Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2023 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2023 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)

  • Authors:
    • Qingqing Liu
    • Xiaojuan Jin
    • Jun Cheng
    • Huajun Zhou
    • Yingjie Zhang
    • Yuzhu Dai
  • View Affiliations / Copyright

    Affiliations: School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China, Department of Clinical Research, The 903rd Hospital of The People's Liberation Army, Hangzhou, Zhejiang 310013, P.R. China, Department of Clinical Research, The 903rd Hospital of The People's Liberation Army, Hangzhou, Zhejiang 310013, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 104
    |
    Published online on: April 3, 2023
       https://doi.org/10.3892/mmr.2023.12991
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Infectious diseases are a major global cause of morbidity and mortality, seriously affecting public health and socioeconomic stability. Since infectious diseases can be caused by a wide variety of pathogens with similar clinical manifestations and symptoms that are difficult to accurately distinguish, selecting the appropriate diagnostic techniques for the rapid identification of pathogens is crucial for clinical disease diagnosis and public health management. However, traditional diagnostic techniques have low detection rates, long detection times and limited automation, which means that they do not meet the requirements for rapid diagnosis. Recent years have seen continuous developments in molecular detection technology, which has a higher sensitivity and specificity, shorter detection time and increased automation, and performs an important role in the early and rapid detection of infectious disease pathogens. The present study summarizes recent progress in molecular diagnostic technologies such as PCR, isothermal amplification, gene chips and high‑throughput sequencing for the detection of infectious disease pathogens, and compares the technical principles, advantages and disadvantages, applicability and costs of these diagnostic techniques.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Zhu L, Ling J, Zhu Z, Tian T, Song Y and Yang C: Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem. 413:4563–4579. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Ling Z, Xiao H and Chen W: Gut microbiome: The cornerstone of life and health. Adv Gut Microbiome Res. 2022:1–3. 2022. View Article : Google Scholar

3 

Vengesai A, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Mduluza T and Naicker T: Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS One. 17:e02486662022. View Article : Google Scholar : PubMed/NCBI

4 

Casanova JL and Abel L: Lethal Infectious diseases as inborn errors of immunity: Toward a synthesis of the germ and genetic theories. Annu Rev Pathol. 16:23–50. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Yang L, Jianying L and Pei-Yong S: SARS-CoV-2 variants and vaccination. Zoonoses (Burlingt). 2:62022.

6 

Micoli F, Bagnoli F, Rappuoli R and Serruto D: The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 19:287–302. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Mercer A: Protection against severe infectious disease in the past. Pathog Glob Health. 115:151–167. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Liu L and Moore MD: A survey of analytical techniques for noroviruses. Foods. 9:3182020. View Article : Google Scholar : PubMed/NCBI

9 

Xiang Z, Jiang B, Li W, Zhai G, Zhou H, Wang Y and Wu J: The diagnostic and prognostic value of serum exosome-derived carbamoyl phosphate synthase 1 in HEV-related acute liver failure patients. J Med Virol. 94:5015–5025. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Huang HS, Tsai CL, Chang J, Hsu TC, Lin S and Lee CC: Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clin Microbiol Infect. 24:1055–1063. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Wu J, Bortolanza M, Zhai G, Shang A, Ling Z, Jiang B, Shen X, Yao Y, Yu J, Li L and Cao H: Gut microbiota dysbiosis associated with plasma levels of Interferon-γ and viral load in patients with acute hepatitis E infection. J Med Virol. 94:692–702. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Wu J, Xu Y, Cui Y, Bortolanza M, Wang M, Jiang B, Yan M, Liang W, Yao Y, Pan Q, et al: Dynamic changes of serum metabolites associated with infection and severity of patients with acute hepatitis E infection. J Med Virol. 94:2714–2726. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Zhang B, Zhou J, Li M, Wei Y, Wang J, Wang Y, Shi P, Li X, Huang Z, Tang H and Song Z: Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Anal Bioanal Chem. 413:2447–2456. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Sidstedt M, Rådström P and Hedman J: PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem. 412:2009–2023. 2020. View Article : Google Scholar : PubMed/NCBI

15 

García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, Vicente B, López-Abán J and Muro A: Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: Towards a ready-to-use test. Sci Rep. 9:147442019. View Article : Google Scholar : PubMed/NCBI

16 

Jiang W, Ji W, Zhang Y, Xie Y, Chen S, Jin Y and Duan G: An update on detection technologies for SARS-CoV-2 variants of concern. Viruses. 14:23242022. View Article : Google Scholar : PubMed/NCBI

17 

Lv C, Deng W, Wang L, Qin Z, Zhou X and Xu J: Molecular techniques as alternatives of diagnostic tools in china as schistosomiasis moving towards elimination. Pathogens. 11:2872022. View Article : Google Scholar : PubMed/NCBI

18 

Mackay IM, Arden KE and Nitsche A: Real-time PCR in virology. Nucleic Acids Re. 30:1292–1305. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Castelli G, Bruno F, Reale S, Catanzaro S, Valenza V and Vitale F: Molecular diagnosis of leishmaniasis: Quantification of parasite load by a Real-Time PCR assay with high sensitivity. Pathogens. 10:8652021. View Article : Google Scholar : PubMed/NCBI

20 

Vidanapathirana G, Angulmaduwa ALSK, Munasinghe TS, Ekanayake EWMA, Harasgama P, Kudagammana ST, Dissanayake BN and Liyanapathirana LVC: Comparison of pneumococcal colonization density among healthy children and children with respiratory symptoms using real time PCR (RT-PCR). BMC Microbiol. 22:312022. View Article : Google Scholar : PubMed/NCBI

21 

Ingalagi P, Bhat KG, Kulkarni RD, Kotrashetti VS, Kumbar V and Kugaji M: Detection and comparison of prevalence of Porphyromonas gingivalis through culture and Real Time-polymerase chain reaction in subgingival plaque samples of chronic periodontitis and healthy individuals. J Oral Maxillofac Pathol. 26:2882022.PubMed/NCBI

22 

Marrero Rolon R, Cunningham SA, Mandrekar JN, Polo ET and Patel R: Erratum for Marrero Rolon et al., ‘Clinical evaluation of a real-time pCR assay for simultaneous detection of helicobacter pylori and genotypic markers of clarithromycin resistance directly from stool’. J Clin Microbiol. 60:e02452212022. View Article : Google Scholar : PubMed/NCBI

23 

Bennett S and Gunson RN: The development of a multiplex real-time RT-PCR for the detection of adenovirus, astrovirus, rotavirus and sapovirus from stool samples. J Virol Methods. 242:30–34. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Jiang XW, Huang TS, Xie L, Chen SZ, Wang SD, Huang ZW, Li XY and Ling WP: Development of a diagnostic assay by three-tube multiplex real-time PCR for simultaneous detection of nine microorganisms causing acute respiratory infections. Sci Rep. 12:133062022. View Article : Google Scholar : PubMed/NCBI

25 

Liu L, Zhang Y, Cui P, Wang C, Zeng X, Deng G and Wang X: Development of a duplex TaqMan real-time RT-PCR assay for simultaneous detection of newly emerged H5N6 influenza viruses. Virol J. 16:1192019. View Article : Google Scholar : PubMed/NCBI

26 

Das Mukhopadhyay C, Sharma P, Sinha K and Rajarshi K: Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem. 270:1065382021. View Article : Google Scholar : PubMed/NCBI

27 

Yu CY, Chan KG, Yean CY and Ang GY: Nucleic acid-based diagnostic tests for the detection SARS-CoV-2: An Update. Diagnostics (Basel). 11:532021. View Article : Google Scholar : PubMed/NCBI

28 

Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, Jian M, Ding Z, Dai X, Bao F and Liu A: Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep. 38:BSR201811702018. View Article : Google Scholar : PubMed/NCBI

29 

Lei S, Chen S and Zhong Q: Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol. 184:750–759. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Das S, Hammond-McKibben D, Guralski D, Lobo S and Fiedler PN: Development of a sensitive molecular diagnostic assay for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR. PLoS One. 15:e02353722020. View Article : Google Scholar : PubMed/NCBI

31 

Cao Y, Yu M, Dong G, Chen B and Zhang B: Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules. 25:7062020. View Article : Google Scholar : PubMed/NCBI

32 

Zhang L, Parvin R, Fan Q and Ye F: Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 211:1143442020. View Article : Google Scholar : PubMed/NCBI

33 

Košir AB, Spilsberg B, Holst-Jensen A, Žel J and Dobnik D: Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci Rep. 9:37352019. View Article : Google Scholar : PubMed/NCBI

34 

Xu L, Qu H, Alonso DG, Yu Z, Yu Y, Shi Y, Hu C, Zhu T, Wu N and Shen F: Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron. 175:1129082021. View Article : Google Scholar : PubMed/NCBI

35 

Sedlak RH, Nguyen T, Palileo I, Jerome KR and Kuypers J: Superiority of Digital Reverse Transcription-PCR (RT-PCR) over Real-Time RT-PCR for Quantitation of Highly Divergent Human Rhinoviruses. J Clin Microbiol. 55:442–449. 2017. View Article : Google Scholar : PubMed/NCBI

36 

van Snippenberg W, Gleerup D, Rutsaert S, Vandekerckhove L, De Spiegelaere W and Trypsteen W: Triplex digital PCR assays for the quantification of intact proviral HIV-1 DNA. Methods. 201:41–48. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Bønløkke S, Stougaard M, Sorensen BS, Booth BB, Høgdall E, Nyvang GB, Lindegaard JC, Blaakær J, Bertelsen J, Fuglsang K, et al: The diagnostic value of circulating Cell-Free HPV DNA in plasma from cervical cancer patients. Cells. 11:21702022. View Article : Google Scholar : PubMed/NCBI

38 

Lyu L, Li Z, Pan L, Jia H, Sun Q, Liu Q and Zhang Z: Evaluation of digital PCR assay in detection of M. tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis. 20:6572020. View Article : Google Scholar : PubMed/NCBI

39 

Salipante SJ and Jerome KR: Digital PCR-An emerging technology with broad applications in microbiology. Clin Chem. 66:117–123. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Rutsaert S, Bosman K, Trypsteen W, Nijhuis M and Vandekerckhove L: Digital PCR as a tool to measure HIV persistence. Retrovirology. 15:162018. View Article : Google Scholar : PubMed/NCBI

41 

Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M and Nodooshan MM: Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol. 93:4182–4197. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Dingle TC, Sedlak RH, Cook L and Jerome KR: Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem. 59:1670–1672. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Pan SW, Su WJ, Chan YJ, Chuang FY, Feng JY and Chen YM: Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One. 16:e02538792021. View Article : Google Scholar : PubMed/NCBI

44 

Wang D, Liu E, Liu H, Jin X, Niu C, Gao Y and Su X: A droplet digital PCR assay for detection and quantification of Verticillium nonalfalfae and V. albo-atrum. Front Cell Infect Microbiol. 12:11106842023. View Article : Google Scholar : PubMed/NCBI

45 

Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J and Wittwer CT: Amplicon melting analysis with labeled primers: A closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem. 49:396–406. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Tamburro M and Ripabelli G: High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: A comprehensive review of the literature. Ann Ig. 29:293–316. 2017.PubMed/NCBI

47 

Hu M, Yang D, Wu X, Luo M and Xu F: A novel high-resolution melting analysis-based method for Salmonella genotyping. J Microbiol Methods. 172:1058062020. View Article : Google Scholar : PubMed/NCBI

48 

Wen X, Chen Q, Yin H, Wu S and Wang X: Rapid identification of clinical common invasive fungi via a multi-channel real-time fluorescent polymerase chain reaction melting curve analysis. Medicine (Baltimore). 99:e191942020. View Article : Google Scholar : PubMed/NCBI

49 

Banowary B, Dang VT, Sarker S, Connolly JH, Chenu J, Groves P, Ayton M, Raidal S, Devi A, Vanniasinkam T and Ghorashi SA: Differentiation of Campylobacter jejuni and campylobacter coli using Multiplex-PCR and high resolution melt curve analysis. PLoS One. 10:e01388082015. View Article : Google Scholar : PubMed/NCBI

50 

Tong SY, Dakh F, Hurt AC, Deng YM, Freeman K, Fagan PK, Barr IG and Giffard PM: Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting. PLoS One. 6:e214462020. View Article : Google Scholar : PubMed/NCBI

51 

Kafi H, Emaneini M, Halimi S, Rahdar HA, Jabalameli F and Beigverdi R: Multiplex high-resolution melting assay for simultaneous detection of five key bacterial pathogens in urinary tract infections: A pilot study. Front Microbiol. 13:10491782022. View Article : Google Scholar : PubMed/NCBI

52 

Tong SY and Giffard PM: Microbiological applications of high-resolution melting analysis. J Clin Microbiol. 50:3418–3421. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Ghorbani J, Hashemi FB, Jabalameli F, Emaneini M and Beigverdi R: Multiplex detection of five common respiratory pathogens from bronchoalveolar lavages using high resolution melting curve analysis. BMC Microbiol. 22:1412020. View Article : Google Scholar : PubMed/NCBI

54 

Zamani M, Furst AL and Klapperich CM: Strategies for engineering affordable technologies for point-of-Care diagnostics of infectious diseases. Acc Chem Res. 54:3772–3779. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Du J, Ma B, Li J, Wang Y, Dou T, Xu S and Zhang M: Rapid detection and differentiation of legionella pneumophila and Non-legionella pneumophila Species by using recombinase polymerase amplification combined with EuNPs-based lateral flow immunochromatography. Front Chem. 9:8151892022. View Article : Google Scholar : PubMed/NCBI

56 

Soroka M, Wasowicz B and Rymaszewska A: Loop-Mediated isothermal amplification (LAMP): The better sibling of PCR? Cells. 10:19312021. View Article : Google Scholar : PubMed/NCBI

57 

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI

58 

Parija SC and Poddar A: Molecular diagnosis of infectious parasites in the post-COVID-19 era. Trop Parasitol. 11:3–10. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Vo DT and Story MD: Facile and direct detection of human papillomavirus (HPV) DNA in cells using loop-mediated isothermal amplification (LAMP). Mol Cell Probes. 59:1017602021. View Article : Google Scholar : PubMed/NCBI

60 

Chen N, Si Y, Li G, Zong M, Zhang W, Ye Y and Fan L: Development of a loop-mediated isothermal amplification assay for the rapid detection of six common respiratory viruses. Eur J Clin Microbiol Infect Dis. 40:2525–2532. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Kim J, Park BG, Lim DH, Jang WS, Nam J, Mihn DC and Lim CS: Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS One. 16:e02447532021. View Article : Google Scholar : PubMed/NCBI

62 

Phillips EA, Moehling TJ, Ejendal KFK, Hoilett OS, Byers KM, Basing LA, Jankowski LA, Bennett JB, Lin LK, Stanciu LA and Linnes JC: Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip. 19:3375–3386. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Chen X, Zhang J, Pan M, Qin Y, Zhao H, Qin P, Yang Q, Li X, Zeng W, Xiang Z, et al: Loop-mediated isothermal amplification (LAMP) assays targeting 18S ribosomal RNA genes for identifying P. vivax and P. ovale species and mitochondrial DNA for detecting the genus Plasmodium. Parasit Vectors. 14:2782021. View Article : Google Scholar : PubMed/NCBI

64 

Trinh KTL and Lee NY: Fabrication of wearable PDMS device for rapid detection of nucleic acids via recombinase polymerase amplification operated by human body heat. Biosensors (Basel). 12:722022. View Article : Google Scholar : PubMed/NCBI

65 

Islam MN, Moriam S, Umer M, Phan HP, Salomon C, Kline R, Nguyen NT and Shiddiky MJA: Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst. 143:3021–3028. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR and Mariúba LAM: Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol. 68:383–402. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Li J, Macdonald J and von Stetten F: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 145:1950–1960. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Qi Y, Li W, Li X, Shen W, Zhang J, Li J, Lv R, Lu N, Zong L, Zhuang S, et al: Development of rapid and visual nucleic acid detection methods towards four serotypes of human adenovirus species B based on RPA-LF test. Biomed Res Int. 2021:99577472021. View Article : Google Scholar : PubMed/NCBI

69 

Mayran C, Foulongne V, Van de Perre P, Fournier-Wirth C, Molès JP and Cantaloube JF: Rapid diagnostic test for hepatitis B virus viral load based on recombinase polymerase amplification combined with a lateral flow read-out. Diagnostics (Basel). 12:6212022. View Article : Google Scholar : PubMed/NCBI

70 

Li J, Pollak NM and Macdonald J: Multiplex detection of nucleic acids using recombinase polymerase amplification and a molecular colorimetric 7-Segment display. ACS Omega. 4:11388–11396. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Munawar MA: Critical insight into recombinase polymerase amplification technology. Expert Rev Mol Diagn. 22:725–737. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Xu L, Duan J, Chen J, Ding S and Cheng W: Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta. 1148:2381872021. View Article : Google Scholar : PubMed/NCBI

73 

Compton J: Nucleic acid sequence-based amplification. Nature. 350:91–92. 1991. View Article : Google Scholar : PubMed/NCBI

74 

Glökler J, Lim TS, Ida J and Frohme M: Isothermal amplifications-a comprehensive review on current methods. Crit Rev Biochem Mol Biol. 56:543–586. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Kia V, Tafti A, Paryan M and Mohammadi-Yeganeh S: Evaluation of real-time NASBA assay for the detection of SARS-CoV-2 compared with real-time PCR. Ir J Med Sci. 6:1–7. 2022.

76 

Yrad FM, Castañares JM and Alocilja EC: Visual detection of Dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics (Basel). 9:742019. View Article : Google Scholar : PubMed/NCBI

77 

Mohammadi-Yeganeh S, Paryan M, Mirab Samiee S, Kia V and Rezvan H: Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV. Iran J Microbiol. 4:47–54. 2012.PubMed/NCBI

78 

Gao YP, Huang KJ, Wang FT, Hou YY, Xu J and Li G: Recent advances in biological detection with rolling circle amplification: Design strategy, biosensing mechanism, and practical applications. Analyst. 147:3396–3414. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Wöhrle J, Krämer SD, Meyer PA, Rath C, Hügle M, Urban GA and Roth G: Digital DNA microarray generation on glass substrates. Sci Rep. 10:57702020. View Article : Google Scholar : PubMed/NCBI

80 

Xie C, Hu X, Liu Y and Shu C: Performance comparison of GeneXpert MTB/RIF, gene chip technology, and modified roche culture method in detecting mycobacterium tuberculosis and drug susceptibility in sputum. Contrast Media Mol Imaging. 2022:29954642022. View Article : Google Scholar : PubMed/NCBI

81 

Nasrabadi Z, Ranjbar R, Poorali F and Sarshar M: Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electron Physician. 9:4405–4411. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ma X, Li Y, Liang Y, Liu Y, Yu L, Li C, Liu Q and Chen L: Development of a DNA microarray assay for rapid detection of fifteen bacterial pathogens in pneumonia. BMC Microbiol. 20:1772020. View Article : Google Scholar : PubMed/NCBI

83 

Feng G, Han W, Shi J, Xia R and Xu J: Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: A retrospective study. Sci Rep. 11:179512021. View Article : Google Scholar : PubMed/NCBI

84 

Zhu L, Liu Q, Martinez L, Shi J, Chen C, Shao Y, Zhong C, Song H, Li G, Ding X, et al: Diagnostic value of GeneChip for detection of resistant Mycobacterium tuberculosis in patients with differing treatment histories. J Clin Microbiol. 53:131–135. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Sun B and Sun Y: Diagnostic performance of DNA microarray for detecting rifampicin and isoniazid resistance in Mycobacterium tuberculosis. J Thorac Dis. 13:4448–4454. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Chandran S, Arjun R, Sasidharan A, Niyas VK and Chandran S: Clinical performance of FilmArray Meningitis/Encephalitis multiplex polymerase chain reaction panel in central nervous system infections. Indian J Crit Care Med. 26:67–70. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Senescau A, Kempowsky T, Bernard E, Messier S, Besse P, Fabre R and François JM: Innovative DendrisChips® Technology for a syndromic approach of in vitro diagnosis: Application to the respiratory infectious diseases. Diagnostics (Basel). 8:772018. View Article : Google Scholar : PubMed/NCBI

88 

Dien Bard J and McElvania E: Panels and syndromic testing in clinical microbiology. Clin Lab Med. 40:393–420. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Gonsalves S, Mahony J, Rao A, Dunbar S and Juretschko S: Multiplexed detection and identification of respiratory pathogens using the NxTAG® respiratory pathogen panel. Methods. 158:61–68. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Ma ZY, Deng H, Hua LD, Lei W, Zhang CB, Dai QQ, Tao WJ and Zhang L: Suspension microarray-based comparison of oropharyngeal swab and bronchoalveolar lavage fluid for pathogen identification in young children hospitalized with respiratory tract infection. BMC Infect Dis. 20:1682020. View Article : Google Scholar : PubMed/NCBI

91 

Dunbar SA: Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 363:71–82. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Reslova N, Michna V, Kasny M, Mikel P and Kralik P: xMAP technology: Applications in detection of pathogens. Front Microbiol. 8:552017. View Article : Google Scholar : PubMed/NCBI

93 

Dai Z, Li T, Li J, Han Z, Pan Y, Tang S, Diao X and Luo M: High-throughput long paired-end sequencing of a Fosmid library by PacBio. Plant Methods. 15:1422019. View Article : Google Scholar : PubMed/NCBI

94 

Duan H, Li X, Mei A, Li P, Liu Y, Li X, Li W, Wang C and Xie S: The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infect Dis. 21:622021. View Article : Google Scholar : PubMed/NCBI

95 

Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA, Hofer S, Brenner T, von Haeseler A and Sohn K: Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 8:732016. View Article : Google Scholar : PubMed/NCBI

96 

Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, et al: Potential opportunities and challenges of deploying next generation sequencing and CRISPR-Cas systems to support diagnostics and surveillance towards malaria control and elimination in africa. Front Cell Infect Microbiol. 12:7578442022. View Article : Google Scholar : PubMed/NCBI

97 

Zhang XX, Guo LY, Liu LL, Shen A, Feng WY, Huang WH, Hu HL, Hu B, Guo X, Chen TM, et al: The diagnostic value of metagenomic next-generation sequencing for identifying Streptococcus pneumoniae in paediatric bacterial meningitis. BMC Infect Dis. 19:4952019. View Article : Google Scholar : PubMed/NCBI

98 

Huang J, Jiang E, Yang D, Wei J, Zhao M, Feng J and Cao J: Metagenomic Next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions. Infect Drug Resist. 13:567–576. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Dong Y, Gao Y, Chai Y and Shou S: Use of quantitative metagenomics next-generation sequencing to confirm fever of unknown origin and infectious disease. Front Microbio. 13:9310582022. View Article : Google Scholar : PubMed/NCBI

100 

Gu L, Liu W, Ru M, Lin J, Yu G, Ye J, Zhu ZA, Liu Y, Chen J, Lai G and Wen W: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: A report of five cases. BMC Pulm Med. 20:652020. View Article : Google Scholar : PubMed/NCBI

101 

Jerome H, Taylor C, Sreenu VB, Klymenko T, Filipe ADS, Jackson C, Davis C, Ashraf S, Wilson-Davies E, Jesudason N, et al: Metagenomic next-generation sequencing aids the diagnosis of viral infections in febrile returning travellers. J Infect. 79:383–388. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Simner PJ, Miller S and Carroll KC: Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin Infect Dis. 66:778–788. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Yu X, Jiang W, Shi Y, Ye H and Lin J: Applications of sequencing technology in clinical microbial infection. J Cell Mol Med. 23:7143–7150. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Gu W, Miller S and Chiu CY: Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Patho. 14:319–338. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, et al: Advances in metagenomics and its application in environmental microorganisms. Front Microbiol. 12:7663642021. View Article : Google Scholar : PubMed/NCBI

106 

Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, et al: Recent advances and application of whole genome amplification in molecular diagnosis and medicine. Med Comm. 3:e1162022.

107 

Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC and Scorilas A: Third-Generation sequencing: The spearhead towards the radical transformation of modern genomics. Life (Basel). 12:302021.PubMed/NCBI

108 

Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, Neuhaus EB, Dugan VG, Wentworth DE and Barnes JR: Author Correction: Direct RNA Sequencing of the coding complete influenza A virus genome. Sci Rep. 8:157462018. View Article : Google Scholar : PubMed/NCBI

109 

Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, Gu J, Xiang B, Liu J, Jiang W, et al: Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 16:e20021692020. View Article : Google Scholar : PubMed/NCBI

110 

Mongan AE, Tuda JSB and Runtuwene LR: Portable sequencer in the fight against infectious disease. J Hum Genet. 65:35–40. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First case of 2019 novel coronavirus in the united states. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Wongsurawat T, Jenjaroenpun P, Taylor MK, Lee J, Tolardo AL, Parvathareddy J, Kandel S, Wadley TD, Kaewnapan B, Athipanyasilp N, et al: Rapid Sequencing of Multiple RNA Viruses in Their Native Form. Front Microbiol. 10:2602019. View Article : Google Scholar : PubMed/NCBI

113 

Fang Y, Changavi A, Yang M, Sun L, Zhang A, Sun D, Sun Z, Zhang B and Xu MQ: Nanopore Whole Transcriptome Analysis and Pathogen Surveillance by a Novel Solid-Phase Catalysis Approach. Adv Sci (Weinh). 9:e21033732022. View Article : Google Scholar : PubMed/NCBI

114 

Akaçin İ, Ersoy Ş, Doluca O and Güngörmüşler M: Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res. 264:1271542022. View Article : Google Scholar : PubMed/NCBI

115 

Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC and Iliescu C: Advances in the rapid diagnostic of viral respiratory tract infections. Front Cell Infect Microbiol. 12:8072532022. View Article : Google Scholar : PubMed/NCBI

116 

Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, Gao H, Liu D, Deng R and Li J: A transcription aptasensor: Amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb). 55:10096–10099. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Andryukov BG, Lyapun IN, Matosova EV and Somova LM: Biosensor technologies in medicine: From detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnologii Med. 12:70–83. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Robertson KL and Vora GJ: Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): A method for bacterial small RNA detection. J Vis Exp. 10:e36552012.PubMed/NCBI

119 

Freen-van Heeren JJ: Flow-FISH as a tool for studying bacteria, fungi and viruses. BioTech (Basel). 10:212021. View Article : Google Scholar : PubMed/NCBI

120 

Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y and Suzuki T: Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med. 58:883–896. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Kailasa SK, Koduru JR, Park TJ, Wu HF and Lin YC: Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst. 145:70722020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Q, Jin X, Cheng J, Zhou H, Zhang Y and Dai Y: Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep 27: 104, 2023.
APA
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., & Dai, Y. (2023). Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Molecular Medicine Reports, 27, 104. https://doi.org/10.3892/mmr.2023.12991
MLA
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., Dai, Y."Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)". Molecular Medicine Reports 27.5 (2023): 104.
Chicago
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., Dai, Y."Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)". Molecular Medicine Reports 27, no. 5 (2023): 104. https://doi.org/10.3892/mmr.2023.12991
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Q, Jin X, Cheng J, Zhou H, Zhang Y and Dai Y: Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep 27: 104, 2023.
APA
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., & Dai, Y. (2023). Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Molecular Medicine Reports, 27, 104. https://doi.org/10.3892/mmr.2023.12991
MLA
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., Dai, Y."Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)". Molecular Medicine Reports 27.5 (2023): 104.
Chicago
Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., Dai, Y."Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)". Molecular Medicine Reports 27, no. 5 (2023): 104. https://doi.org/10.3892/mmr.2023.12991
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team