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2023 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 27 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice

  • Authors:
    • Xuewang Li
    • Lei Huang
    • Liangliang Kong
    • Yong Su
    • Huimin Zhou
    • Pengmin Ji
    • Ran Sun
    • Chao Wang
    • Weiping Li
    • Weizu Li
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 6
    |
    Published online on: November 9, 2022
       https://doi.org/10.3892/mmr.2022.12893
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a common neurodegenerative disorder. Amyloid β (Aβ) deposition is considered an important pathological feature of AD. Growing evidence has linked neuroinflammation and autophagy to Aβ deposition in the progression of AD. However, there are few drug options for inhibiting neuroinflammation and autophagy to prevent AD. Ginsenoside Rg1 (Rg1), a steroidal saponin extracted from ginseng, has been reported to possess multiple neuroprotective effects. The present study aimed to evaluate whether Rg1 treatment could attenuate cognitive disorders and neuronal injuries by inhibiting NLRP1 inflammasome and autophagy dysfunction in an AD model of APP/PS1 mice. The results of behavioral tests indicated that Rg1 treatment for 12 weeks could significantly improve olfactory dysfunction as well as learning and memory impairments. The results of histopathological tests indicated that Rg1 treatment could reduce Aβ deposition and neuronal damages in APP/PS1‑9M mice. Additionally, the results of immunoblot, reverse transcription‑quantitative PCR or immunohistochemistry demonstrated that Rg1 treatment significantly downregulated the expression levels of inflammation‑related proteins of NLRP1, caspase1, IL‑1β and TNF‑α, as well as autophagy‑related proteins of p‑AMPK/AMPK, Beclin1 and LC3 II/LC3 I, and increased the expression levels of p‑mTOR/mTOR and P62 in APP/PS1‑9M mice. In addition, the molecular docking analysis showed that there was favorable binding result between Rg1 and NLRP1. The present study suggested that Rg1 may alleviate learning and memory impairments and Aβ disposition by inhibiting NLRP1 inflammasome and improving autophagy dysfunction, suggesting that Rg1 may be a potential therapeutic agent for delaying AD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Gouras GK, Olsson TT and Hansson O: β-Amyloid peptides and amyloid plaques in Alzheimer's disease. Neurotherapeutics. 12:3–11. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Zolezzi JM, Bastias-Candia S, Santos MJ and Inestrosa NC: Alzheimer's disease: Relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front Aging Neurosci. 6:1762014. View Article : Google Scholar : PubMed/NCBI

3 

Hardy J and Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Kuang H, Tan CY, Tian HZ, Liu LH, Yang MW, Hong FF and Yang SL: Exploring the bi-directional relationship between autophagy and Alzheimer's disease. CNS Neurosci Ther. 26:155–166. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ and Medeiros R: Inflammation: The link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation. 15:2762018. View Article : Google Scholar : PubMed/NCBI

6 

Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Kim KH and Lee MS: Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Saha S, Panigrahi DP, Patil S and Bhutia SK: Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 104:485–495. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Nixon RA: Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 120:4081–4091. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Steele JW, Fan E, Kelahmetoglu Y, Tian Y and Bustos V: Modulation of autophagy as a therapeutic target for Alzheimer's disease. Postdoc J. 1:21–34. 2013.PubMed/NCBI

11 

Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T and Saido TC: Aβ secretion and plaque formation depend on autophagy. Cell Rep. 5:61–69. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Li Q, Liu Y and Sun M: Autophagy and Alzheimer's disease. Cell Mol Neurobiol. 37:377–388. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Forloni G and Balducci C: Alzheimer's disease, oligomers, and inflammation. J Alzheimers Dis. 62:1261–1276. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Chavarria-Smith J and Vance RE: The NLRP1 inflammasomes. Immunol Rev. 265:22–34. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Yap JKY, Pickard BS, Chan EWL and Gan SY: The role of neuronal NLRP1 inflammasome in Alzheimer's disease: Bringing neurons into the neuroinflammation game. Mol Neurobiol. 56:7741–7753. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Zhang F and Jiang L: Neuroinflammation in Alzheimer's disease. Neuropsychiatr Dis Treat. 11:243–256. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH and LeBlanc AC: Neuronal NLRP1 inflammasome activation of caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated caspase-6 activation. Cell Death Differ. 22:1676–1686. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD and Yu JT: Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis. 5:e13822014. View Article : Google Scholar : PubMed/NCBI

19 

Sun D, Gao G, Zhong B, Zhang H, Ding S, Sun Z, Zhang Y and Li W: NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice. Behav Brain Funct. 17:112021. View Article : Google Scholar : PubMed/NCBI

20 

Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, et al: Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin. 40:13–25. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS and Zhu G: Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus. Mol Neurobiol. 58:1550–1563. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Xu TZ, Shen XY, Sun LL, Chen YL, Zhang BQ, Huang DK and Li WZ: Ginsenoside Rg1 protects against H2O2-induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro. Int J Mol Med. 43:717–726. 2019.PubMed/NCBI

23 

Zhang H, Su Y, Sun Z, Chen M, Han Y, Li Y, Dong X, Ding S, Fang Z and Li W and Li W: Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J Ginseng Res. 45:665–675. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Xue Z, Zhang Z, Liu H, Li W, Guo X, Zhang Z, Liu Y, Jia L, Li Y, Ren Y, et al: lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ. 26:130–145. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Yang Y, Li J, Rao T, Fang Z and Zhang J: The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. J Ethnopharmacol. 276:1141872021. View Article : Google Scholar : PubMed/NCBI

26 

Han Y, Li X, Yang L, Zhang D, Li L, Dong X, Li Y, Qun S and Li W: Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. J Ginseng Res. 46:515–525. 2022. View Article : Google Scholar : PubMed/NCBI

27 

Chen Y, Ding S, Zhang H, Sun Z, Shen X, Sun L, Yin Y, Qun S and Li W: Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J Funct Foods. 65:1037132020. View Article : Google Scholar

28 

Yu Q, Guo P, Li D, Zuo L, Lian T, Yu S, Hu Y, Liu L, Jin Z, Wang R, et al: Olfactory dysfunction and its relationship with clinical symptoms of Alzheimer disease. Aging Dis. 9:1084–1095. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Li W, Li S, Shen L, Wang J, Wu X, Li J, Tu C, Ye X and Ling S: Impairment of dendrodendritic inhibition in the olfactory bulb of APP/PS1 mice. Front Aging Neurosci. 11:22019. View Article : Google Scholar : PubMed/NCBI

30 

Liu Y, Zhang Y, Zheng X, Fang T, Yang X, Luo X, Guo A, Newell KA, Huang XF and Yu Y: Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J Neuroinflammation. 15:1122018. View Article : Google Scholar : PubMed/NCBI

31 

Hu YD, Pang W, He CC, Lu H, Liu W, Wang ZY, Liu YQ, Huang CY and Jiang YG: The cognitive impairment induced by zinc deficiency in rats aged 0~2 months related to BDNF DNA methylation changes in the hippocampus. Nutr Neurosci. 20:519–525. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Zhang B, Zhang Y, Wu W, Xu T, Yin Y, Zhang J, Huang D and Li W: Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. J Neuroinflammation. 14:1392017. View Article : Google Scholar : PubMed/NCBI

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, et al: Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med. 172:652–667. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM and Stankiewicz AM: Autophagy and Alzheimer's disease: From molecular mechanisms to therapeutic implications. Front Aging Neurosci. 10:042018. View Article : Google Scholar : PubMed/NCBI

36 

Barage SH and Sonawane KD: Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides. 52:1–18. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Tonnies E and Trushina E: Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimers Dis. 57:1105–1121. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Mei X, Feng H and Shao B: Alleviation of sepsis-associated encephalopathy by ginsenoside via inhibition of oxidative stress and cell apoptosis: An experimental study. Pak J Pharm Sci. 33:2567–2577. 2020.PubMed/NCBI

39 

Jin Y, Peng J, Wang X, Zhang D and Wang T: Ameliorative effect of ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: Role of cholinergic system. Neurochem Res. 42:1299–1307. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Dong X, Li L, Zhang D, Su Y, Yang L, Li X, Han Y and Li W and Li W: Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+-CN-NFAT1 signaling in mice. J Funct Foods. 87:1047912021. View Article : Google Scholar

41 

Zhao J, He B, Zhang S, Huang W and Li X: Ginsenoside Rg1 alleviates acute liver injury through the induction of autophagy and suppressing NF-κB/NLRP3 inflammasome signaling pathway. Int J Med Sci. 18:1382–1389. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S, et al: Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7:940–946. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Li J, Yang JY, Yao XC, Xue X, Zhang QC, Wang XX, Ding LL and Wu CF: Oligomeric Aβ-induced microglial activation is possibly mediated by NADPH oxidase. Neurochem Res. 38:443–452. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D, Chen J, Ji MH and Yang JJ: Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice. Front Aging Neurosci. 8:2342016. View Article : Google Scholar : PubMed/NCBI

45 

Dos-Santos-Pereira M, Guimarães FS, Del-Bel E, Raisman-Vozari R and Michel PP: Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-κB-dependent signaling and glucose consumption. Glia. 68:561–573. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Ding Z, Liu S, Wang X, Khaidakov M, Dai Y and Mehta JL: Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 3:10772013. View Article : Google Scholar : PubMed/NCBI

47 

Lu Q, Harris VA, Kumar S, Mansour HM and Black SM: Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol. 6:516–523. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL and Bohr VA: Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev. 70:1014162021. View Article : Google Scholar : PubMed/NCBI

49 

Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, et al: Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron. 68:428–441. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Cui YQ, Wang Q, Zhang DM, Wang JY, Xiao B, Zheng Y and Wang XM: Triptolide rescues spatial memory deficits and amyloid-β aggregation accompanied by inhibition of inflammatory responses and MAPKs activity in APP/PS1 transgenic mice. Curr Alzheimer Res. 13:288–296. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Minter MR, Taylor JM and Crack PJ: The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. J Neurochem. 136:457–474. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Rubio-Perez JM and Morillas-Ruiz JM: A review: Inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal. 2012:7563572012. View Article : Google Scholar : PubMed/NCBI

53 

Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA and Haque A: Inflammatory Process in Alzheimer's and Parkinson's diseases: Central role of cytokines. Curr Pharm Des. 22:541–548. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Torres-Acosta N, O'Keefe JH, O'Keefe EL, Isaacson R and Small G: Therapeutic potential of TNF-α inhibition for Alzheimer's disease prevention. J Alzheimers Dis. 78:619–626. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Pickering M and O'Connor JJ: Pro-inflammatory cytokines and their effects in the dentate gyrus. Progress in Brain Research. Scharfman HE: Elsevier; pp. 339–354. 2007, View Article : Google Scholar : PubMed/NCBI

56 

Jiang Y, Li K, Li X, Xu L and Yang Z: Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact. 341:1094522021. View Article : Google Scholar : PubMed/NCBI

57 

Liao YF, Wang BJ, Cheng HT, Kuo LH and Wolfe MS: Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. 279:49523–49532. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, Dong X, Fang Z and Li W: Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med. 22:7822021. View Article : Google Scholar : PubMed/NCBI

59 

Fan JJ, Gao B, Song AQ, Zhu YJ, Zhou J, Li WZ, Yin YY and Wu WN: Spinal cord NLRP1 inflammasome contributes to dry skin induced chronic itch in mice. J Neuroinflammation. 17:1222020. View Article : Google Scholar : PubMed/NCBI

60 

Doherty J and Baehrecke EH: Life, death and autophagy. Nat Cell Biol. 20:1110–1117. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Lee KM, Hwang SK and Lee JA: Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol. 22:133–142. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Watanabe Y, Taguchi K and Tanaka M: Ubiquitin, autophagy and neurodegenerative diseases. Cells. 9:20222020. View Article : Google Scholar : PubMed/NCBI

63 

Reddy PH and Oliver DM: Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease. Cells. 8:4882019. View Article : Google Scholar : PubMed/NCBI

64 

Lu J, Wu M and Yue Z: Autophagy and Parkinson's disease. Adv Exp Med Biol. 1207:21–51. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Croce KR and Yamamoto A: A role for autophagy in Huntington's disease. Neurobiol Dis. 122:16–22. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Marino G, Madeo F and Kroemer G: Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 23:198–206. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Zhou F, van Laar T, Huang H and Zhang L: APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell. 2:377–383. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Son SM, Jung ES, Shin HJ, Byun J and Mook-Jung I: Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol Aging. 33:1006.e11–e23. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R and Galvan V: Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One. 5:e99792010. View Article : Google Scholar : PubMed/NCBI

70 

Li ZY, Chen LH, Zhao XY, Chen H, Sun YY, Lu MH, Wang ZT, Chen M, Lu L, Huang W, et al: Clemastine attenuates AD-like pathology in an AD model mouse via enhancing mTOR-mediated autophagy. Exp Neurol. 342:1137422021. View Article : Google Scholar : PubMed/NCBI

71 

Chu CT: Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol. 65:423–432. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A and Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J Neuropathol Exp Neurol. 64:113–122. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Wang C, Zhang X, Teng Z, Zhang T and Li Y: Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur J Pharmacol. 740:312–320. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Wang R and Hu W: Asprosin promotes β-cell apoptosis by inhibiting the autophagy of β-cell via AMPK-mTOR pathway. J Cell Physiol. 236:215–221. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Mizushima N: A(beta) generation in autophagic vacuoles. J Cell Biol. 171:15–17. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Lenoir O, Tharaux PL and Huber TB: Autophagy in kidney disease and aging: Lessons from rodent models. Kidney Int. 90:950–964. 2016. View Article : Google Scholar : PubMed/NCBI

78 

François A, Terro F, Janet T, Rioux Bilan A, Paccalin M and Page G: Involvement of interleukin-1β in the autophagic process of microglia: Relevance to Alzheimer's disease. J Neuroinflammation. 10:1512013. View Article : Google Scholar : PubMed/NCBI

79 

François A, Rioux Bilan A, Quellard N, Fernandez B, Janet T, Chassaing D, Paccalin M, Terro F and Page G: Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J Neuroinflammation. 11:1392014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Huang L, Kong L, Su Y, Zhou H, Ji P, Sun R, Wang C, Li W, Li W, Li W, et al: Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice. Mol Med Rep 27: 6, 2023.
APA
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P. ... Li, W. (2023). Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice. Molecular Medicine Reports, 27, 6. https://doi.org/10.3892/mmr.2022.12893
MLA
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P., Sun, R., Wang, C., Li, W., Li, W."Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice". Molecular Medicine Reports 27.1 (2023): 6.
Chicago
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P., Sun, R., Wang, C., Li, W., Li, W."Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice". Molecular Medicine Reports 27, no. 1 (2023): 6. https://doi.org/10.3892/mmr.2022.12893
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Huang L, Kong L, Su Y, Zhou H, Ji P, Sun R, Wang C, Li W, Li W, Li W, et al: Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice. Mol Med Rep 27: 6, 2023.
APA
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P. ... Li, W. (2023). Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice. Molecular Medicine Reports, 27, 6. https://doi.org/10.3892/mmr.2022.12893
MLA
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P., Sun, R., Wang, C., Li, W., Li, W."Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice". Molecular Medicine Reports 27.1 (2023): 6.
Chicago
Li, X., Huang, L., Kong, L., Su, Y., Zhou, H., Ji, P., Sun, R., Wang, C., Li, W., Li, W."Ginsenoside Rg1 alleviates learning and memory impairments and Aβ disposition through inhibiting NLRP1 inflammasome and autophagy dysfunction in APP/PS1 mice". Molecular Medicine Reports 27, no. 1 (2023): 6. https://doi.org/10.3892/mmr.2022.12893
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team