Isofraxidin enhances hyperthermia‑induced apoptosis via redox modification in acute monocytic leukemia U937 cells

  • Authors:
    • Peng Li
    • Qing-Li Zhao
    • Mati Ur Rehman
    • Paras Jawaid
    • Zheng-Guo Cui
    • Kanwal Ahmed
    • Takashi Kondo
    • Jun-Ichi Saitoh
    • Kyo Noguchi
  • View Affiliations

  • Published online on: January 2, 2023     https://doi.org/10.3892/mmr.2023.12928
  • Article Number: 41
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The cell‑killing potential of most chemotherapeutic agents is enhanced by a temperature elevation. Isofraxidin (IF) is a coumarin compound widely found in plants, such as the Umbelliferae or Chloranthaceae families. IF induces anticancer effects in lung and colorectal cancer. To the best of our knowledge, the combined effects of hyperthermia (HT) and IF on heat‑induced apoptosis have not been reported. Acute monocytic leukemia U937 cells were exposed to HT with or without IF pre‑treatment. Apoptosis was measured by Annexin V‑FITC/PI double staining assay using flow cytometry and cell viability was observed by cell counting kit assay, DNA fragmentation. The mechanism involved in the combination was explored by measuring changes in the mitochondrial membrane potential, (MMP), intracellular ROS generation, expression of apoptosis related protein, and intracellular calcium ion level. It was demonstrated that IF enhanced HT‑induced apoptosis in U937 cells. The results demonstrated that combined treatment enhanced mitochondrial membrane potential loss and transient superoxide generation increased protein expression levels of caspase‑3, caspase‑8 and phosphorylated‑JNK and intracellular calcium levels. Moreover, the role of caspases and JNK was confirmed using a pan caspase inhibitor (zVAD‑FMK) and JNK inhibitor (SP600125) in U937 cells. Collectively, the data demonstrated that IF enhanced HT‑induced apoptosis via a reactive oxygen species mediated mitochondria/caspase‑dependent pathway in U937 cells.
View Figures
View References

Related Articles

Journal Cover

February-2023
Volume 27 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li P, Zhao Q, Rehman MU, Jawaid P, Cui Z, Ahmed K, Kondo T, Saitoh J and Noguchi K: Isofraxidin enhances hyperthermia‑induced apoptosis via redox modification in acute monocytic leukemia U937 cells. Mol Med Rep 27: 41, 2023
APA
Li, P., Zhao, Q., Rehman, M.U., Jawaid, P., Cui, Z., Ahmed, K. ... Noguchi, K. (2023). Isofraxidin enhances hyperthermia‑induced apoptosis via redox modification in acute monocytic leukemia U937 cells. Molecular Medicine Reports, 27, 41. https://doi.org/10.3892/mmr.2023.12928
MLA
Li, P., Zhao, Q., Rehman, M. U., Jawaid, P., Cui, Z., Ahmed, K., Kondo, T., Saitoh, J., Noguchi, K."Isofraxidin enhances hyperthermia‑induced apoptosis via redox modification in acute monocytic leukemia U937 cells". Molecular Medicine Reports 27.2 (2023): 41.
Chicago
Li, P., Zhao, Q., Rehman, M. U., Jawaid, P., Cui, Z., Ahmed, K., Kondo, T., Saitoh, J., Noguchi, K."Isofraxidin enhances hyperthermia‑induced apoptosis via redox modification in acute monocytic leukemia U937 cells". Molecular Medicine Reports 27, no. 2 (2023): 41. https://doi.org/10.3892/mmr.2023.12928