|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hsieh JJ, Purdue MP, Signoretti S, Swanton
C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal
cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fujisawa T and Filippakopoulos P:
Functions of bromodomain-containing proteins and their roles in
homeostasis and cancer. Nat Rev Mol Cell Biol. 18:246–262. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Haynes SR, Dollard C, Winston F, Beck S,
Trowsdale J and Dawid IB: The bromodomain: A conserved sequence
found in human, Drosophila and yeast proteins. Nucleic Acids Res.
20:26031992. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Boyson SP, Gao C, Quinn K, Boyd J,
Paculova H, Frietze S and Glass KC: Functional roles of bromodomain
proteins in cancer. Cancers (Basel). 13:36062021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fyodorov DV, Zhou BR, Skoultchi AI and Bai
Y: Emerging roles of linker histones in regulating chromatin
structure and function. Nat Rev Mol Cell Biol. 19:192–206. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Allis CD and Jenuwein T: The molecular
hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Izzo A and Schneider R: The role of linker
histone H1 modifications in the regulation of gene expression and
chromatin dynamics. Biochim Biophys Acta. 1859:486–495. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Allfrey VG, Faulkner R and Mirsky AE:
Acetylation and methylation of histones and their possible role in
the regulation of rna synthesis. Proc Natl Acad Sci USA.
51:786–794. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Brownell JE, Zhou J, Ranalli T, Kobayashi
R, Edmondson DG, Roth SY and Allis CD: Tetrahymena histone
acetyltransferase A: A homolog to yeast Gcn5p linking histone
acetylation to gene activation. Cell. 84:843–851. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kuo MH, Brownell JE, Sobel RE, Ranalli TA,
Cook RG, Edmondson DG, Roth SY and Allis CD: Transcription-linked
acetylation by Gcn5p of histones H3 and H4 at specific lysines.
Nature. 383:269–272. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Taunton J, Hassig CA and Schreiber SL: A
mammalian histone deacetylase related to the yeast transcriptional
regulator Rpd3p. Science. 272:408–411. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dhalluin C, Carlson JE, Zeng L, He C,
Aggarwal AK and Zhou MM: Structure and ligand of a histone
acetyltransferase bromodomain. Nature. 399:491–496. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Strahl BD and Allis CD: The language of
covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tan M, Luo H, Lee S, Jin F, Yang JS,
Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al:
Identification of 67 histone marks and histone lysine crotonylation
as a new type of histone modification. Cell. 146:1016–1028. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jeanmougin F, Wurtz JM, Le Douarin B,
Chambon P and Losson R: The bromodomain revisited. Trends Biochem
Sci. 22:151–153. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Romero FA, Taylor AM, Crawford TD, Tsui V,
Côté A and Magnuson S: Disrupting acetyl-lysine recognition:
Progress in the development of bromodomain inhibitors. J Med Chem.
59:1271–1298. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mashtalir N, D'Avino AR, Michel BC, Luo J,
Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St Pierre R, et
al: Modular organization and assembly of SWI/SNF family chromatin
remodeling complexes. Cell. 175:1272–1288.e20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Koo SJ, Fernández-Montalván AE, Badock V,
Holton SJ, von Ahsen O, Toedling J, Vittori S, Bradner JE and
Gorjánácz M: ATAD2 is an epigenetic reader of newly synthesized
histone marks during DNA replication. Oncotarget. 7:70323–70335.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baggiolini A, Callahan SJ, Montal E, Weiss
JM, Trieu T, Tagore MM, Tischfield SE, Walsh RM, Suresh S, Fan Y,
et al: Developmental chromatin programs determine oncogenic
competence in melanoma. Science. 373:eabc10482021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Maubec E, Chaudru V, Mohamdi H, Grange F,
Patard JJ, Dalle S, Crickx B, Paillerets BB, Demenais F and Avril
MF: Characteristics of the coexistence of melanoma and renal cell
carcinoma. Cancer. 116:5716–5724. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dancy BM and Cole PA: Protein lysine
acetylation by p300/CBP. Chem Rev. 115:2419–2452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morinière J, Rousseaux S, Steuerwald U,
Soler-López M, Curtet S, Vitte AL, Govin J, Gaucher J, Sadoul K,
Hart DJ, et al: Cooperative binding of two acetylation marks on a
histone tail by a single bromodomain. Nature. 461:664–668. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang
Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of
BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like
breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hnisz D, Abraham BJ, Lee TI, Lau A,
Saint-André V, Sigova AA, Hoke HA and Young RA: Super-enhancers in
the control of cell identity and disease. Cell. 155:934–947. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Thompson PJ, Norton KA, Niri FH, Dawe CE
and McDermid HE: CECR2 is involved in spermatogenesis and forms a
complex with SNF2H in the testis. J Mol Biol. 415:793–806. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xiao A, Li H, Shechter D, Ahn SH, Fabrizio
LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P,
Hofmann K, et al: WSTF regulates the H2A.X DNA damage response via
a novel tyrosine kinase activity. Nature. 457:57–62. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Filippakopoulos P, Qi J, Picaud S, Shen Y,
Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et
al: Selective inhibition of BET bromodomains. Nature.
468:1067–1073. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Szücs S, Müller-Brechlin R, DeRiese W and
Kovacs G: Deletion 3p: The only chromosome loss in a primary renal
cell carcinoma. Cancer Genet Cytogenet. 26:369–373. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Latif F, Tory K, Gnarra J, Yao M, Duh FM,
Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, et al:
Identification of the von Hippel-Lindau disease tumor suppressor
gene. Science. 260:1317–1320. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Grabmaier K, A de Weijert MC, Verhaegh GW,
Schalken JA and Oosterwijk E: Strict regulation of CAIX(G250/MN) by
HIF-1alpha in clear cell renal cell carcinoma. Oncogene.
23:5624–5631. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang C, Chen L, Lou W, Su J, Huang J, Liu
A, Xu Y, He H, Gao Y, Xu D and Li Q: Aberrant activation of m6A
demethylase FTO renders HIF2αlow/− clear cell renal cell
carcinoma sensitive to BRD9 inhibitors. Sci Transl Med.
13:eabf60452021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cocco E, Leo M, Canzonetta C, Di Vito S,
Mai A, Rotili D, Di Napoli A, Vecchione A, De Nunzio C, Filetici P
and Stoppacciaro A: KAT3B-p300 and H3AcK18/H3AcK14 levels are
prognostic markers for kidney ccRCC tumor aggressiveness and target
of KAT inhibitor CPTH2. Clin Epigenetics. 10:442018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wu X, Liu D, Gao X, Xie F, Tao D, Xiao X,
Wang L, Jiang G and Zeng F: Inhibition of BRD4 suppresses cell
proliferation and induces apoptosis in renal cell carcinoma. Cell
Physiol Biochem. 41:1947–1956. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen W, Zhang H, Chen Z, Jiang H, Liao L,
Fan S, Xing J, Xie Y, Chen S, Ding H, et al: Development and
evaluation of a novel series of Nitroxoline-derived BET inhibitors
with antitumor activity in renal cell carcinoma. Oncogenesis.
7:832018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ji S, Su X, Zhang H, Han Z, Zhao Y and Liu
Q: MicroRNA-372 functions as a tumor suppressor in cell invasion,
migration and epithelial-mesenchymal transition by targeting ATAD2
in renal cell carcinoma. Oncol Lett. 17:2400–2408. 2019.PubMed/NCBI
|
|
39
|
Lou W, Gao K, Xu C and Li Q:
Bromodomain-containing protein 9 is a prognostic biomarker
associated with immune infiltrates and promotes tumor malignancy
through activating notch signaling pathway in negative HIF-2α clear
cell renal cell carcinoma. IUBMB Life. 73:1334–1347. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jiang T, Mao H, Chen Q, Cao L, He Y, Gao
X, Chen W and Zhang H: Trim24 prompts tumor progression via
inducing EMT in renal cell carcinoma. Open Med (Wars).
15:1153–1162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jin W, Miao Q, Wang M, Zhang Y, Ma Y,
Huang Y, Wu H, Lin Y, Hu B and Pan J: A rare case of adrenal gland
abscess due to anaerobes detected by metagenomic next-generation
sequencing. Ann Transl Med. 8:2472020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Aurilio G, Santoni M, Massari F,
Cimadamore A, Rizzo A, Mollica V, Verri E, Battelli N and Montironi
R: Metabolomic profiling in renal cell carcinoma patients: News and
views. Cancers (Basel). 13:52292021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hsieh JJ and Cheng EH: A braided cancer
river connects tumor heterogeneity and precision medicine. Clin
Transl Med. 5:422016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu
Y, Shen Y, He H and Xu D: Downregulated METTL14 accumulates BPTF
that reinforces super-enhancers and distal lung metastasis via
glycolytic reprogramming in renal cell carcinoma. Theranostics.
11:3676–3693. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yu YP, Cai LC, Wang XY, Cheng SY, Zhang
DM, Jian WG, Wang TD, Yang JK, Yang KB and Zhang C: BMP8A promotes
survival and drug resistance via Nrf2/TRIM24 signaling pathway in
clear cell renal cell carcinoma. Cancer Sci. 111:1555–1566. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liao L, Liu ZZ, Langbein L, Cai W, Cho EA,
Na J, Niu X, Jiang W, Zhong Z, Cai WL, et al: Multiple tumor
suppressors regulate a HIF-dependent negative feedback loop via
ISGF3 in human clear cell renal cancer. Elife. 7:e379252018.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Szarkowska J, Cwiek P, Szymanski M,
Rusetska N, Jancewicz I, Stachowiak M, Swiatek M, Luba M,
Konopinski R, Kubala S, et al: RRM2 gene expression depends on
BAF180 subunit of SWISNF chromatin remodeling complex and
correlates with abundance of tumor infiltrating lymphocytes in
ccRCC. Am J Cancer Res. 11:5965–5978. 2021.PubMed/NCBI
|
|
48
|
Wang Z, Li K, Chen W, Wang X, Huang Y,
Wang W, Wu W, Cai Z and Huang W: Modulation of SRSF2 expression
reverses the exhaustion of TILs via the epigenetic regulation of
immune checkpoint molecules. Cell Mol Life Sci. 77:3441–3452. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tan YF, Wang M, Chen ZY, Wang L and Liu
XH: Inhibition of BRD4 prevents proliferation and
epithelial-mesenchymal transition in renal cell carcinoma via NLRP3
inflammasome-induced pyroptosis. Cell Death Dis. 11:2392020.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Arany Z, Huang LE, Eckner R, Bhattacharya
S, Jiang C, Goldberg MA, Bunn HF and Livingston DM: An essential
role for p300/CBP in the cellular response to hypoxia. Proc Natl
Acad Sci USA. 93:12969–12973. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang XJ, Ogryzko VV, Nishikawa J, Howard
BH and Nakatani Y: A p300/CBP-associated factor that competes with
the adenoviral oncoprotein E1A. Nature. 382:319–324. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pawlus MR, Wang L and Hu CJ: STAT3 and
HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and
RCC4 cells. Oncogene. 33:1670–1679. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jung JE, Lee HG, Cho IH, Chung DH, Yoon
SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK and Chung MH: STAT3 is
a potential modulator of HIF-1-mediated VEGF expression in human
renal carcinoma cells. FASEB J. 19:1296–1298. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lee SH, Kang JH, Ha JS, Lee JS, Oh SJ,
Choi HJ, Song J and Kim SY: Transglutaminase 2-mediated p53
depletion promotes angiogenesis by increasing HIF-1α-p300 binding
in renal cell carcinoma. Int J Mol Sci. 21:50422020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Datta K, Li J, Bhattacharya R, Gasparian
L, Wang E and Mukhopadhyay D: Protein kinase C zeta transactivates
hypoxia-inducible factor alpha by promoting its association with
p300 in renal cancer. Cancer Res. 64:456–462. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lou F, Chen X, Jalink M, Zhu Q, Ge N, Zhao
S, Fang X, Fan Y, Björkholm M, Liu Z and Xu D: The opposing effect
of hypoxia-inducible factor-2alpha on expression of telomerase
reverse transcriptase. Mol Cancer Res. 5:793–800. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zeng X, Chen K, Li L, Tian J, Ruan W, Hu
Z, Peng D and Chen Z: Epigenetic activation of RBM15 promotes clear
cell renal cell carcinoma growth, metastasis and macrophage
infiltration by regulating the m6A modification of CXCL11. Free
Radic Biol Med. 184:135–147. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kushal S, Lao BB, Henchey LK, Dubey R,
Mesallati H, Traaseth NJ, Olenyuk BZ and Arora PS: Protein domain
mimetics as in vivo modulators of hypoxia-inducible factor
signaling. Proc Natl Acad Sci USA. 110:15602–15607. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Latif AL, Newcombe A, Li S, Gilroy K,
Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, et
al: BRD4-mediated repression of p53 is a target for combination
therapy in AML. Nat Commun. 12:2412021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Civenni G, Bosotti R, Timpanaro A, Vàzquez
R, Merulla J, Pandit S, Rossi S, Albino D, Allegrini S, Mitra A, et
al: Epigenetic control of mitochondrial fission enables
self-renewal of stem-like tumor cells in human prostate cancer.
Cell Metab. 30:303–318.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Weissman JD, Singh AK, Devaiah BN, Schuck
P, LaRue RC and Singer DS: The intrinsic kinase activity of BRD4
spans its BD2-B-BID domains. J Biol Chem. 297:1013262021.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tewary P, Brooks AD, Xu YM, Wijeratne EMK,
Babyak AL, Back TC, Chari R, Evans CN, Henrich CJ, Meyer TJ, et al:
Small-molecule natural product physachenolide C potentiates
immunotherapy efficacy by targeting BET proteins. Cancer Res.
81:3374–3386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Delmore JE, Issa GC, Lemieux ME, Rahl PB,
Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et
al: BET bromodomain inhibition as a therapeutic strategy to target
c-Myc. Cell. 146:904–917. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sakaguchi T, Yoshino H, Sugita S, Miyamoto
K, Yonemori M, Osako Y, Meguro-Horike M, Horike SI, Nakagawa M and
Enokida H: Bromodomain protein BRD4 inhibitor JQ1 regulates
potential prognostic molecules in advanced renal cell carcinoma.
Oncotarget. 9:23003–23017. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu M, Xu L, Wang Y, Dai G, Xue B, Liu YY
and Zhu J and Zhu J: BRD4 inhibition sensitizes renal cell
carcinoma cells to the PI3K/mTOR dual inhibitor VS-5584. Aging
(Albany NY). 12:19147–19158. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xing ZY, Wang Y, Cheng L, Chen J, He XZ
and Xing W: Bromodomain-containing protein 4 (BRD4) inhibition
sensitizes palomid 529-induced anti-renal cell carcinoma cell
activity in vitro and in vivo. Cell Physiol Biochem. 50:640–653.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu H, Mao JH, Wang Y, Gu DH, Pan XD, Shan
Y and Zheng B: Dual inhibition of BRD4 and PI3K-AKT by SF2523
suppresses human renal cell carcinoma cell growth. Oncotarget.
8:98471–98481. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS,
Shi WH, Ye LX, Luo X, Liu SW, Li YL and Yu L: BAP1 loss augments
sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin.
43:1803–1815. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hsieh JJ, Chen D, Wang PI, Marker M,
Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N,
Huberman KH, et al: Genomic biomarkers of a randomized trial
comparing first-line everolimus and sunitinib in patients with
metastatic renal cell carcinoma. Eur Urol. 71:405–414. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu
J, Chiang CM and Ouyang L: Dual-target inhibitors of bromodomain
and extra-terminal proteins in cancer: A review from medicinal
chemistry perspectives. Med Res Rev. 42:710–743. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pivot-Pajot C, Caron C, Govin J, Vion A,
Rousseaux S and Khochbin S: Acetylation-dependent chromatin
reorganization by BRDT, a testis-specific bromodomain-containing
protein. Mol Cell Biol. 23:5354–5365. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wan P, Chen Z, Zhong W, Jiang H, Huang Z,
Peng D, He Q and Chen N: BRDT is a novel regulator of eIF4EBP1 in
renal cell carcinoma. Oncol Rep. 44:2475–2486. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zahid H, Olson NM and Pomerantz WCK:
Opportunity knocks for uncovering the new function of an
understudied nucleosome remodeling complex member, the bromodomain
PHD finger transcription factor, BPTF. Curr Opin Chem Biol.
63:57–67. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wysocka J, Swigut T, Xiao H, Milne TA,
Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, et
al: A PHD finger of NURF couples histone H3 lysine 4 trimethylation
with chromatin remodelling. Nature. 442:86–90. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nayak A, Dutta M and Roychowdhury A:
Emerging oncogene ATAD2: Signaling cascades and therapeutic
initiatives. Life Sci. 276:1193222021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu H, Wen Q, Yan S, Zeng W, Zou Y, Liu Q,
Zhang G, Zou J and Zou X: Tumor-promoting ATAD2 and its preclinical
challenges. Biomolecules. 12:10402022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen D, Maruschke M, Hakenberg O,
Zimmermann W, Stief CG and Buchner A: TOP2A, HELLS, ATAD2, and TET3
are novel prognostic markers in renal cell carcinoma. Urology.
102:265.e1–265.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hsieh JJ, Le VH, Oyama T, Ricketts CJ, Ho
TH and Cheng EH: Chromosome 3p loss-orchestrated VHL, HIF, and
epigenetic deregulation in clear cell renal cell carcinoma. J Clin
Oncol. Oct 29–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jonasch E, Walker CL and Rathmell WK:
Clear cell renal cell carcinoma ontogeny and mechanisms of
lethality. Nat Rev Nephrol. 17:245–261. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Carril-Ajuria L, Santos M, Roldán-Romero
JM, Rodriguez-Antona C and de Velasco G: Prognostic and predictive
value of PBRM1 in clear cell renal cell carcinoma. Cancers (Basel).
12:162019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Thompson M: Polybromo-1: The chromatin
targeting subunit of the PBAF complex. Biochimie. 91:309–319. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brownlee PM, Chambers AL, Oliver AW and
Downs JA: Cancer and the bromodomains of BAF180. Biochem Soc Trans.
40:364–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Peña-Llopis S, Vega-Rubín-de-Celis S, Liao
A, Leng N, Pavía-Jiménez A, Wang S, Yamasaki T, Zhrebker L,
Sivanand S, Spence P, et al: BAP1 loss defines a new class of renal
cell carcinoma. Nat Genet. 44:751–759. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Espana-Agusti J, Warren A, Chew SK, Adams
DJ and Matakidou A: Loss of PBRM1 rescues VHL dependent replication
stress to promote renal carcinogenesis. Nat Commun. 8:20262017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gu YF, Cohn S, Christie A, McKenzie T,
Wolff N, Do QN, Madhuranthakam AJ, Pedrosa I, Wang T, Dey A, et al:
Modeling renal cell carcinoma in mice: Bap1 and Pbrm1 inactivation
drive tumor grade. Cancer Discov. 7:900–917. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu W, Zhang B, Zhang D, Guo F, Ye K, Zhu
L and Jin X: The RBPJ/DAPK3/UBE3A signaling axis induces PBRM1
degradation to modulate the sensitivity of renal cell carcinoma to
CDK4/6 inhibitors. Cell Death Dis. 13:2952022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nargund AM, Pham CG, Dong Y, Wang PI,
Osmangeyoglu HU, Xie Y, Aras O, Han S, Oyama T, Takeda S, et al:
The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell
renal cell carcinoma. Cell Rep. 18:2893–2906. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gao W, Li W, Xiao T, Liu XS and Kaelin WG
Jr: Inactivation of the PBRM1 tumor suppressor gene amplifies the
HIF-response in VHL-/- clear cell renal carcinoma. Proc Natl Acad
Sci USA. 114:1027–1032. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhou M, Leung JY, Gessner KH, Hepperla AJ,
Simon JM, Davis IJ and Kim WY: PBRM1 inactivation promotes
upregulation of human endogenous retroviruses in a HIF-dependent
manner. Cancer Immunol Res. 10:285–290. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chowdhury B, Porter EG, Stewart JC,
Ferreira CR, Schipma MJ and Dykhuizen EC: PBRM1 regulates the
expression of genes involved in metabolism and cell adhesion in
renal clear cell carcinoma. PLoS One. 11:e01537182016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Porter EG, Dhiman A, Chowdhury B, Carter
BC, Lin H, Stewart JC, Kazemian M, Wendt MK and Dykhuizen EC: PBRM1
regulates stress response in epithelial cells. iScience.
15:196–210. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Braun DA, Hou Y, Bakouny Z, Ficial M,
Sant' Angelo M, Forman J, Ross-Macdonald P, Berger AC, Jegede OA,
Elagina L, et al: Interplay of somatic alterations and immune
infiltration modulates response to PD-1 blockade in advanced clear
cell renal cell carcinoma. Nat Med. 26:909–918. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xia QY, Rao Q, Cheng L, Shen Q, Shi SS, Li
L, Liu B, Zhang J, Wang YF, Shi QL, et al: Loss of BRM expression
is a frequently observed event in poorly differentiated clear cell
renal cell carcinoma. Histopathology. 64:847–862. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Guerrero-Martinez JA and Reyes JC: High
expression of SMARCA4 or SMARCA2 is frequently associated with an
opposite prognosis in cancer. Sci Rep. 8:20432018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fang R, Xia Q, Sun J, Ng HZ, Liang Y, Wang
X, Wang X, Ma H, Zhou X, Cheng Y and Rao Q: Hypermethylation of BRM
promoter plays oncogenic roles in development of clear cell renal
cell carcinoma. J Cancer. 10:5256–5263. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fang R, Pan R, Wang X, Liang Y, Wang X, Ma
H, Zhou X, Xia Q and Rao Q: Inactivation of BRM/SMARCA2 sensitizes
clear cell renal cell carcinoma to histone deacetylase complex
inhibitors. Pathol Res Pract. 216:1528672020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Schuetz A, Bernstein G, Dong A, Antoshenko
T, Wu H, Loppnau P, Bochkarev A and Plotnikov AN: Crystal structure
of a binary complex between human GCN5 histone acetyltransferase
domain and acetyl coenzyme A. Proteins. 68:403–407. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ononye OE and Downey M: Posttranslational
regulation of the GCN5 and PCAF acetyltransferases. PLoS Genet.
18:e10103522022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Guo Y, Liu B, Liu Y, Sun W, Gao W, Mao S
and Chen L: Oncogenic chromatin modifier KAT2A activates MCT1 to
drive the glycolytic process and tumor progression in renal cell
carcinoma. Front Cell Dev Biol. 9:6907962021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vetting MW, de Carvalho LP, Yu M, Hegde
SS, Magnet S, Roderick SL and Blanchard JS: Structure and functions
of the GNAT superfamily of acetyltransferases. Arch Biochem
Biophys. 433:212–226. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lu J, Qian C, Ji Y, Bao Q and Lu B: Gene
signature associated with bromodomain genes predicts the prognosis
of kidney renal clear cell carcinoma. Front Genet. 12:6439352021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shanmugasundaram K, Nayak BK, Friedrichs
WE, Kaushik D, Rodriguez R and Block K: NOX4 functions as a
mitochondrial energetic sensor coupling cancer metabolic
reprogramming to drug resistance. Nat Commun. 8:9972017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Xu Y, Wu G, Zhang J, Li J, Ruan N, Zhang
J, Zhang Z, Chen Y, Zhang Q and Xia Q: TRIM33 overexpression
inhibits the progression of clear cell renal cell carcinoma in vivo
and in vitro. Biomed Res Int. 2020:84092392020.PubMed/NCBI
|
|
104
|
Lu K, Pan Y, Huang Z, Liang H, Ding ZY and
Zhang B: TRIM proteins in hepatocellular carcinoma. J Biomed Sci.
29:692022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Jingushi K, Ueda Y, Kitae K, Hase H, Egawa
H, Ohshio I, Kawakami R, Kashiwagi Y, Tsukada Y, Kobayashi T, et
al: miR-629 targets TRIM33 to promote TGFβ/Smad signaling and
metastatic phenotypes in ccRCC. Mol Cancer Res. 13:565–574. 2015.
View Article : Google Scholar : PubMed/NCBI
|