Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2023 Volume 28 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2023 Volume 28 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Essential role of bromodomain proteins in renal cell carcinoma (Review)

  • Authors:
    • Qianghai Wen
    • Haicheng Liu
    • Kecheng Lou
    • Xing Zhang
    • Wei Chao
    • Jianhui Xin
    • Jiaxiang Gong
    • Junrong Zou
    • Xiaofeng Zou
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
    Copyright: © Wen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 139
    |
    Published online on: June 8, 2023
       https://doi.org/10.3892/mmr.2023.13026
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Histone alterations are a hallmark of kidney cancer. Histone acetylation modification mediated by bromodomain proteins (BRD) has been indicated to be related to a variety of cancer types and several targeted inhibitors have been proven to be promising modalities for cancer adjuvant therapy. As renal cell carcinoma (RCC) is not sensitive to radiotherapy or chemotherapy, the exploration of effective adjuvant therapies remains an important research direction for advanced RCC. At present, studies on bromodomain family proteins in RCC are limited and the roles of bromodomain family proteins in RCC have remained to be fully elucidated. The present review discussed the role of bromodomain family proteins in RCC, aiming to explore possible potential therapeutic targets of BRD‑related drugs in this type of cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI

5 

Fujisawa T and Filippakopoulos P: Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol. 18:246–262. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J and Dawid IB: The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20:26031992. View Article : Google Scholar : PubMed/NCBI

7 

Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S and Glass KC: Functional roles of bromodomain proteins in cancer. Cancers (Basel). 13:36062021. View Article : Google Scholar : PubMed/NCBI

8 

Fyodorov DV, Zhou BR, Skoultchi AI and Bai Y: Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 19:192–206. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Izzo A and Schneider R: The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim Biophys Acta. 1859:486–495. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Allfrey VG, Faulkner R and Mirsky AE: Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc Natl Acad Sci USA. 51:786–794. 1964. View Article : Google Scholar : PubMed/NCBI

12 

Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY and Allis CD: Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 84:843–851. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY and Allis CD: Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature. 383:269–272. 1996. View Article : Google Scholar : PubMed/NCBI

14 

Taunton J, Hassig CA and Schreiber SL: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 272:408–411. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK and Zhou MM: Structure and ligand of a histone acetyltransferase bromodomain. Nature. 399:491–496. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 146:1016–1028. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P and Losson R: The bromodomain revisited. Trends Biochem Sci. 22:151–153. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Romero FA, Taylor AM, Crawford TD, Tsui V, Côté A and Magnuson S: Disrupting acetyl-lysine recognition: Progress in the development of bromodomain inhibitors. J Med Chem. 59:1271–1298. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Mashtalir N, D'Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St Pierre R, et al: Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 175:1272–1288.e20. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Koo SJ, Fernández-Montalván AE, Badock V, Holton SJ, von Ahsen O, Toedling J, Vittori S, Bradner JE and Gorjánácz M: ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget. 7:70323–70335. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, Tagore MM, Tischfield SE, Walsh RM, Suresh S, Fan Y, et al: Developmental chromatin programs determine oncogenic competence in melanoma. Science. 373:eabc10482021. View Article : Google Scholar : PubMed/NCBI

23 

Maubec E, Chaudru V, Mohamdi H, Grange F, Patard JJ, Dalle S, Crickx B, Paillerets BB, Demenais F and Avril MF: Characteristics of the coexistence of melanoma and renal cell carcinoma. Cancer. 116:5716–5724. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Dancy BM and Cole PA: Protein lysine acetylation by p300/CBP. Chem Rev. 115:2419–2452. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Morinière J, Rousseaux S, Steuerwald U, Soler-López M, Curtet S, Vitte AL, Govin J, Gaucher J, Sadoul K, Hart DJ, et al: Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature. 461:664–668. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA and Young RA: Super-enhancers in the control of cell identity and disease. Cell. 155:934–947. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Thompson PJ, Norton KA, Niri FH, Dawe CE and McDermid HE: CECR2 is involved in spermatogenesis and forms a complex with SNF2H in the testis. J Mol Biol. 415:793–806. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, et al: WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 457:57–62. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et al: Selective inhibition of BET bromodomains. Nature. 468:1067–1073. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Szücs S, Müller-Brechlin R, DeRiese W and Kovacs G: Deletion 3p: The only chromosome loss in a primary renal cell carcinoma. Cancer Genet Cytogenet. 26:369–373. 1987. View Article : Google Scholar : PubMed/NCBI

32 

Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, et al: Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 260:1317–1320. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Grabmaier K, A de Weijert MC, Verhaegh GW, Schalken JA and Oosterwijk E: Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma. Oncogene. 23:5624–5631. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Zhang C, Chen L, Lou W, Su J, Huang J, Liu A, Xu Y, He H, Gao Y, Xu D and Li Q: Aberrant activation of m6A demethylase FTO renders HIF2αlow/− clear cell renal cell carcinoma sensitive to BRD9 inhibitors. Sci Transl Med. 13:eabf60452021. View Article : Google Scholar : PubMed/NCBI

35 

Cocco E, Leo M, Canzonetta C, Di Vito S, Mai A, Rotili D, Di Napoli A, Vecchione A, De Nunzio C, Filetici P and Stoppacciaro A: KAT3B-p300 and H3AcK18/H3AcK14 levels are prognostic markers for kidney ccRCC tumor aggressiveness and target of KAT inhibitor CPTH2. Clin Epigenetics. 10:442018. View Article : Google Scholar : PubMed/NCBI

36 

Wu X, Liu D, Gao X, Xie F, Tao D, Xiao X, Wang L, Jiang G and Zeng F: Inhibition of BRD4 suppresses cell proliferation and induces apoptosis in renal cell carcinoma. Cell Physiol Biochem. 41:1947–1956. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Chen W, Zhang H, Chen Z, Jiang H, Liao L, Fan S, Xing J, Xie Y, Chen S, Ding H, et al: Development and evaluation of a novel series of Nitroxoline-derived BET inhibitors with antitumor activity in renal cell carcinoma. Oncogenesis. 7:832018. View Article : Google Scholar : PubMed/NCBI

38 

Ji S, Su X, Zhang H, Han Z, Zhao Y and Liu Q: MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett. 17:2400–2408. 2019.PubMed/NCBI

39 

Lou W, Gao K, Xu C and Li Q: Bromodomain-containing protein 9 is a prognostic biomarker associated with immune infiltrates and promotes tumor malignancy through activating notch signaling pathway in negative HIF-2α clear cell renal cell carcinoma. IUBMB Life. 73:1334–1347. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Jiang T, Mao H, Chen Q, Cao L, He Y, Gao X, Chen W and Zhang H: Trim24 prompts tumor progression via inducing EMT in renal cell carcinoma. Open Med (Wars). 15:1153–1162. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Jin W, Miao Q, Wang M, Zhang Y, Ma Y, Huang Y, Wu H, Lin Y, Hu B and Pan J: A rare case of adrenal gland abscess due to anaerobes detected by metagenomic next-generation sequencing. Ann Transl Med. 8:2472020. View Article : Google Scholar : PubMed/NCBI

42 

Aurilio G, Santoni M, Massari F, Cimadamore A, Rizzo A, Mollica V, Verri E, Battelli N and Montironi R: Metabolomic profiling in renal cell carcinoma patients: News and views. Cancers (Basel). 13:52292021. View Article : Google Scholar : PubMed/NCBI

43 

Hsieh JJ and Cheng EH: A braided cancer river connects tumor heterogeneity and precision medicine. Clin Transl Med. 5:422016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, Shen Y, He H and Xu D: Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 11:3676–3693. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Yu YP, Cai LC, Wang XY, Cheng SY, Zhang DM, Jian WG, Wang TD, Yang JK, Yang KB and Zhang C: BMP8A promotes survival and drug resistance via Nrf2/TRIM24 signaling pathway in clear cell renal cell carcinoma. Cancer Sci. 111:1555–1566. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Liao L, Liu ZZ, Langbein L, Cai W, Cho EA, Na J, Niu X, Jiang W, Zhong Z, Cai WL, et al: Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. Elife. 7:e379252018. View Article : Google Scholar : PubMed/NCBI

47 

Szarkowska J, Cwiek P, Szymanski M, Rusetska N, Jancewicz I, Stachowiak M, Swiatek M, Luba M, Konopinski R, Kubala S, et al: RRM2 gene expression depends on BAF180 subunit of SWISNF chromatin remodeling complex and correlates with abundance of tumor infiltrating lymphocytes in ccRCC. Am J Cancer Res. 11:5965–5978. 2021.PubMed/NCBI

48 

Wang Z, Li K, Chen W, Wang X, Huang Y, Wang W, Wu W, Cai Z and Huang W: Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cell Mol Life Sci. 77:3441–3452. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Tan YF, Wang M, Chen ZY, Wang L and Liu XH: Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis. 11:2392020. View Article : Google Scholar : PubMed/NCBI

50 

Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF and Livingston DM: An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA. 93:12969–12973. 1996. View Article : Google Scholar : PubMed/NCBI

51 

Yang XJ, Ogryzko VV, Nishikawa J, Howard BH and Nakatani Y: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 382:319–324. 1996. View Article : Google Scholar : PubMed/NCBI

52 

Pawlus MR, Wang L and Hu CJ: STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. 33:1670–1679. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK and Chung MH: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 19:1296–1298. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Lee SH, Kang JH, Ha JS, Lee JS, Oh SJ, Choi HJ, Song J and Kim SY: Transglutaminase 2-mediated p53 depletion promotes angiogenesis by increasing HIF-1α-p300 binding in renal cell carcinoma. Int J Mol Sci. 21:50422020. View Article : Google Scholar : PubMed/NCBI

55 

Datta K, Li J, Bhattacharya R, Gasparian L, Wang E and Mukhopadhyay D: Protein kinase C zeta transactivates hypoxia-inducible factor alpha by promoting its association with p300 in renal cancer. Cancer Res. 64:456–462. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Lou F, Chen X, Jalink M, Zhu Q, Ge N, Zhao S, Fang X, Fan Y, Björkholm M, Liu Z and Xu D: The opposing effect of hypoxia-inducible factor-2alpha on expression of telomerase reverse transcriptase. Mol Cancer Res. 5:793–800. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, Peng D and Chen Z: Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med. 184:135–147. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, Traaseth NJ, Olenyuk BZ and Arora PS: Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci USA. 110:15602–15607. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, et al: BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun. 12:2412021. View Article : Google Scholar : PubMed/NCBI

60 

Civenni G, Bosotti R, Timpanaro A, Vàzquez R, Merulla J, Pandit S, Rossi S, Albino D, Allegrini S, Mitra A, et al: Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab. 30:303–318.e6. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Weissman JD, Singh AK, Devaiah BN, Schuck P, LaRue RC and Singer DS: The intrinsic kinase activity of BRD4 spans its BD2-B-BID domains. J Biol Chem. 297:1013262021. View Article : Google Scholar : PubMed/NCBI

62 

Tewary P, Brooks AD, Xu YM, Wijeratne EMK, Babyak AL, Back TC, Chari R, Evans CN, Henrich CJ, Meyer TJ, et al: Small-molecule natural product physachenolide C potentiates immunotherapy efficacy by targeting BET proteins. Cancer Res. 81:3374–3386. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et al: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 146:904–917. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Sakaguchi T, Yoshino H, Sugita S, Miyamoto K, Yonemori M, Osako Y, Meguro-Horike M, Horike SI, Nakagawa M and Enokida H: Bromodomain protein BRD4 inhibitor JQ1 regulates potential prognostic molecules in advanced renal cell carcinoma. Oncotarget. 9:23003–23017. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Xu M, Xu L, Wang Y, Dai G, Xue B, Liu YY and Zhu J and Zhu J: BRD4 inhibition sensitizes renal cell carcinoma cells to the PI3K/mTOR dual inhibitor VS-5584. Aging (Albany NY). 12:19147–19158. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Xing ZY, Wang Y, Cheng L, Chen J, He XZ and Xing W: Bromodomain-containing protein 4 (BRD4) inhibition sensitizes palomid 529-induced anti-renal cell carcinoma cell activity in vitro and in vivo. Cell Physiol Biochem. 50:640–653. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Zhu H, Mao JH, Wang Y, Gu DH, Pan XD, Shan Y and Zheng B: Dual inhibition of BRD4 and PI3K-AKT by SF2523 suppresses human renal cell carcinoma cell growth. Oncotarget. 8:98471–98481. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS, Shi WH, Ye LX, Luo X, Liu SW, Li YL and Yu L: BAP1 loss augments sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin. 43:1803–1815. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al: Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 71:405–414. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM and Ouyang L: Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev. 42:710–743. 2022. View Article : Google Scholar : PubMed/NCBI

71 

Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S and Khochbin S: Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol. 23:5354–5365. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Wan P, Chen Z, Zhong W, Jiang H, Huang Z, Peng D, He Q and Chen N: BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol Rep. 44:2475–2486. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Zahid H, Olson NM and Pomerantz WCK: Opportunity knocks for uncovering the new function of an understudied nucleosome remodeling complex member, the bromodomain PHD finger transcription factor, BPTF. Curr Opin Chem Biol. 63:57–67. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, et al: A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 442:86–90. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Nayak A, Dutta M and Roychowdhury A: Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci. 276:1193222021. View Article : Google Scholar : PubMed/NCBI

76 

Liu H, Wen Q, Yan S, Zeng W, Zou Y, Liu Q, Zhang G, Zou J and Zou X: Tumor-promoting ATAD2 and its preclinical challenges. Biomolecules. 12:10402022. View Article : Google Scholar : PubMed/NCBI

77 

Chen D, Maruschke M, Hakenberg O, Zimmermann W, Stief CG and Buchner A: TOP2A, HELLS, ATAD2, and TET3 are novel prognostic markers in renal cell carcinoma. Urology. 102:265.e1–265.e7. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho TH and Cheng EH: Chromosome 3p loss-orchestrated VHL, HIF, and epigenetic deregulation in clear cell renal cell carcinoma. J Clin Oncol. Oct 29–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

79 

Jonasch E, Walker CL and Rathmell WK: Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 17:245–261. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Carril-Ajuria L, Santos M, Roldán-Romero JM, Rodriguez-Antona C and de Velasco G: Prognostic and predictive value of PBRM1 in clear cell renal cell carcinoma. Cancers (Basel). 12:162019. View Article : Google Scholar : PubMed/NCBI

81 

Thompson M: Polybromo-1: The chromatin targeting subunit of the PBAF complex. Biochimie. 91:309–319. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Brownlee PM, Chambers AL, Oliver AW and Downs JA: Cancer and the bromodomains of BAF180. Biochem Soc Trans. 40:364–369. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, Leng N, Pavía-Jiménez A, Wang S, Yamasaki T, Zhrebker L, Sivanand S, Spence P, et al: BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 44:751–759. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Espana-Agusti J, Warren A, Chew SK, Adams DJ and Matakidou A: Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis. Nat Commun. 8:20262017. View Article : Google Scholar : PubMed/NCBI

85 

Gu YF, Cohn S, Christie A, McKenzie T, Wolff N, Do QN, Madhuranthakam AJ, Pedrosa I, Wang T, Dey A, et al: Modeling renal cell carcinoma in mice: Bap1 and Pbrm1 inactivation drive tumor grade. Cancer Discov. 7:900–917. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Liu W, Zhang B, Zhang D, Guo F, Ye K, Zhu L and Jin X: The RBPJ/DAPK3/UBE3A signaling axis induces PBRM1 degradation to modulate the sensitivity of renal cell carcinoma to CDK4/6 inhibitors. Cell Death Dis. 13:2952022. View Article : Google Scholar : PubMed/NCBI

87 

Nargund AM, Pham CG, Dong Y, Wang PI, Osmangeyoglu HU, Xie Y, Aras O, Han S, Oyama T, Takeda S, et al: The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18:2893–2906. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Gao W, Li W, Xiao T, Liu XS and Kaelin WG Jr: Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma. Proc Natl Acad Sci USA. 114:1027–1032. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Zhou M, Leung JY, Gessner KH, Hepperla AJ, Simon JM, Davis IJ and Kim WY: PBRM1 inactivation promotes upregulation of human endogenous retroviruses in a HIF-dependent manner. Cancer Immunol Res. 10:285–290. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Chowdhury B, Porter EG, Stewart JC, Ferreira CR, Schipma MJ and Dykhuizen EC: PBRM1 regulates the expression of genes involved in metabolism and cell adhesion in renal clear cell carcinoma. PLoS One. 11:e01537182016. View Article : Google Scholar : PubMed/NCBI

91 

Porter EG, Dhiman A, Chowdhury B, Carter BC, Lin H, Stewart JC, Kazemian M, Wendt MK and Dykhuizen EC: PBRM1 regulates stress response in epithelial cells. iScience. 15:196–210. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Braun DA, Hou Y, Bakouny Z, Ficial M, Sant' Angelo M, Forman J, Ross-Macdonald P, Berger AC, Jegede OA, Elagina L, et al: Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med. 26:909–918. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Xia QY, Rao Q, Cheng L, Shen Q, Shi SS, Li L, Liu B, Zhang J, Wang YF, Shi QL, et al: Loss of BRM expression is a frequently observed event in poorly differentiated clear cell renal cell carcinoma. Histopathology. 64:847–862. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Guerrero-Martinez JA and Reyes JC: High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep. 8:20432018. View Article : Google Scholar : PubMed/NCBI

95 

Fang R, Xia Q, Sun J, Ng HZ, Liang Y, Wang X, Wang X, Ma H, Zhou X, Cheng Y and Rao Q: Hypermethylation of BRM promoter plays oncogenic roles in development of clear cell renal cell carcinoma. J Cancer. 10:5256–5263. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Fang R, Pan R, Wang X, Liang Y, Wang X, Ma H, Zhou X, Xia Q and Rao Q: Inactivation of BRM/SMARCA2 sensitizes clear cell renal cell carcinoma to histone deacetylase complex inhibitors. Pathol Res Pract. 216:1528672020. View Article : Google Scholar : PubMed/NCBI

97 

Schuetz A, Bernstein G, Dong A, Antoshenko T, Wu H, Loppnau P, Bochkarev A and Plotnikov AN: Crystal structure of a binary complex between human GCN5 histone acetyltransferase domain and acetyl coenzyme A. Proteins. 68:403–407. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Ononye OE and Downey M: Posttranslational regulation of the GCN5 and PCAF acetyltransferases. PLoS Genet. 18:e10103522022. View Article : Google Scholar : PubMed/NCBI

99 

Guo Y, Liu B, Liu Y, Sun W, Gao W, Mao S and Chen L: Oncogenic chromatin modifier KAT2A activates MCT1 to drive the glycolytic process and tumor progression in renal cell carcinoma. Front Cell Dev Biol. 9:6907962021. View Article : Google Scholar : PubMed/NCBI

100 

Vetting MW, de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL and Blanchard JS: Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 433:212–226. 2005. View Article : Google Scholar : PubMed/NCBI

101 

Lu J, Qian C, Ji Y, Bao Q and Lu B: Gene signature associated with bromodomain genes predicts the prognosis of kidney renal clear cell carcinoma. Front Genet. 12:6439352021. View Article : Google Scholar : PubMed/NCBI

102 

Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R and Block K: NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun. 8:9972017. View Article : Google Scholar : PubMed/NCBI

103 

Xu Y, Wu G, Zhang J, Li J, Ruan N, Zhang J, Zhang Z, Chen Y, Zhang Q and Xia Q: TRIM33 overexpression inhibits the progression of clear cell renal cell carcinoma in vivo and in vitro. Biomed Res Int. 2020:84092392020.PubMed/NCBI

104 

Lu K, Pan Y, Huang Z, Liang H, Ding ZY and Zhang B: TRIM proteins in hepatocellular carcinoma. J Biomed Sci. 29:692022. View Article : Google Scholar : PubMed/NCBI

105 

Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, Kawakami R, Kashiwagi Y, Tsukada Y, Kobayashi T, et al: miR-629 targets TRIM33 to promote TGFβ/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 13:565–574. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wen Q, Liu H, Lou K, Zhang X, Chao W, Xin J, Gong J, Zou J and Zou X: Essential role of bromodomain proteins in renal cell carcinoma (Review). Mol Med Rep 28: 139, 2023.
APA
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J. ... Zou, X. (2023). Essential role of bromodomain proteins in renal cell carcinoma (Review). Molecular Medicine Reports, 28, 139. https://doi.org/10.3892/mmr.2023.13026
MLA
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J., Gong, J., Zou, J., Zou, X."Essential role of bromodomain proteins in renal cell carcinoma (Review)". Molecular Medicine Reports 28.1 (2023): 139.
Chicago
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J., Gong, J., Zou, J., Zou, X."Essential role of bromodomain proteins in renal cell carcinoma (Review)". Molecular Medicine Reports 28, no. 1 (2023): 139. https://doi.org/10.3892/mmr.2023.13026
Copy and paste a formatted citation
x
Spandidos Publications style
Wen Q, Liu H, Lou K, Zhang X, Chao W, Xin J, Gong J, Zou J and Zou X: Essential role of bromodomain proteins in renal cell carcinoma (Review). Mol Med Rep 28: 139, 2023.
APA
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J. ... Zou, X. (2023). Essential role of bromodomain proteins in renal cell carcinoma (Review). Molecular Medicine Reports, 28, 139. https://doi.org/10.3892/mmr.2023.13026
MLA
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J., Gong, J., Zou, J., Zou, X."Essential role of bromodomain proteins in renal cell carcinoma (Review)". Molecular Medicine Reports 28.1 (2023): 139.
Chicago
Wen, Q., Liu, H., Lou, K., Zhang, X., Chao, W., Xin, J., Gong, J., Zou, J., Zou, X."Essential role of bromodomain proteins in renal cell carcinoma (Review)". Molecular Medicine Reports 28, no. 1 (2023): 139. https://doi.org/10.3892/mmr.2023.13026
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team