|
1
|
Tiniakos DG, Anstee QM and Burt AD: Fatty
liver disease. MacSween's Pathol Liver. 7th edition. Elsevier;
Philadephia, PA: pp. 308–371. 2018, View Article : Google Scholar
|
|
2
|
Iqbal U, Perumpail B, Akhtar D, Kim D and
Ahmed A: The epidemiology, risk profiling and diagnostic challenges
of nonalcoholic fatty liver disease. Medicines (Basel). 6:412019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sayiner M, Koenig A, Henry L and Younossi
ZM: Epidemiology of nonalcoholic fatty liver disease and
nonalcoholic steatohepatitis in the United States and the rest of
the world. Clin Liver Dis. 20:205–214. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Byrne CD and Targher G: NAFLD: A
multisystem disease. J Hepatol. 62:S47–S64. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Buzzetti E, Pinzani M and Tsochatzis EA:
The multiple-hit pathogenesis of non-alcoholic fatty liver disease
(NAFLD). Metabolism. 65:1038–1048. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ter Horst KW and Serlie MJ: Fructose
consumption, lipogenesis, and non-alcoholic fatty liver disease.
Nutrients. 9:9812017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Knebel B, Fahlbusch P, Dille M, Wahlers N,
Hartwig S, Jacob S, Kettel U, Schiller M, Herebian D, Koellmer C,
et al: Fatty liver due to increased de novo lipogenesis:
Alterations in the hepatic peroxisomal proteome. Front Cell Dev
Biol. 7:2482019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ferré P and Foufelle F: Hepatic steatosis:
A role for de novo lipogenesis and the transcription factor
SREBP-1c. Diabetes Obes Metab. 12:83–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Witte N, Muenzner M, Rietscher J, Knauer
M, Heidenreich S, Nuotio-Antar AM, Graef FA, Fedders R, Tolkachov
A, Goehring I and Schupp M: The glucose sensor ChREBP links de novo
lipogenesis to PPARγactivity and adipocyte differentiation.
Endocrinol. 156:4008–4019. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Vijayakumar A, Aryal P, Wen J, Syed I,
Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ,
Peroni OD, et al: Absence of carbohydrate response element binding
protein in adipocytes causes systemic insulin resistance and
impairs glucose transport. Cell Rep. 21:1021–1035. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stoeckman AK and Towle HC: The role of
SREBP-1c in nutritional regulation of lipogenic enzyme gene
expression. J Biol Chem. 277:27029–27035. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
von Loeffelholz C, Coldewey SM and
Birkenfeld AL: A narrative review on the role of ampk on de novo
lipogenesis in non-alcoholic fatty liver disease: Evidence from
human studies. Cells. 10:18222021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Viollet B, Foretz M, Guigas B, Horman S,
Dentin R, Bertrand L, Hue L and Andreelli F: Activation of
AMP-activated protein kinase in the liver: A new strategy for the
management of metabolic hepatic disorders. J Physiol. 574:41–53.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X,
Jiang B, Park O, Luo Z, Lefai E, Shyy JYJ, et al: AMPK
phosphorylates and inhibits SREBP activity to attenuate hepatic
steatosis and atherosclerosis in diet-induced insulin-resistant
mice. Cell Metab. 13:376–388. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ha JH, Jang J, Chung SI and Yoon Y: AMPK
and SREBP-1c mediate the anti-adipogenic effect of
β-hydroxyisovalerylshikonin. Int J Mol Med. 37:816–824. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liangpunsakul S, Ross RA and Crabb DW:
Activation of carbohydrate response element binding protein by
ethanol. J Investig Med. 61:270–277. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cantó C and Auwerx J: Targeting sirtuin 1
to improve metabolism: All you need is NAD +? Pharmacol Rev.
64:166–187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hou X, Xu S, Maitland-Toolan KA, Sato K,
Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, et al:
SIRT1 regulates hepatocyte lipid metabolism through activating
AMP-activated protein kinase. J Biol Chem. 283:20015–20026. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao
J, Zang M, Wu SY, Chiang CM, Veenstra TD and Kemper JK: SIRT1
deacetylates and inhibits SREBP-1C activity in regulation of
hepatic lipid metabolism. J Biol Chem. 285:33959–33970. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Paglialunga S and Dehn CA: Clinical
assessment of hepatic de novo lipogenesis in non-alcoholic fatty
liver disease. Lipids Health Dis. 15:1592016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sanders FWB and Griffin JL: De novo
lipogenesis in the liver in health and disease: More than just a
shunting yard for glucose. Biol Rev. 91:452–468. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sato S, Jung H, Nakagawa T, Pawlosky R,
Takeshima T, Lee WR, Sakiyama H, Laxman S, Wynn RM, Tu BP, et al:
Metabolite regulation of nuclear localization of
carbohydrate-response element-binding protein (ChREBP): Role of amp
as an allosteric inhibitor. J Biol Chem. 291:10515–10527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang Y, Viscarra J, Kim SJ and Sul HS:
Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell
Biol. 16:678–689. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dentin R, Benhamed F, Hainault I, Fauveau
V, Foufelle F, Dyck JRB, Girard J and Postic C: Liver-specific
inhibition of ChREBP improves hepatic steatosis and insulin
resistance in ob/ob mice. Diabetes. 55:2159–2170. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao X, Xiaoli, Zong H, Abdulla A, Yang
EST, Wang Q, Ji JY, Pessin JE, Das BC and Yang F: Inhibition of
SREBP transcriptional activity by a boron-containing compound
improves lipid homeostasis in diet-induced obesity. Diabetes.
63:2464–2473. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nguyen LT, Mak CH, Chen H, Zaky AA, Wong
MG, Pollock CA and Saad S: SIRT1 attenuates kidney disorders in
male offspring due to maternal high-fat diet. Nutrients.
11:1462019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Herzig S and Shaw RJ: AMPK: Guardian of
metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol.
19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jeon SM: Regulation and function of AMPK
in physiology and diseases. Exp Mol Med. 48:e2452016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xiao B, Sanders MJ, Carmena D, Bright NJ,
Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, et
al: Structural basis of AMPK regulation by small molecule
activators. Nat Commun. 4:30172013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Suter M, Riek U, Tuerk R, Schlattner U,
Wallimann T and Neumann D: Dissecting the role of 5′-AMP for
allosteric stimulation, activation, and deactivation of
AMP-activated protein kinase. J Biol Chem. 281:32207–32216. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Oakhill JS, Steel R, Chen ZP, Scott JW,
Ling N, Tam S and Kemp BE: AMPK is a direct adenylate
charge-regulated protein kinase. Science. 332:1433–1435. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gormand A, Henriksson E, Ström K, Jensen
TE, Sakamoto K and Göransson O: Regulation of AMP-activated protein
kinase by LKB1 and CaMKK in adipocytes. J Cell Biochem.
112:1364–1375. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shackelford DB and Shaw RJ: The LKB1-AMPK
pathway: Metabolism and growth control in tumour suppression. Nat
Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hawley SA, Boudeau J, Reid JL, Mustard KJ,
Udd L, Mäkelä TP, Alessi DR and Hardie DG: Complexes between the
LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are
upstream kinases in the AMP-activated protein kinase cascade. J
Biol. 2:282003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hawley SA, Pan DA, Mustard KJ, Ross L,
Bain J, Edelman AM, Frenguelli BG and Hardie DG:
Calmodulin-dependent protein kinase kinase-beta is an alternative
upstream kinase for AMP-activated protein kinase. Cell Metab.
2:9–19. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lee GH, Peng C, Jeong SY, Park SA, Lee HY,
Hoang TH, Kim J and Chae HJ: Ginger extract controls mTOR-SREBP1-ER
stress-mitochondria dysfunction through AMPK activation in obesity
model. J Funct Foods. 87:1046282021. View Article : Google Scholar
|
|
37
|
Rahman S and Islam R: Mammalian Sirt1:
Insights on its biological functions. Cell Commun Signal. 9:112011.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Elibol B and Kilic U: High levels of SIRT1
expression as a protective mechanism against disease-related
conditions. Front Endocrinol (Lausanne). 9:6142018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Schug TT and Li X: Sirtuin 1 in lipid
metabolism and obesity. Ann Med. 43:198–211. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang RH, Li C and Deng CX: Liver steatosis
and increased ChREBP expression in mice carrying a liver specific
SIRT1 null mutation under a normal feeding condition. Int J Biol
Sci. 6:682–690. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cantó C and Auwerx J: PGC-1alpha, SIRT1
and AMPK, an energy sensing network that controls energy
expenditure. Curr Opin Lipidol. 20:98–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Banks AS, Kon N, Knight C, Matsumoto M,
Gutiérrez-Juárez R, Rossetti L, Gu W and Accili D: SirT1 gain of
function increases energy efficiency and prevents diabetes in mice.
Cell Metab. 8:333–341. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Noriega LG, Feige JN, Canto C, Yamamoto H,
Yu J, Herman MA, Mataki C, Kahn BB and Auwerx J: CREB and ChREBP
oppositely regulate SIRT1 expression in response to energy
availability. EMBO Rep. 12:1069–1076. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lan F, Cacicedo JM, Ruderman N and Ido Y:
SIRT1 modulation of the acetylation status, cytosolic localization,
and activity of LKB1: Possible role in AMP-activated protein kinase
activation. J Biol Chem. 283:27628–27635. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gao M and Liu D: Resveratrol suppresses
T0901317-induced hepatic fat accumulation in mice. AAPS J.
15:744–752. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ajmo JM, Liang X, Rogers CQ, Pennock B and
You M: Resveratrol alleviates alcoholic fatty liver in mice. Am J
Physiol Gastrointest Liver Physiol. 295:G833–G842. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Timmers S, Konings E, Bilet L, Houtkooper
RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu
D, Kersten S, et al: Calorie restriction-like effects of 30 days of
resveratrol supplementation on energy metabolism and metabolic
profile in obese humans. Cell Metab. 14:612–622. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Faghihzadeh F, Adibi P and Hekmatdoost A:
The effects of resveratrol supplementation on cardiovascular risk
factors in patients with non-alcoholic fatty liver disease: A
randomised, double-blind, placebo-controlled study. Br J Nutr.
114:796–803. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Heebøll S, Kreuzfeldt M, Hamilton-Dutoit
S, Poulsen MK, Stødkilde-Jørgensen H, Møller HJ, Jessen N, Thorsen
K, Hellberg YK, Pedersen SB and Grønbæk H: Placebo-controlled,
randomised clinical trial: High-dose resveratrol treatment for
non-alcoholic fatty liver disease. Scand J Gastroenterol.
51:456–463. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Davenport AM, Huber FM and Hoelz A:
Structural and functional analysis of human SIRT1. J Mol Biol.
426:526–541. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pan M, Yuan H, Brent M, Ding EC and
Marmorsteins R: SIRT1 contains N- and C-terminal regions that
potentiate deacetylase activity. J Biol Chem. 287:2468–2476. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
McBurney MW, Clark-Knowles KV, Caron AZ
and Gray DA: SIRT1 is a highly networked protein that mediates the
adaptation to chronic physiological stress. Genes Cancer.
4:125–134. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Olmos Y, Brosens JJ and Lam EWF: Interplay
between SIRT proteins and tumour suppressor transcription factors
in chemotherapeutic resistance of cancer. Drug Resist Updat.
14:35–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yanagisawa S, Baker JR, Vuppusetty C, Koga
T, Colley T, Fenwick P, Donnelly LE, Barnes PJ and Ito K: The
dynamic shuttling of SIRT1 between cytoplasm and nuclei in
bronchial epithelial cells by single and repeated cigarette smoke
exposure. PLoS One. 13:e01939212018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Smith BK, Marcinko K, Desjardins EM, Lally
JS, Ford RJ and Steinberg GR: Treatment of nonalcoholic fatty liver
disease: Role of AMPK. Am J Physiol Endocrinol Metab.
311:E730–E740. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hardie DG, Ross FA and Hawley SA: AMPK: A
nutrient and energy sensor that maintains energy homeostasis. Nat
Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Corey KE, Vuppalanchi R, Vos M, Kohli R,
Molleston JP, Wilson L, Unalp-Arida A, Cummings OW, Lavine JE,
Chalasani N, et al: Improvement in liver histology is associated
with reduction in dyslipidemia in children with nonalcoholic fatty
liver disease. J Pediatr Gastroenterol Nutr. 60:360–367. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
de Oliveira CP, Cotrim HP, Stefano JT,
Siqueira ACG, Salgado ALA and Parise ER: N-acetylcysteine and/or
ursodeoxycholic acid associated with metformin in non-alcoholic
steatohepatitis: An open-label multicenter randomized controlled
trial. Arq Gastroenterol. 56:184–190. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cai Z, Lou Q, Wang F, Li E, Sun J, Fang H,
Xi J and Ju L: N-acetylcysteine protects against liver injure
induced by carbon tetrachloride via activation of the Nrf2/HO-1
pathway. Int J Clin Exp Pathol. 8:8655–8662. 2015.PubMed/NCBI
|
|
60
|
Bauerlein DK, Akbar HN, von Rosenvinge EC,
Loughry ND and John PR: Benefit of N-acetylcysteine in
postoperative hepatic dysfunction: Case report and review of
literature. Case Reports Hepatol. 2019:47303812019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jansen T, Kvandová M, Daiber A, Stamm P,
Frenis K, Schulz E, Münzel T and Kröller-Schön S: The AMP-activated
protein kinase plays a role in antioxidant defense and regulation
of vascular inflammation. Antioxidants. 9:5252020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang M, Yang D, Gong X, Ge P, Dai J, Lin
L and Zhang L: Protective benefits of AMP-activated protein kinase
in hepatic ischemia-reperfusion injury. Am J Transl Res. 9:823–829.
2017.PubMed/NCBI
|
|
63
|
Meng S, Cao J, He Q, Xiong L, Chang E,
Radovick S, Wondisford FE and He L: Metformin activates
AMP-activated protein kinase by promoting formation of the
αβγheterotrimeric complex. J Biol Chem. 290:3393–3802. 2015.
View Article : Google Scholar
|
|
64
|
Ouyang J, Parakhia RA and Ochs RS:
Metformin activates AMP kinase through inhibition of AMP deaminase.
J Biol Chem. 286:1–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fouqueray P, Bolze S, Dubourg J,
Hallakou-Bozec S, Theurey P, Grouin JM, Chevalier C, Gluais-Dagorn
P, Moller DE and Cusi K: Pharmacodynamic effects of direct AMP
kinase activation in humans with insulin resistance and
non-alcoholic fatty liver disease: A phase 1b study. Cell Reports
Med. 2:1004742021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gluais-Dagorn P, Foretz M, Steinberg GR,
Batchuluun B, Zawistowska-Deniziak A, Lambooij JM, Guigas B,
Carling D, Monternier PA, Moller DE, et al: Direct AMPK activation
corrects NASH in rodents through metabolic effects and direct
action on inflammation and fibrogenesis. Hepatol Commun. 6:101–119.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Monternier PA, Parasar P, Theurey P,
Dagorn PG, Kaur N, Nagaraja TN, Fouqueray P, Bolze S, Moller DE,
Singh J and Hallakou-Bozec S: Beneficial effects of the direct
AMP-kinase activator PXL770 in in vitro and in vivo models of
X-linked adrenoleukodystrophy. J Pharmacol Exp Ther. 382:208–222.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shargorodsky M, Omelchenko E, Matas Z,
Boaz M and Gavish D: Relation between augmentation index and
adiponectin during one-year metformin treatment for nonalcoholic
steatohepatosis: Effects beyond glucose lowering? Cardiovasc
Diabetol. 11:612012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Green CJ, Marjot T, Walsby-Tickle J,
Charlton C, Cornfield T, Westcott F, Pinnick KE, Moolla A,
Hazlehurst JM, McCullagh J, et al: Metformin maintains intrahepatic
triglyceride content through increased hepatic de novo lipogenesis.
Eur J Endocrinol. 186:367–377. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Resuli B, Demiraj V, Babameto A, Sema K
and Malaj V: Metformin superior to low-fat diet for the treatment
of patients with nonalcoholic fatty liver disease and/or
steatohepatitis. Pol Arch Med Wewn. 122:68–71. 2012.PubMed/NCBI
|
|
71
|
Feng WH, Bi Y, Li P, Yin TT, Gao CX, Shen
SM, Gao LJ, Yang DH and Zhu DL: Effects of liraglutide, metformin
and gliclazide on body composition in patients with both type 2
diabetes and non-alcoholic fatty liver disease: A randomized trial.
J Diabetes Investig. 10:399–407. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang X, Peng X and Huang J: Inhibiting
6-phosphogluconate dehydrogenase selectively targets breast cancer
through AMPK activation. Clin Transl Oncol. 20:1145–1152. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sarfraz I, Rasul A, Hussain G, Shah MA,
Zahoor AF, Asrar M, Selamoglu Z, Ji XY, Adem S and Sarker SD:
6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer
cells: From cancer initiation to metastasis and chemoresistance.
Biofactors. 46:550–562. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Marini C, Cossu V, Bauckneht M, Lanfranchi
F, Raffa S, Orengo AM, Ravera S, Bruno S and Sambuceti G: Metformin
and cancer glucose metabolism: At the bench or at the bedside?
Biomolecules. 11:12312021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Faghihzadeh F, Adibi P, Rafiei R and
Hekmatdoost A: Resveratrol supplementation improves inflammatory
biomarkers in patients with nonalcoholic fatty liver disease. Nutr
Res. 34:837–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen S, Zhao X, Ran L, Wan J, Wang X, Qin
Y, Shu F, Gao Y, Yuan L, Zhang Q and Mi M: Resveratrol improves
insulin resistance, glucose and lipid metabolism in patients with
non-alcoholic fatty liver disease: A randomized controlled trial.
Dig Liver Dis. 47:226–232. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Purushotham A, Schug TT, Xu Q, Surapureddi
S, Guo X and Li X: Hepatocyte-specific deletion of SIRT1 alters
fatty acid metabolism and results in hepatic steatosis and
inflammation. Cell Metab. 9:327–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Rezzani R and Franco C: Liver, oxidative
stress and metabolic syndromes. Nutrients. 13:3012021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cichoz-Lach H and Michalak A: Oxidative
stress as a crucial factor in liver diseases. World J
Gastroenterol. 20:8082–8091. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Furman D, Campisi J, Verdin E,
Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW,
Fasano A, Miller GW, et al: Chronic inflammation in the etiology of
disease across the life span. Nat Med. 25:1822–1832. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Andrade JMO, Paraíso AF, de Oliveira MVM,
Martins AME, Neto JF, Guimarães ALS, de Paula AM, Qureshi M and
Santos SHS: Resveratrol attenuates hepatic steatosis in high-fat
fed mice by decreasing lipogenesis and inflammation. Nutrition.
30:915–919. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chai D, Zhang L, Xi S, Cheng Y, Jiang H
and Hu R: Nrf2 activation induced by Sirt1 ameliorates acute lung
injury after intestinal ischemia/reperfusion through NOX4-mediated
gene regulation. Cell Physiol Biochem. 46:781–792. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z and Deng
J: The role of different SIRT1-mediated signaling pathways in toxic
injury. Cell Mol Biol Lett. 24:362019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Du F, Huang R, Lin D, Wang Y, Yang X,
Huang X, Zheng B, Chen Z, Huang Y, Wang X and Chen F: Resveratrol
improves liver steatosis and insulin resistance in non-alcoholic
fatty liver disease in association with the gut microbiota. Front
Microbiol. 12:6113232021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wardani HA, Rahmadi M, Ardianto C, Balan
SS, Kamaruddin NS and Khotib J: Development of nonalcoholic fatty
liver disease model by high-fat diet in rats. J Basic Clin Physiol
Pharmacol. 30:1–7. 2020.PubMed/NCBI
|
|
86
|
Theodotou M, Fokianos K, Moniatis D,
Kadlenic R, Chrysikou A, Aristotelous A, Mouzouridou A, Diakides J
and Stavrou E: Effect of resveratrol on non-alcoholic fatty liver
disease. Exp Ther Med. 559–565. 2019.PubMed/NCBI
|
|
87
|
Zhou Q, Wang Y, Han X, Fu S, Zhu C and
Chen Q: Efficacy of resveratrol supplementation on glucose and
lipid metabolism: A meta-analysis and systematic review. Front
Physiol. 13:7959802022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhao H, Zhang Y, Shu L, Song G and Ma H:
Resveratrol reduces liver endoplasmic reticulum stress and improves
insulin sensitivity in vivo and in vitro. Drug Des Devel Ther.
13:1473–1485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
León D, Uribe E, Zambrano A and Salas M:
Implications of resveratrol on glucose uptake and metabolism.
Molecules. 22:3982017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Abd El-Haleim EA, Bahgat AK and Saleh S:
Resveratrol and fenofibrate ameliorate fructose-induced
nonalcoholic steatohepatitis by modulation of genes expression.
World J Gastroenterol. 22:2931–2948. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ding S, Jiang J, Zhang G, Bu Y, Zhang G
and Zhao X: Resveratrol and caloric restriction prevent hepatic
steatosis by regulating SIRT1-autophagy pathway and alleviating
endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One.
12:e01835412017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang H, Liu Y, Wang Y, Xu S and Su D:
Knockdown of Sirt1 gene in mice results in lipid accumulation in
the liver mediated via PGC-1α-induced mitochondrial dysfunction and
oxidative stress. Bull Exp Biol Med. 172:180–186. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hou X, Rooklin D, Fang H and Zhang Y:
Resveratrol serves as a protein-substrate interaction stabilizer in
human SIRT1 activation. Sci Rep. 6:381862016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang
N and Xu RM: Structural basis for allosteric, substratedependent
stimulation of SIRT1 activity by resveratrol. Genes Dev.
29:1316–1325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Gertz M, Nguyen GTT, Fischer F, Suenkel B,
Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C,
Wolters D and Steegborn C: A molecular mechanism for direct sirtuin
activation by resveratrol. PLoS One. 7:e497612012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Schug TT and Li X: Sirtuin 1 in lipid
metabolism and obesity. Ann Med. 43:198–211. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Price NL, Gomes AP, Ling AJY, Duarte FV,
Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro
JS, et al: SIRT1 is required for AMPK activation and the beneficial
effects of resveratrol on mitochondrial function. Cell Metab.
15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ford RJ, Desjardins EM and Steinberg GR:
Are SIRT1 activators another indirect method to increase AMPK for
beneficial effects on aging and the metabolic syndrome?
EBioMedicine. 19:16–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ruderman NB, Xu XJ, Nelson L, Cacicedo JM,
Saha AK, Lan F and Ido Y: AMPK and SIRT1: A long-standing
partnership? Am J Physiol Endocrinol Metab. 298:E751–E760. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Duarte-Vázquez MA, Gómez-Solis A,
Gómez-Cansino R, Reyes-Esparza J, Luis Rosado J and
Rodriguez-Fragoso L: Effect of combined resveratrol plus metformin
therapy in db/db diabetic mice. FASEB J. 31:1001.8. 2017.
|
|
101
|
Li S, Qian Q, Ying N, Lai J, Feng L, Zheng
S, Jiang F, Song Q, Chai H and Dou X: Activation of the AMPK-SIRT1
pathway contributes to protective effects of Salvianolic acid A
against lipotoxicity in hepatocytes and NAFLD in mice. Front
Pharmacol. 11:5609052020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen XY, Cai CZ, Yu ML, Feng ZM, Zhang YW,
Liu PH, Zeng H and Yu CH: LB100 ameliorates nonalcoholic fatty
liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol.
25:6607–6618. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chalasani N, Vuppalanchi R, Rinella M,
Middleton MS, Siddiqui MS, Barritt AS IV, Kolterman O, Flores O,
Alonso C, Iruarrizaga-Lejarreta M, et al: Randomised clinical
trial: A leucine-metformin-sildenafil combination (NS-0200) vs
placebo in patients with non-alcoholic fatty liver disease. Aliment
Pharmacol Ther. 47:1639–1651. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Banerjee J, Bruckbauer A and Zemel MB:
Activation of the AMPK/Sirt1 pathway by a leucine-metformin
combination increases insulin sensitivity in skeletal muscle, and
stimulates glucose and lipid metabolism and increases life span in
Caenorhabditis elegans. Metabolism. 65:1679–1691. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bruckbauer A and Zemel MB: Synergistic
effects of polyphenols and methylxanthines with leucine on
AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes.
PLoS One. 9:e891662014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liang C, Curry BJ, Brown PL and Zemel MB:
Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling
in C2C12 myotubes. J Nutr Metab. 2014:2397502014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bruckbauer A and Zemel MB: Effects of
dairy consumption on SIRT1 and mitochondrial biogenesis in
adipocytes and muscle cells. Nutr Metab (Lond). 8:912011.
View Article : Google Scholar : PubMed/NCBI
|