Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2023 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review)

  • Authors:
    • Putri Anggreini
    • Hadi Kuncoro
    • Sri Adi Sumiwi
    • Jutti Levita
  • View Affiliations / Copyright

    Affiliations: Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia, Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo 75119, Indonesia, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia
    Copyright: © Anggreini et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 35
    |
    Published online on: December 21, 2022
       https://doi.org/10.3892/mmr.2022.12922
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑alcoholic fatty liver disease (NAFLD) is an increasingly prevalent ailment worldwide. Moreover, de novo lipogenesis (DNL) is considered a critical factor in the development of NAFLD; hence, its inhibition is a promising target for the prevention of fatty liver disease. There is evidence to indicate that AMP‑activated protein kinase (AMPK) and sirtuin 1 (SIRT1) may play a crucial role in DNL and are the regulatory proteins in type 2 diabetes mellitus, obesity and cardiovascular disease. Therefore, AMPK and SIRT1 may be promising targets for the treatment of NAFLD. The present review article thus aimed to summarize the findings of clinical studies published during the past decade that suggested the beneficial effects of AMPK and SIRT1, using their specific activators and their combined effects on fatty liver disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Tiniakos DG, Anstee QM and Burt AD: Fatty liver disease. MacSween's Pathol Liver. 7th edition. Elsevier; Philadephia, PA: pp. 308–371. 2018, View Article : Google Scholar

2 

Iqbal U, Perumpail B, Akhtar D, Kim D and Ahmed A: The epidemiology, risk profiling and diagnostic challenges of nonalcoholic fatty liver disease. Medicines (Basel). 6:412019. View Article : Google Scholar : PubMed/NCBI

3 

Sayiner M, Koenig A, Henry L and Younossi ZM: Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. 20:205–214. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Byrne CD and Targher G: NAFLD: A multisystem disease. J Hepatol. 62:S47–S64. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Buzzetti E, Pinzani M and Tsochatzis EA: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65:1038–1048. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Ter Horst KW and Serlie MJ: Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 9:9812017. View Article : Google Scholar : PubMed/NCBI

7 

Knebel B, Fahlbusch P, Dille M, Wahlers N, Hartwig S, Jacob S, Kettel U, Schiller M, Herebian D, Koellmer C, et al: Fatty liver due to increased de novo lipogenesis: Alterations in the hepatic peroxisomal proteome. Front Cell Dev Biol. 7:2482019. View Article : Google Scholar : PubMed/NCBI

8 

Ferré P and Foufelle F: Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 12:83–92. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Witte N, Muenzner M, Rietscher J, Knauer M, Heidenreich S, Nuotio-Antar AM, Graef FA, Fedders R, Tolkachov A, Goehring I and Schupp M: The glucose sensor ChREBP links de novo lipogenesis to PPARγactivity and adipocyte differentiation. Endocrinol. 156:4008–4019. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Vijayakumar A, Aryal P, Wen J, Syed I, Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ, Peroni OD, et al: Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21:1021–1035. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Stoeckman AK and Towle HC: The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression. J Biol Chem. 277:27029–27035. 2002. View Article : Google Scholar : PubMed/NCBI

12 

von Loeffelholz C, Coldewey SM and Birkenfeld AL: A narrative review on the role of ampk on de novo lipogenesis in non-alcoholic fatty liver disease: Evidence from human studies. Cells. 10:18222021. View Article : Google Scholar : PubMed/NCBI

13 

Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L and Andreelli F: Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders. J Physiol. 574:41–53. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JYJ, et al: AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13:376–388. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Ha JH, Jang J, Chung SI and Yoon Y: AMPK and SREBP-1c mediate the anti-adipogenic effect of β-hydroxyisovalerylshikonin. Int J Mol Med. 37:816–824. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Liangpunsakul S, Ross RA and Crabb DW: Activation of carbohydrate response element binding protein by ethanol. J Investig Med. 61:270–277. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Cantó C and Auwerx J: Targeting sirtuin 1 to improve metabolism: All you need is NAD +? Pharmacol Rev. 64:166–187. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, et al: SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 283:20015–20026. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD and Kemper JK: SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 285:33959–33970. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Paglialunga S and Dehn CA: Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis. 15:1592016. View Article : Google Scholar : PubMed/NCBI

21 

Sanders FWB and Griffin JL: De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol Rev. 91:452–468. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Sato S, Jung H, Nakagawa T, Pawlosky R, Takeshima T, Lee WR, Sakiyama H, Laxman S, Wynn RM, Tu BP, et al: Metabolite regulation of nuclear localization of carbohydrate-response element-binding protein (ChREBP): Role of amp as an allosteric inhibitor. J Biol Chem. 291:10515–10527. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wang Y, Viscarra J, Kim SJ and Sul HS: Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 16:678–689. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JRB, Girard J and Postic C: Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 55:2159–2170. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Zhao X, Xiaoli, Zong H, Abdulla A, Yang EST, Wang Q, Ji JY, Pessin JE, Das BC and Yang F: Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity. Diabetes. 63:2464–2473. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Nguyen LT, Mak CH, Chen H, Zaky AA, Wong MG, Pollock CA and Saad S: SIRT1 attenuates kidney disorders in male offspring due to maternal high-fat diet. Nutrients. 11:1462019. View Article : Google Scholar : PubMed/NCBI

27 

Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Jeon SM: Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 48:e2452016. View Article : Google Scholar : PubMed/NCBI

29 

Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, et al: Structural basis of AMPK regulation by small molecule activators. Nat Commun. 4:30172013. View Article : Google Scholar : PubMed/NCBI

30 

Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T and Neumann D: Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem. 281:32207–32216. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S and Kemp BE: AMPK is a direct adenylate charge-regulated protein kinase. Science. 332:1433–1435. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Gormand A, Henriksson E, Ström K, Jensen TE, Sakamoto K and Göransson O: Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes. J Cell Biochem. 112:1364–1375. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR and Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2:282003. View Article : Google Scholar : PubMed/NCBI

35 

Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG and Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9–19. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Lee GH, Peng C, Jeong SY, Park SA, Lee HY, Hoang TH, Kim J and Chae HJ: Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model. J Funct Foods. 87:1046282021. View Article : Google Scholar

37 

Rahman S and Islam R: Mammalian Sirt1: Insights on its biological functions. Cell Commun Signal. 9:112011. View Article : Google Scholar : PubMed/NCBI

38 

Elibol B and Kilic U: High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol (Lausanne). 9:6142018. View Article : Google Scholar : PubMed/NCBI

39 

Schug TT and Li X: Sirtuin 1 in lipid metabolism and obesity. Ann Med. 43:198–211. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Wang RH, Li C and Deng CX: Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci. 6:682–690. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Cantó C and Auwerx J: PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 20:98–105. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W and Accili D: SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8:333–341. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB and Auwerx J: CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12:1069–1076. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Lan F, Cacicedo JM, Ruderman N and Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: Possible role in AMP-activated protein kinase activation. J Biol Chem. 283:27628–27635. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Gao M and Liu D: Resveratrol suppresses T0901317-induced hepatic fat accumulation in mice. AAPS J. 15:744–752. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Ajmo JM, Liang X, Rogers CQ, Pennock B and You M: Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 295:G833–G842. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, et al: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14:612–622. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Faghihzadeh F, Adibi P and Hekmatdoost A: The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br J Nutr. 114:796–803. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Heebøll S, Kreuzfeldt M, Hamilton-Dutoit S, Poulsen MK, Stødkilde-Jørgensen H, Møller HJ, Jessen N, Thorsen K, Hellberg YK, Pedersen SB and Grønbæk H: Placebo-controlled, randomised clinical trial: High-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand J Gastroenterol. 51:456–463. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Davenport AM, Huber FM and Hoelz A: Structural and functional analysis of human SIRT1. J Mol Biol. 426:526–541. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Pan M, Yuan H, Brent M, Ding EC and Marmorsteins R: SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J Biol Chem. 287:2468–2476. 2012. View Article : Google Scholar : PubMed/NCBI

52 

McBurney MW, Clark-Knowles KV, Caron AZ and Gray DA: SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer. 4:125–134. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Olmos Y, Brosens JJ and Lam EWF: Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat. 14:35–44. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Yanagisawa S, Baker JR, Vuppusetty C, Koga T, Colley T, Fenwick P, Donnelly LE, Barnes PJ and Ito K: The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One. 13:e01939212018. View Article : Google Scholar : PubMed/NCBI

55 

Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ and Steinberg GR: Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab. 311:E730–E740. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Corey KE, Vuppalanchi R, Vos M, Kohli R, Molleston JP, Wilson L, Unalp-Arida A, Cummings OW, Lavine JE, Chalasani N, et al: Improvement in liver histology is associated with reduction in dyslipidemia in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 60:360–367. 2015. View Article : Google Scholar : PubMed/NCBI

58 

de Oliveira CP, Cotrim HP, Stefano JT, Siqueira ACG, Salgado ALA and Parise ER: N-acetylcysteine and/or ursodeoxycholic acid associated with metformin in non-alcoholic steatohepatitis: An open-label multicenter randomized controlled trial. Arq Gastroenterol. 56:184–190. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Cai Z, Lou Q, Wang F, Li E, Sun J, Fang H, Xi J and Ju L: N-acetylcysteine protects against liver injure induced by carbon tetrachloride via activation of the Nrf2/HO-1 pathway. Int J Clin Exp Pathol. 8:8655–8662. 2015.PubMed/NCBI

60 

Bauerlein DK, Akbar HN, von Rosenvinge EC, Loughry ND and John PR: Benefit of N-acetylcysteine in postoperative hepatic dysfunction: Case report and review of literature. Case Reports Hepatol. 2019:47303812019. View Article : Google Scholar : PubMed/NCBI

61 

Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T and Kröller-Schön S: The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation. Antioxidants. 9:5252020. View Article : Google Scholar : PubMed/NCBI

62 

Zhang M, Yang D, Gong X, Ge P, Dai J, Lin L and Zhang L: Protective benefits of AMP-activated protein kinase in hepatic ischemia-reperfusion injury. Am J Transl Res. 9:823–829. 2017.PubMed/NCBI

63 

Meng S, Cao J, He Q, Xiong L, Chang E, Radovick S, Wondisford FE and He L: Metformin activates AMP-activated protein kinase by promoting formation of the αβγheterotrimeric complex. J Biol Chem. 290:3393–3802. 2015. View Article : Google Scholar

64 

Ouyang J, Parakhia RA and Ochs RS: Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem. 286:1–11. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Fouqueray P, Bolze S, Dubourg J, Hallakou-Bozec S, Theurey P, Grouin JM, Chevalier C, Gluais-Dagorn P, Moller DE and Cusi K: Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease: A phase 1b study. Cell Reports Med. 2:1004742021. View Article : Google Scholar : PubMed/NCBI

66 

Gluais-Dagorn P, Foretz M, Steinberg GR, Batchuluun B, Zawistowska-Deniziak A, Lambooij JM, Guigas B, Carling D, Monternier PA, Moller DE, et al: Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis. Hepatol Commun. 6:101–119. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Monternier PA, Parasar P, Theurey P, Dagorn PG, Kaur N, Nagaraja TN, Fouqueray P, Bolze S, Moller DE, Singh J and Hallakou-Bozec S: Beneficial effects of the direct AMP-kinase activator PXL770 in in vitro and in vivo models of X-linked adrenoleukodystrophy. J Pharmacol Exp Ther. 382:208–222. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Shargorodsky M, Omelchenko E, Matas Z, Boaz M and Gavish D: Relation between augmentation index and adiponectin during one-year metformin treatment for nonalcoholic steatohepatosis: Effects beyond glucose lowering? Cardiovasc Diabetol. 11:612012. View Article : Google Scholar : PubMed/NCBI

69 

Green CJ, Marjot T, Walsby-Tickle J, Charlton C, Cornfield T, Westcott F, Pinnick KE, Moolla A, Hazlehurst JM, McCullagh J, et al: Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. Eur J Endocrinol. 186:367–377. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Resuli B, Demiraj V, Babameto A, Sema K and Malaj V: Metformin superior to low-fat diet for the treatment of patients with nonalcoholic fatty liver disease and/or steatohepatitis. Pol Arch Med Wewn. 122:68–71. 2012.PubMed/NCBI

71 

Feng WH, Bi Y, Li P, Yin TT, Gao CX, Shen SM, Gao LJ, Yang DH and Zhu DL: Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: A randomized trial. J Diabetes Investig. 10:399–407. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Yang X, Peng X and Huang J: Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol. 20:1145–1152. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Sarfraz I, Rasul A, Hussain G, Shah MA, Zahoor AF, Asrar M, Selamoglu Z, Ji XY, Adem S and Sarker SD: 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance. Biofactors. 46:550–562. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Marini C, Cossu V, Bauckneht M, Lanfranchi F, Raffa S, Orengo AM, Ravera S, Bruno S and Sambuceti G: Metformin and cancer glucose metabolism: At the bench or at the bedside? Biomolecules. 11:12312021. View Article : Google Scholar : PubMed/NCBI

75 

Faghihzadeh F, Adibi P, Rafiei R and Hekmatdoost A: Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res. 34:837–843. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, Shu F, Gao Y, Yuan L, Zhang Q and Mi M: Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis. 47:226–232. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X and Li X: Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9:327–338. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Rezzani R and Franco C: Liver, oxidative stress and metabolic syndromes. Nutrients. 13:3012021. View Article : Google Scholar : PubMed/NCBI

79 

Cichoz-Lach H and Michalak A: Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 20:8082–8091. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, et al: Chronic inflammation in the etiology of disease across the life span. Nat Med. 25:1822–1832. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Andrade JMO, Paraíso AF, de Oliveira MVM, Martins AME, Neto JF, Guimarães ALS, de Paula AM, Qureshi M and Santos SHS: Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition. 30:915–919. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Chai D, Zhang L, Xi S, Cheng Y, Jiang H and Hu R: Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation. Cell Physiol Biochem. 46:781–792. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Ren Z, He H, Zuo Z, Xu Z, Wei Z and Deng J: The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 24:362019. View Article : Google Scholar : PubMed/NCBI

84 

Du F, Huang R, Lin D, Wang Y, Yang X, Huang X, Zheng B, Chen Z, Huang Y, Wang X and Chen F: Resveratrol improves liver steatosis and insulin resistance in non-alcoholic fatty liver disease in association with the gut microbiota. Front Microbiol. 12:6113232021. View Article : Google Scholar : PubMed/NCBI

85 

Wardani HA, Rahmadi M, Ardianto C, Balan SS, Kamaruddin NS and Khotib J: Development of nonalcoholic fatty liver disease model by high-fat diet in rats. J Basic Clin Physiol Pharmacol. 30:1–7. 2020.PubMed/NCBI

86 

Theodotou M, Fokianos K, Moniatis D, Kadlenic R, Chrysikou A, Aristotelous A, Mouzouridou A, Diakides J and Stavrou E: Effect of resveratrol on non-alcoholic fatty liver disease. Exp Ther Med. 559–565. 2019.PubMed/NCBI

87 

Zhou Q, Wang Y, Han X, Fu S, Zhu C and Chen Q: Efficacy of resveratrol supplementation on glucose and lipid metabolism: A meta-analysis and systematic review. Front Physiol. 13:7959802022. View Article : Google Scholar : PubMed/NCBI

88 

Zhao H, Zhang Y, Shu L, Song G and Ma H: Resveratrol reduces liver endoplasmic reticulum stress and improves insulin sensitivity in vivo and in vitro. Drug Des Devel Ther. 13:1473–1485. 2019. View Article : Google Scholar : PubMed/NCBI

89 

León D, Uribe E, Zambrano A and Salas M: Implications of resveratrol on glucose uptake and metabolism. Molecules. 22:3982017. View Article : Google Scholar : PubMed/NCBI

90 

Abd El-Haleim EA, Bahgat AK and Saleh S: Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression. World J Gastroenterol. 22:2931–2948. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Ding S, Jiang J, Zhang G, Bu Y, Zhang G and Zhao X: Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One. 12:e01835412017. View Article : Google Scholar : PubMed/NCBI

92 

Yang H, Liu Y, Wang Y, Xu S and Su D: Knockdown of Sirt1 gene in mice results in lipid accumulation in the liver mediated via PGC-1α-induced mitochondrial dysfunction and oxidative stress. Bull Exp Biol Med. 172:180–186. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Hou X, Rooklin D, Fang H and Zhang Y: Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep. 6:381862016. View Article : Google Scholar : PubMed/NCBI

94 

Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N and Xu RM: Structural basis for allosteric, substratedependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29:1316–1325. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Gertz M, Nguyen GTT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D and Steegborn C: A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 7:e497612012. View Article : Google Scholar : PubMed/NCBI

96 

Schug TT and Li X: Sirtuin 1 in lipid metabolism and obesity. Ann Med. 43:198–211. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, et al: SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Ford RJ, Desjardins EM and Steinberg GR: Are SIRT1 activators another indirect method to increase AMPK for beneficial effects on aging and the metabolic syndrome? EBioMedicine. 19:16–17. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F and Ido Y: AMPK and SIRT1: A long-standing partnership? Am J Physiol Endocrinol Metab. 298:E751–E760. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Duarte-Vázquez MA, Gómez-Solis A, Gómez-Cansino R, Reyes-Esparza J, Luis Rosado J and Rodriguez-Fragoso L: Effect of combined resveratrol plus metformin therapy in db/db diabetic mice. FASEB J. 31:1001.8. 2017.

101 

Li S, Qian Q, Ying N, Lai J, Feng L, Zheng S, Jiang F, Song Q, Chai H and Dou X: Activation of the AMPK-SIRT1 pathway contributes to protective effects of Salvianolic acid A against lipotoxicity in hepatocytes and NAFLD in mice. Front Pharmacol. 11:5609052020. View Article : Google Scholar : PubMed/NCBI

102 

Chen XY, Cai CZ, Yu ML, Feng ZM, Zhang YW, Liu PH, Zeng H and Yu CH: LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol. 25:6607–6618. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Chalasani N, Vuppalanchi R, Rinella M, Middleton MS, Siddiqui MS, Barritt AS IV, Kolterman O, Flores O, Alonso C, Iruarrizaga-Lejarreta M, et al: Randomised clinical trial: A leucine-metformin-sildenafil combination (NS-0200) vs placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 47:1639–1651. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Banerjee J, Bruckbauer A and Zemel MB: Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism. 65:1679–1691. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Bruckbauer A and Zemel MB: Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS One. 9:e891662014. View Article : Google Scholar : PubMed/NCBI

106 

Liang C, Curry BJ, Brown PL and Zemel MB: Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J Nutr Metab. 2014:2397502014. View Article : Google Scholar : PubMed/NCBI

107 

Bruckbauer A and Zemel MB: Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond). 8:912011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Anggreini P, Kuncoro H, Sumiwi SA and Levita J: Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Mol Med Rep 27: 35, 2023.
APA
Anggreini, P., Kuncoro, H., Sumiwi, S.A., & Levita, J. (2023). Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Molecular Medicine Reports, 27, 35. https://doi.org/10.3892/mmr.2022.12922
MLA
Anggreini, P., Kuncoro, H., Sumiwi, S. A., Levita, J."Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review)". Molecular Medicine Reports 27.2 (2023): 35.
Chicago
Anggreini, P., Kuncoro, H., Sumiwi, S. A., Levita, J."Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review)". Molecular Medicine Reports 27, no. 2 (2023): 35. https://doi.org/10.3892/mmr.2022.12922
Copy and paste a formatted citation
x
Spandidos Publications style
Anggreini P, Kuncoro H, Sumiwi SA and Levita J: Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Mol Med Rep 27: 35, 2023.
APA
Anggreini, P., Kuncoro, H., Sumiwi, S.A., & Levita, J. (2023). Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Molecular Medicine Reports, 27, 35. https://doi.org/10.3892/mmr.2022.12922
MLA
Anggreini, P., Kuncoro, H., Sumiwi, S. A., Levita, J."Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review)". Molecular Medicine Reports 27.2 (2023): 35.
Chicago
Anggreini, P., Kuncoro, H., Sumiwi, S. A., Levita, J."Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review)". Molecular Medicine Reports 27, no. 2 (2023): 35. https://doi.org/10.3892/mmr.2022.12922
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team