|
1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yen TT, Wang TL, Fader AN, Shih IM and
Gaillard S: Molecular classification and emerging targeted therapy
in endometrial cancer. Int J Gynecol Pathol. 39:26–35. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109. 1982.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu
C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted
therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
McMellen A, Woodruff ER, Corr BR, Bitler
BG and Moroney MR: Wnt signaling in gynecologic malignancies. Int J
Mol Sci. 21:42722020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen Y, Chen X, Ji YR, Zhu S, Bu FT, Du
XS, Meng XM, Huang C and Li J: PLK1 regulates hepatic stellate cell
activation and liver fibrosis through Wnt/β-catenin signalling
pathway. J Cell Mol Med. 24:7405–7416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jung YS, Jun S, Kim MJ, Lee SH, Suh HN,
Lien EM, Jung HY, Lee S, Zhang J, Yang JI, et al: TMEM9 promotes
intestinal tumorigenesis through vacuolar-ATPase-activated
Wnt/β-catenin signalling. Nat Cell Biol. 20:1421–1433. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Parrish ML, Broaddus RR and Gladden AB:
Mechanisms of mutant β-catenin in endometrial cancer progression.
Front Oncol. 12:10093452022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ledinek Z, Sobocan M and Knez J: The Role
of CTNNB1 in endometrial cancer. Dis Markers. 2022:14424412022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Moroney MR, Woodruff E, Qamar L, Bradford
AP, Wolsky R, Bitler BG and Corr BR: Inhibiting Wnt/beta-catenin in
CTNNB1-mutated endometrial cancer. Mol Carcinog. 60:511–523. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pijnenborg JM, Kisters N, van Engeland M,
Dunselman GA, de Haan J, de Goeij AF and Groothuis PG: APC,
beta-catenin, and E-cadherin and the development of recurrent
endometrial carcinoma. Int J Gynecol Cancer. 14:947–956. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Moreno-Bueno G, Hardisson D, Sanchez C,
Sarrio D, Cassia R, Garcia-Rostan G, Prat J, Guo M, Herman JG,
Matias-Guiu X, et al: Abnormalities of the APC/beta-catenin pathway
in endometrial cancer. Oncogene. 21:7981–7990. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
van der Zee M, Jia Y, Wang Y,
Heijmans-Antonissen C, Ewing PC, Franken P, Demayo FJ, Lydon JP,
Burger CW, Fodde R and Blok LJ: Alterations in Wnt-beta-catenin and
Pten signalling play distinct roles in endometrial cancer
initiation and progression. J Pathol. 230:48–58. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kasoha M, Dernektsi C, Seibold A, Bohle
RM, Takacs Z, Ioan-Iulian I, Solomayer EF and Juhasz-Boss I:
Crosstalk of estrogen receptors and Wnt/β-catenin signaling in
endometrial cancer. J Cancer Res Clin Oncol. 146:315–327. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen JJ, Xiao ZJ, Meng X, Wang Y, Yu MK,
Huang WQ, Sun X, Chen H, Duan YG, Jiang X, et al: MRP4 sustains
Wnt/beta-catenin signaling for pregnancy, endometriosis and
endometrial cancer. Theranostics. 9:5049–5064. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Matsui M and Corey DR: Non-coding RNAs as
drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fitzgerald JB, George J and Christenson
LK: Non-coding RNA in ovarian development and disease. Adv Exp Med
Biol. 886:79–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang J, Zhao X, Guo Z, Ma X, Song Y and
Guo Y: Regulation of NEAT1/miR-214-3p on the growth, migration and
invasion of endometrial carcinoma cells. Arch Gynecol Obstet.
295:1469–1475. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li Z, Wei D, Yang C, Sun H, Lu T and Kuang
D: Overexpression of long noncoding RNA, NEAT1 promotes cell
proliferation, invasion and migration in endometrial endometrioid
adenocarcinoma. Biomed Pharmacother. 84:244–251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sun C, Li S, Zhang F, Xi Y, Wang L, Bi Y
and Li D: Long non-coding RNA NEAT1 promotes non-small cell lung
cancer progression through regulation of miR-377-3p-E2F3 pathway.
Oncotarget. 7:51784–51814. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lai T, Qiu H, Si L, Zhen Y, Chu D and Guo
R: Long noncoding RNA BMPR1B-AS1 facilitates endometrial cancer
cell proliferation and metastasis by sponging miR-7-2-3p to
modulate the DCLK1/Akt/NF-κB pathway. Cell Cycle. 21:1599–1618.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhou Y, Pan A, Zhang Y and Li X:
Hsa_circ_0039569 facilitates the progression of endometrial
carcinoma by targeting the miR-197/high mobility group protein A1
axis. Bioengineered. 13:4212–4225. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yi H, Han Y and Li S: Oncogenic circular
RNA circ_0007534 contributes to paclitaxel resistance in
endometrial cancer by sponging miR-625 and promoting ZEB2
expression. Front Oncol. 12:9854702022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu Y, Yuan H and He T: Downregulated
circular RNA hsa_circ_0005797 inhibits endometrial cancer by
modulating microRNA-298/Catenin delta 1 signaling. Bioengineered.
13:4634–4645. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gu X, Shi Y, Dong M, Jiang L, Yang J and
Liu Z: Exosomal transfer of tumor-associated macrophage-derived
hsa_circ_0001610 reduces radiosensitivity in endometrial cancer.
Cell Death Dis. 12:8182021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Adler PN, Krasnow RE and Liu J: Tissue
polarity points from cells that have higher Frizzled levels towards
cells that have lower Frizzled levels. Curr Biol. 7:940–949. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wolff T and Rubin GM: Strabismus, a novel
gene that regulates tissue polarity and cell fate decisions in
Drosophila. Development. 125:1149–1159. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Theisen H, Purcell J, Bennett M, Kansagara
D, Syed A and Marsh JL: dishevelled is required during wingless
signaling to establish both cell polarity and cell identity.
Development. 120:347–360. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gubb D, Green C, Huen D, Coulson D,
Johnson G, Tree D, Collier S and Roote J: The balance between
isoforms of the prickle LIM domain protein is critical for planar
polarity in Drosophila imaginal discs. Genes Dev. 13:2315–2327.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Taciak B, Pruszynska I, Kiraga L, Bialasek
M and Krol M: Wnt signaling pathway in development and cancer. J
Physiol Pharmacol. 69((2))2018.PubMed/NCBI
|
|
35
|
Humphries AC and Mlodzik M: From
instruction to output: Wnt/PCP signaling in development and cancer.
Curr Opin Cell Biol. 51:110–116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Minegishi K, Hashimoto M, Ajima R, Takaoka
K, Shinohara K, Ikawa Y, Nishimura H, Mcmahon AP, Willert K, Okada
Y, et al: A Wnt5 activity asymmetry and intercellular signaling via
PCP proteins polarize node cells for left-right symmetry breaking.
Dev Cell. 40:439–452.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Katoh M: WNT/PCP signaling pathway and
human cancer (review). Oncol Rep. 14:1583–1588. 2005.PubMed/NCBI
|
|
38
|
Simons M and Mlodzik M: Planar cell
polarity signaling: From fly development to human disease. Annu Rev
Genet. 42:517–540. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Curtin JA, Quint E, Tsipouri V, Arkell RM,
Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM,
et al: Mutation of Celsr1 disrupts planar polarity of inner ear
hair cells and causes severe neural tube defects in the mouse. Curr
Biol. 13:1129–1133. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Simons M and Walz G: Polycystic kidney
disease: Cell division without a c(l)ue? Kidney Int. 70:854–864.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Garriock RJ, D'Agostino SL, Pilcher KC and
Krieg PA: Wnt11-R, a protein closely related to mammalian Wnt11, is
required for heart morphogenesis in Xenopus. Dev Biol. 279:179–192.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pennekamp P, Menchen T, Dworniczak B and
Hamada H: Situs inversus and ciliary abnormalities: 20 years later,
what is the connection? Cilia. 4:12015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hong CF, Chen WY and Wu CW: Upregulation
of Wnt signaling under hypoxia promotes lung cancer progression.
Oncol Rep. 38:1706–1714. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kurayoshi M, Oue N, Yamamoto H, Kishida M,
Inoue A, Asahara T, Yasui W and Kikuchi A: Expression of Wnt-5a is
correlated with aggressiveness of gastric cancer by stimulating
cell migration and invasion. Cancer Res. 66:10439–10448. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Luga V, Zhang L, Viloria-Petit AM,
Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and
Wrana JL: Exosomes mediate stromal mobilization of autocrine
Wnt-PCP signaling in breast cancer cell migration. Cell.
151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Daulat AM, Bertucci F, Audebert S, Serge
A, Finetti P, Josselin E, Castellano R, Birnbaum D, Angers S and
Borg JP: PRICKLE1 Contributes to Cancer Cell Dissemination through
Its Interaction with mTORC2. Dev Cell. 37:311–325. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang L, Luga V, Armitage SK, Musiol M,
Won A, Yip CM, Plotnikov SV and Wrana JL: A lateral signalling
pathway coordinates shape volatility during cell migration. Nat
Commun. 7:117142016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang N, Chen H, Huang Y, Song X, Yang P,
Zhang S, Yan W, Li N and Feng Z: The role and significance of wnt5a
in regulating epithelial-mesenchymal transition in endometrioid
adenocarcinoma. Cancer Manag Res. 13:6527–6535. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ma J, Kong FF, Yang D, Yang H, Wang C,
Cong R and Ma XX: lncRNA MIR210HG promotes the progression of
endometrial cancer by sponging miR-337-3p/137 via the
HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids. 24:905–922. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wasniewski T, Kiezun J, Krazinski BE,
Kowalczyk AE, Szostak B, Wierzbicki PM and Kiewisz J: WNT5A gene
and protein expression in endometrial cancer. Folia Histochem
Cytobiol. 57:84–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mikels A, Minami Y and Nusse R: Ror2
receptor requires tyrosine kinase activity to mediate Wnt5A
signaling. J Biol Chem. 284:30167–30176. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nakano K, Chihara Y, Kobayashi S, Iwanaga
M, Utsunomiya A, Watanabe T and Uchimaru K: Overexpression of
aberrant Wnt5a and its effect on acquisition of malignant
phenotypes in adult T-cell leukemia/lymphoma (ATL) cells. Sci Rep.
11:41142021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pukrop T, Klemm F, Hagemann T, Gradl D,
Schulz M, Siemes S, Trumper L and Binder C: Wnt 5a signaling is
critical for macrophage-induced invasion of breast cancer cell
lines. Proc Natl Acad Sci USA. 103:5454–5459. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang Q, Symes AJ, Kane CA, Freeman A,
Nariculam J, Munson P, Thrasivoulou C, Masters JR and Ahmed A: A
novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling
and cell motility in prostate cancer. PLoS One. 5:e104562010.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Macleod RJ, Hayes M and Pacheco I: Wnt5a
secretion stimulated by the extracellular calcium-sensing receptor
inhibits defective Wnt signaling in colon cancer cells. Am J
Physiol Gastrointest Liver Physiol. 293:G403–G411. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kremenevskaja N, von Wasielewski R, Rao
AS, Schofl C, Andersson T and Brabant G: Wnt-5a has tumor
suppressor activity in thyroid carcinoma. Oncogene. 24:2144–2154.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zmarzly N, Hermyt E, Kruszniewska-Rajs C,
Gola J, Witek A, Mazurek U, Ostenda A and Boron D: Expression
Profile of EMT-related Genes and miRNAs involved in signal
transduction via the Wnt pathway and cadherins in endometrial
cancer. Curr Pharm Biotechnol. 22:1663–1671. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tewari D, Bawari S, Sharma S, Deliberto LK
and Bishayee A: Targeting the crosstalk between canonical
Wnt/β-catenin and inflammatory signaling cascades: A novel strategy
for cancer prevention and therapy. Pharmacol Ther. 227:1078762021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kurnit KC, Kim GN, Fellman BM, Urbauer DL,
Mills GB, Zhang W and Broaddus RR: CTNNB1 (beta-catenin) mutation
identifies low grade, early stage endometrial cancer patients at
increased risk of recurrence. Mod Pathol. 30:1032–1041. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ruz-Caracuel I, Lopez-Janeiro A,
Heredia-Soto V, Ramon-Patino JL, Yebenes L, Berjon A, Hernandez A,
Gallego A, Ruiz P, Redondo A, et al: Clinicopathological features
and prognostic significance of CTNNB1 mutation in low-grade,
early-stage endometrial endometrioid carcinoma. Virchows Arch.
479:1167–1176. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Costigan DC, Dong F, Nucci MR and Howitt
BE: Clinicopathologic and immunohistochemical correlates of CTNNB1
mutated endometrial endometrioid carcinoma. Int J Gynecol Pathol.
39:119–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Goad J, Ko YA, Kumar M, Jamaluddin MFB and
Tanwar PS: Oestrogen fuels the growth of endometrial hyperplastic
lesions initiated by overactive Wnt/β-catenin signalling.
Carcinogenesis. 39:1105–1116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Valenta T, Hausmann G and Basler K: The
many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Heuberger J and Birchmeier W: Interplay of
cadherin-mediated cell adhesion and canonical Wnt signaling. Cold
Spring Harb Perspect Biol. 2:a29152010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Barrallo-Gimeno A and Nieto MA: The Snail
genes as inducers of cell movement and survival: Implications in
development and cancer. Development. 132:3151–3161. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Conacci-Sorrell M, Simcha I, Ben-Yedidia
T, Blechman J, Savagner P and Ben-Ze'ev A: Autoregulation of
E-cadherin expression by cadherin-cadherin interactions: The roles
of beta-catenin signaling, Slug, and MAPK. J Cell Biol.
163:847–857. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang Y and Wang X: Targeting the
Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol.
13:1652020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Krishnamurthy N and Kurzrock R: Targeting
the Wnt/beta-catenin pathway in cancer: Update on effectors and
inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhou Y, Zhu Y, Xie Y and Ma X: The role of
long Non-coding RNAs in immunotherapy resistance. Front Oncol.
9:12922019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wilusz JE, Sunwoo H and Spector DL: Long
noncoding RNAs: Functional surprises from the RNA world. Genes Dev.
23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heuston EF, Lemon KT and Arceci RJ: The
beginning of the road for Non-Coding RNAs in normal hematopoiesis
and hematologic malignancies. Front Genet. 2:942011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang S, Shen S, Yang Z, Kong X, Liu F and
Zhen Z: Coding and Non-coding RNAs: Molecular basis of
forest-insect outbreaks. Front Cell Dev Biol. 8:3692020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mendell JT: Targeting a long Noncoding RNA
in breast cancer. N Engl J Med. 374:2287–2289. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Karimzadeh MR, Pourdavoud P, Ehtesham N,
Qadbeigi M, Asl MM, Alani B, Mosallaei M and Pakzad B: Regulation
of DNA methylation machinery by epi-miRNAs in human cancer:
Emerging new targets in cancer therapy. Cancer Gene Ther.
28:157–174. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li C, Liu H, Wei R, Liu Z, Chen H, Guan X,
Zhao Z, Wang X and Jiang Z: LncRNA EGOT/miR-211-5p affected
radiosensitivity of rectal cancer by competitively regulating
ErbB4. Onco Targets Ther. 14:2867–2878. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon
H, Kim KH, Jin MS, Kwon NH, Kim S, et al: Tumor Suppressor
miRNA-204-5p Regulates Growth, Metastasis, and Immune
Microenvironment Remodeling in Breast Cancer. Cancer Res.
79:1520–1534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Huang Y, Liu G, Ma H, Tian Y, Huang C, Liu
F, Jia Y and Jiang D: Plasma lncRNA FEZF1-AS1 as a potential
biomarker for diagnosis of non-small-cell lung carcinoma. Medicine
(Baltimore). 99:e210192020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liao Y, Cao W, Zhang K, Zhou Y, Xu X, Zhao
X, Yang X, Wang J, Zhao S, Zhang S, et al: Bioinformatic and
integrated analysis identifies an lncRNA-miRNA-mRNA interaction
mechanism in gastric adenocarcinoma. Genes Genomics. 43:613–622.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Piergentili R, Zaami S, Cavaliere AF,
Signore F, Scambia G, Mattei A, Marinelli E, Gulia C and Perelli F:
Non-Coding RNAs as prognostic markers for endometrial cancer. Int J
Mol Sci. 22:31512021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu D, Song Z, Wang X and Ouyang L:
Ubiquitin C-Terminal Hydrolase L5 (UCHL5) accelerates the growth of
endometrial cancer via activating the Wnt/β-catenin signaling
pathway. Front Oncol. 10:8652020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Fatima I, Barman S, Rai R, Thiel KWW and
Chandra V: Targeting Wnt signaling in endometrial cancer. Cancers
(Basel). 13:23512021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang ZM, Wan XH, Sang GY, Zhao JD, Zhu QY
and Wang DM: miR-15a-5p suppresses endometrial cancer cell growth
via Wnt/β-catenin signaling pathway by inhibiting WNT3A. Eur Rev
Med Pharmacol Sci. 21:4810–4818. 2017.PubMed/NCBI
|
|
83
|
Li Y, Liu J, Piao J, Ou J and Zhu X:
Circ_0109046 promotes the malignancy of endometrial carcinoma cells
through the microRNA-105/SOX9/Wnt/β-catenin axis. IUBMB Life.
73:159–176. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shang JC, Yu GZ, Ji ZW, Wang XQ and Xia L:
MiR-105 inhibits gastric cancer cells metastasis,
epithelial-mesenchymal transition by targeting SOX9. Eur Rev Med
Pharmacol Sci. 23:6160–6169. 2019.PubMed/NCBI
|
|
85
|
Xu H, Gong Z, Shen Y, Fang Y and Zhong S:
Circular RNA expression in extracellular vesicles isolated from
serum of patients with endometrial cancer. Epigenomics. 10:187–197.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shen Q, He T and Yuan H: Hsa_circ_0002577
promotes endometrial carcinoma progression via regulating
miR-197/CTNND1 axis and activating Wnt/β-catenin pathway. Cell
Cycle. 18:1229–1240. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu D, Qiu M, Jiang L and Liu K: Long
Noncoding RNA HOXB-AS1 is upregulated in endometrial carcinoma and
sponged miR-149-3p to Upregulate Wnt10b. Technol Cancer Res Treat.
19:15330338209674622020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang H and Xie Y: BRD7-Mediated miR-3148
inhibits progression of cervical cancer by targeting
Wnt3a/β-catenin pathway. Reprod Sci. 27:877–887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Shen G, Gao Q, Liu F, Zhang Y, Dai M, Zhao
T, Cheng M, Xu T, Jin P, Yin W, et al: The Wnt3a/β-catenin/TCF7L2
signaling axis reduces the sensitivity of HER2-positive epithelial
ovarian cancer to trastuzumab. Biochem Biophys Res Commun.
526:685–691. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jiang H, Li Y, Li J, Zhang X, Niu G, Chen
S and Yao S: Long noncoding RNA LSINCT5 promotes endometrial
carcinoma cell proliferation, cycle, and invasion by promoting the
Wnt/β-catenin signaling pathway via HMGA2. Ther Adv Med Oncol.
11:17588359198746492019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Park SA, Kim LK, Kim YT, Heo TH and Kim
HJ: Long non-coding RNA steroid receptor activator promotes the
progression of endometrial cancer via Wnt/β-catenin signaling
pathway. Int J Biol Sci. 16:99–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang H, Yang Q, Li J, Chen W, Jin X and
Wang Y: MicroRNA-15a-5p inhibits endometrial carcinoma
proliferation, invasion and migration via downregulation of VEGFA
and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett.
21:3102021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen P, Xing T, Wang Q, Liu A, Liu H, Hu
Y, Ji Y, Song Y and Wang D: MicroRNA-202 inhibits cell migration
and invasion through targeting FGF2 and inactivating
Wnt/beta-catenin signaling in endometrial carcinoma. Biosci Rep.
39:BSR201906802019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li Y, Sun D, Gao J, Shi Z, Chi P, Meng Y,
Zou C and Wang Y: MicroRNA-373 promotes the development of
endometrial cancer by targeting LATS2 and activating the
Wnt/beta-Catenin pathway. J Cell Biochem. 120:8611–8618. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sun X, Dongol S, Qiu C, Xu Y, Sun C, Zhang
Z, Yang X, Zhang Q and Kong B: miR-652 promotes tumor proliferation
and metastasis by targeting RORA in endometrial cancer. Mol Cancer
Res. 16:1927–1939. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang X, Zhong R, He X, Deng Q, Peng X, Li
J and Luo X: Investigations on the mechanism of progesterone in
inhibiting endometrial cancer cell cycle and viability via
regulation of long noncoding RNA NEAT1/microRNA-146b-5p mediated
Wnt/β-catenin signaling. IUBMB Life. 71:223–234. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jung YS and Park JI: Wnt signaling in
cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and
the destruction complex. Exp Mol Med. 52:183–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Werner J, Boonekamp KE, Zhan T and Boutros
M: The roles of secreted Wnt ligands in cancer. Int J Mol Sci.
24:53492023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Doo DW, Meza-Perez S, Londono AI,
Goldsberry WN, Katre AA, Boone JD, Moore DJ, Hudson CT, Betella I,
Mccaw TR, et al: Inhibition of the Wnt/β-catenin pathway enhances
antitumor immunity in ovarian cancer. Ther Adv Med Oncol.
12:17588359209137982020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Rodon J, Argiles G, Connolly RM,
Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC,
Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent
WNT974, a first-in-class Porcupine inhibitor, in patients with
advanced solid tumours. Br J Cancer. 125:28–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tabernero J, Van Cutsem E, Garralda E, Tai
D, De Braud F, Geva R, van Bussel MTJ, Fiorella Dotti K, Elez E, de
Miguel MJ, et al: A Phase Ib/II Study of WNT974 + Encorafenib +
cetuximab in patients with BRAF V600E-Mutant KRAS wild-type
metastatic colorectal cancer. Oncologist. 28:230–238. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Madan B, Ke Z, Harmston N, Ho SY, Frois
AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al:
Wnt addiction of genetically defined cancers reversed by PORCN
inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
He B, You L, Uematsu K, Xu Z, Lee AY,
Matsangou M, Mccormick F and Jablons DM: A monoclonal antibody
against Wnt-1 induces apoptosis in human cancer cells. Neoplasia.
6:7–14. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Davis SL, Cardin DB, Shahda S, Lenz HJ,
Dotan E, O'Neil BH, Kapoun AM, Stagg RJ, Berlin J, Messersmith WA
and Cohen SJ: A phase 1b dose escalation study of Wnt pathway
inhibitor vantictumab in combination with nab-paclitaxel and
gemcitabine in patients with previously untreated metastatic
pancreatic cancer. Invest New Drugs. 38:821–830. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Diamond JR, Becerra C, Richards D, Mita A,
Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et
al: Phase Ib clinical trial of the anti-frizzled antibody
vantictumab (OMP-18R5) plus paclitaxel in patients with locally
advanced or metastatic HER2-negative breast cancer. Breast Cancer
Res Treat. 184:53–62. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Smith DC, Rosen LS, Chugh R, Goldman JW,
Xu L, Kapoun A, Brachmann RK, Dupont J, Stagg RJ, Tolcher AW, et
al: First-in-human evaluation of the human monoclonal antibody
vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in
a phase I study for patients with advanced solid tumors. J Clin
Oncol. 31 (Suppl 15):25402013. View Article : Google Scholar
|
|
107
|
Le PN, Mcdermott JD and Jimeno A:
Targeting the Wnt pathway in human cancers: Therapeutic targeting
with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Fischer MM, Cancilla B, Yeung VP,
Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY,
Evans JW, et al: WNT antagonists exhibit unique combinatorial
antitumor activity with taxanes by potentiating mitotic cell death.
Sci Adv. 3:e17000902017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jimeno A, Gordon M, Chugh R, Messersmith
W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S,
et al: A First-in-Human Phase I study of the anticancer stem cell
agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in
patients with advanced solid tumors. Clin Cancer Res. 23:7490–7497.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Moore KN, Gunderson CC, Sabbatini P,
McMeekin DS, Mantia-Smaldone G, Burger RA, Morgan MA, Kapoun AM,
Brachmann RK, Stagg R, et al: A phase 1b dose escalation study of
ipafricept (OMP54F28) in combination with paclitaxel and
carboplatin in patients with recurrent platinum-sensitive ovarian
cancer. Gynecol Oncol. 154:294–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Dotan E, Cardin DB, Lenz HJ, Messersmith
W, O'Neil B, Cohen SJ, Denlinger CS, Shahda S, Astsaturov I, Kapoun
AM, et al: Phase Ib Study of Wnt Inhibitor Ipafricept with
Gemcitabine and nab-paclitaxel in patients with previously
untreated stage IV pancreatic cancer. Clin Cancer Res.
26:5348–5357. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Emami KH, Nguyen C, Ma H, Kim DH, Jeong
KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, et al: A small
molecule inhibitor of beta-catenin/CREB-binding protein
transcription [corrected]. Proc Natl Acad Sci USA. 101:12682–12687.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pozzi S, Fulciniti M, Yan H, Vallet S, Eda
H, Patel K, Santo L, Cirstea D, Hideshima T, Schirtzinge L, et al:
In vivo and in vitro effects of a novel anti-Dkk1 neutralizing
antibody in multiple myeloma. Bone. 53:487–496. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Arend R, Dholakia J, Castro C, Matulonis
U, Hamilton E, Jackson CG, Lybarger K, Goodman HM, Duska LR, Mahdi
H, et al: DKK1 is a predictive biomarker for response to DKN-01:
Results of a phase 2 basket study in women with recurrent
endometrial carcinoma. Gynecol Oncol. 172:82–91. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang Y, Hanifi-Moghaddam P, Hanekamp EE,
Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC,
Kim JJ, Grootegoed JA, et al: Progesterone inhibition of
Wnt/beta-catenin signaling in normal endometrium and endometrial
cancer. Clin Cancer Res. 15:5784–5793. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yahata T, Fujita K, Aoki Y and Tanaka K:
Long-term conservative therapy for endometrial adenocarcinoma in
young women. Hum Reprod. 21:1070–1075. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Arend RC, Londono-Joshi AI, Samant RS, Li
Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM and
Buchsbaum DJ: Inhibition of Wnt/β-catenin pathway by niclosamide: A
therapeutic target for ovarian cancer. Gynecol Oncol. 134:112–120.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kusunoki S, Kato K, Tabu K, Inagaki T,
Okabe H, Kaneda H, Suga S, Terao Y, Taga T and Takeda S: The
inhibitory effect of salinomycin on the proliferation, migration
and invasion of human endometrial cancer stem-like cells. Gynecol
Oncol. 129:598–605. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Feng W, Yang CX, Zhang L, Fang Y and Yan
M: Curcumin promotes the apoptosis of human endometrial carcinoma
cells by downregulating the expression of androgen receptor through
Wnt signal pathway. Eur J Gynaecol Oncol. 35:718–723.
2014.PubMed/NCBI
|
|
120
|
Wang WT, Han C, Sun YM, Chen TQ and Chen
YQ: Noncoding RNAs in cancer therapy resistance and targeted drug
development. J Hematol Oncol. 12:552019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kelnar K, Peltier HJ, Leatherbury N,
Stoudemire J and Bader AG: Quantification of therapeutic miRNA
mimics in whole blood from nonhuman primates. Anal Chem.
86:1534–1542. 2014. View Article : Google Scholar : PubMed/NCBI
|