Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2023 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2023 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro

  • Authors:
    • Jinfu Zhou
    • Xinpei Lin
    • Sining Liao
    • Guilin Li
    • Jianping Tang
    • Jinying Luo
    • Chenran Zhang
    • Siying Wu
    • Liangpu Xu
    • Huangyuan Li
  • View Affiliations / Copyright

    Affiliations: Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China, Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China, Department of Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 236
    |
    Published online on: November 3, 2023
       https://doi.org/10.3892/mmr.2023.13123
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is driven by iron‑dependent accumulation of lipid hydroperoxides, and hemolytic hyperbilirubinemia causes accumulation of unconjugated bilirubin and iron. The present study aimed to assess the role of ferroptosis in hemolytic hyperbilirubinemia‑induced brain damage (HHIBD). Rats were randomly divided into the control, phenylhydrazine (PHZ) and deferoxamine (DFO) + PHZ groups, with 12 rats in each group. Ferroptosis‑associated biochemical and protein indicators were measured in the brain tissue of rats. We also performed tandem mass tag‑labeled proteomic analysis. The levels of iron and malondialdehyde were significantly higher and levels of glutathione (GSH) and superoxide dismutase activity significantly lower in the brain tissues of the PHZ group compared with those in the control group. HHIBD also resulted in significant increases in the expression of the ferroptosis‑related proteins acyl‑CoA synthetase long‑chain family member 4, ferritin heavy chain 1 and transferrin receptor and divalent metal transporter 1, as well as a significant reduction in the expression of ferroptosis suppressor protein 1. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that the differentially expressed proteins of rat brain tissues between the control and PHZ groups were significantly involved in ferroptosis, GSH metabolism and fatty acid biosynthesis pathways. Pretreatment with DFO induced antioxidant activity and alleviated lipid peroxidation‑mediated HHIBD. In addition, PC12 cells treated with ferric ammonium citrate showed shrinking mitochondria, high mitochondrial membrane density, and increased lipid reactive oxygen species and intracellular ferrous iron, which were antagonized by pretreatment with ferrostatin‑1 or DFO, which was reversed by pretreatment with ferrostatin‑1 or DFO. The present study demonstrated that ferroptosis is involved in HHIBD and provided novel insights into candidate proteins that are potentially involved in ferroptosis in the brain during hemolytic hyperbilirubinemia.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Lauer BJ and Spector ND: Hyperbilirubinemia in the Newborn. Pediatr Rev. 32:341–349. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Soto Conti CP: Bilirubin: The toxic mechanisms of an antioxidant molecule. Arch Argent Pediatr. 119:e18–e25. 2021.(In English, Spanish). PubMed/NCBI

3 

Christensen RD, Agarwal AM, George TI, Bhutani VK and Yaish HM: Acute neonatal bilirubin encephalopathy in the State of Utah 2009–2018. Blood Cells Mol Dis. 72:10–13. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Wong RJ and Stevenson DK: Neonatal hemolysis and risk of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med. 20:26–30. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Kumar V, Kumar P, Sundaram V, Munjal SK, Malhi P and Panda NK: Childhood neurodevelopmental outcomes of survivors of acute bilirubin encephalopathy: A retrospective cohort study. Early Hum Dev. 158:1053802021. View Article : Google Scholar : PubMed/NCBI

6 

Subspecialty Group of Neonatology, Society of Pediatrics, Chinese Medical Association and Chinese Multicenter Study Coordination Group for Neonatal Bilirubin Encephalopathy, . Clinical characteristics of bilirubin encephalopathy in Chinese newborn infants-a national multicenter survey. Zhonghua Er Ke Za Zhi. 50:331–335. 2012.(In Chinese). PubMed/NCBI

7 

Par EJ, Hughes CA and DeRico P: Neonatal Hyperbilirubinemia: Evaluation and treatment. Am Fam Physician. 107:525–534. 2023.PubMed/NCBI

8 

Viktorinova A: Iron-mediated oxidative cell death is a potential contributor to neuronal dysfunction induced by neonatal hemolytic hyperbilirubinemia. Arch Biochem Biophys. 654:185–193. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Khdair-Ahmad F, Aladily T, Khdair-Ahmad O and Badran EF: Chelation therapy for secondary neonatal iron over load: Lessons learned from rhesus hemolytic disease. Turk J Pediatr. 60:335–339. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Aygun C, Tekinalp G and Gurgey A: Increased Fetal iron load in rhesus hemolytic disease. Pediatr Hematol Oncol. 21:329–333. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Kaplan M, Bromiker R and Hammerman C: Hyperbilirubinemia, hemolysis, and increased bilirubin neurotoxicity. Semin Perinatol. 38:429–437. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Nishiie-Yano R, Hirayama S, Tamura M, Kanemochi T, Ueno T, Hirayama A, Hori A, Ai T, Hirose N and Miida T: Hemolysis is responsible for elevation of serum iron concentration after Regular exercises in judo athletes. Biol Trace Elem Res. 197:63–69. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Comporti M, Signorini C, Buonocore G and Ciccoli L: Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med. 32:568–576. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI

15 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Ashraf A, Jeandriens J, Parkes HG and So PW: Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol. 32:1014942020. View Article : Google Scholar : PubMed/NCBI

17 

Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X, Ma X, Chen G, Gao C, Gu Z, et al: Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res. 70:e127042021. View Article : Google Scholar : PubMed/NCBI

18 

Vitalakumar D, Sharma A and Flora SJS: Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol. 35:e228302021. View Article : Google Scholar : PubMed/NCBI

19 

Ding X, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, et al: Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev. 91:1020772023. View Article : Google Scholar : PubMed/NCBI

20 

Bu ZQ, Yu HY, Wang J, He X, Cui YR, Feng JC and Feng J: Emerging Role of Ferroptosis in the Pathogenesis of Ischemic Stroke: A new therapeutic target? ASN Neuro. 13:1759091421103752021. View Article : Google Scholar

21 

Lu C, Tan C, Ouyang H, Chen Z, Yan Z and Zhang M: Ferroptosis in Intracerebral hemorrhage: A panoramic perspective of the metabolism, mechanism and theranostics. Aging Dis. 13:13482022. View Article : Google Scholar : PubMed/NCBI

22 

Li QS and Jia YJ: Ferroptosis: A critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regen Res. 18:5062023. View Article : Google Scholar : PubMed/NCBI

23 

Ren S, Chen Y, Wang L and Wu G: Neuronal ferroptosis after intracerebral hemorrhage. Front Mol Biosci. 9:9664782022. View Article : Google Scholar : PubMed/NCBI

24 

Luykx LM, Berger HM, Geerdink J, Kanhai HHH and Egberts J: Non-protein-bound iron and free radical damage in fetuses with rhesus haemolytic disease: Influence of intrauterine transfusions. BJOG. 111:303–310. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Mejia GB, Sanz CR, Avila MM, Peraza AV, Guzmán DC, Olguín HJ, Ramírez AM and Cruz EG: Experimental hemolysis model to study bilirubin encephalopathy in rat brain. J Neurosci Methods. 168:35–41. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, Yeğen BÇ and Ozek E: The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. J Pineal Res. 60:74–83. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Luo Y, Peng M and Wei H: Melatonin promotes brain-derived neurotrophic factor (BDNF) expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia via a phospholipase (PLC)-mediated mechanism. Med Sci Monit. 23:5951–5959. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Jin T, He Q, Cheng C, Li H, Liang L, Zhang G, Su C, Xiao Y, Bradley J, Peberdy MA, et al: UAMC-3203 or/and Deferoxamine improve Post-Resuscitation myocardial dysfunction through suppressing ferroptosis in a rat model of cardiac arrest. Shock. 57:344–350. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Chian S, Jiang ZC, Jiang LX, Wang KT, Fan YX, Liao T, Chen WS and Yao WX: Caffeine-induced neurotoxicity mediated by Nrf2 pathway in PC12 cells and zebrafish larvae. J Appl Toxicol. 42:629–637. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Wiatrak B, Kubis-Kubiak A, Piwowar A and Barg E: PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions. Cells. 9:9582020. View Article : Google Scholar : PubMed/NCBI

32 

Rand RN and Di Pasqua A: A new diazo method for the determination of bilirubin. Clin Chem. 8:570–578. 1962. View Article : Google Scholar : PubMed/NCBI

33 

Zecha J, Satpathy S, Kanashova T, Avanessian SC, Kane MH, Clauser KR, Mertins P, Carr SA and Kuster B: TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Mol Cell Proteomics. 18:1468–1478. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Grebe SK and Singh RJ: LC-MS/MS in the Clinical Laboratory-Where to from here? Clin Biochem Rev. 32:5–31. 2011.PubMed/NCBI

35 

Men L, Li Y, Wang X, Li R, Zhang T, Meng X, Liu S, Gong X and Gou M: Protein biomarkers associated with frozen Japanese puffer fish (Takifugu rubripes) quality traits. Food Chem. 327:1270022020. View Article : Google Scholar : PubMed/NCBI

36 

Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L and Cui D: CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res. 41:3072022. View Article : Google Scholar : PubMed/NCBI

37 

Zhou Y, Li L, Mao C and Zhou D: Astragaloside IV ameliorates spinal cord injury through controlling ferroptosis in H2O2-damaged PC12 cells in vitro. Ann Transl Med. 10:11762022. View Article : Google Scholar : PubMed/NCBI

38 

Zuo X, Zeng H, Wang B, Yang X, He D, Wang L, Ouyang H and Yuan J: AKR1C1 Protects corneal epithelial cells against oxidative stress-mediated ferroptosis in dry eye. Invest Ophthalmol Vis Sci. 63:32022. View Article : Google Scholar : PubMed/NCBI

39 

Huang S, Cao B, Zhang J, Feng Y, Wang L, Chen X, Su H, Liao S, Liu J, Yan J and Liang B: Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis. 12:2372021. View Article : Google Scholar : PubMed/NCBI

40 

Lorimier P, Lamarcq L, Labat-Moleur F, Guillermet C, Bethier R and Stoebner P: Enhanced chemiluminescence: A high-sensitivity detection system for in situ hybridization and immunohistochemistry. J Histochem Cytochem. 41:1591–1597. 1993. View Article : Google Scholar : PubMed/NCBI

41 

Jia B, Li J, Song Y and Luo C: ACSL4-Mediated ferroptosis and its potential role in central nervous system diseases and injuries. Int J Mol Sci. 24:100212023. View Article : Google Scholar : PubMed/NCBI

42 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Hankø E, Hansen TWR, Almaas R, Lindstad J and Rootwelt T: Bilirubin induces apoptosis and necrosis in human NT2-N Neurons. Pediatr Res. 57:179–184. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Shapiro SM: Somatosensory and brainstem auditory evoked potentials in the gunn rat model of acute bilirubin neurotoxicity. Pediatr Res. 52:844–849. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Roger C, Koziel V, Vert P and Nehlig A: Autoradiographic mapping of local cerebral permeability to bilirubin in immature rats: Effects of hyperbilirubinemia. Pediatr Res. 39:64–71. 1996. View Article : Google Scholar : PubMed/NCBI

46 

Qaisiya M, Coda Zabetta CD, Bellarosa C and Tiribelli C: Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal. 26:512–520. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C and Bellarosa C: Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol. 91:1847–1858. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Schiavon E, Smalley JL, Newton S, Greig NH and Forsythe ID: Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS One. 13:e02010222018. View Article : Google Scholar : PubMed/NCBI

49 

Vodret S, Bortolussi G, Iaconcig A, Martinelli E, Tiribelli C and Muro AF: Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav Immun. 70:166–178. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Qaisiya M, Mardešić P, Pastore B, Tiribelli C and Bellarosa C: The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity. Neurosci Lett. 661:96–103. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Shi HS, Lai K, Yin XL, Liang M, Ye HB, Shi HB, Wang LY and Yin SK: Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity. Cell Death Dis. 10:7742019. View Article : Google Scholar : PubMed/NCBI

52 

Ye H, Xing Y, Zhang L, Zhang J, Jiang H, Ding D, Shi H and Yin S: Bilirubin-induced neurotoxic and ototoxic effects in rat cochlear and vestibular organotypic cultures. Neurotoxicology. 71:75–86. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Rawat V, Bortolussi G, Gazzin S, Tiribelli C and Muro AF: Bilirubin-induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA Double-Strand break repair pathways in human cells. Oxid Med Cell Longev. 2018:18012432018. View Article : Google Scholar : PubMed/NCBI

54 

Youdim MB, Ben-Shachar D, Yehuda S and Riederer P: The role of iron in the basal ganglion. Adv Neurol. 53:155–162. 1990.PubMed/NCBI

55 

Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Al-Abdi S: Decreased glutathione S-transferase level and neonatal hyperbilirubinemia associated with Glucose-6-phosphate dehydrogenase deficiency: A perspective review. Am J Perinatol. 34:305–314. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H and Luo Z: Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 180:95–107. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Cheng J, Fan Y, Liu B, Zhou H, Wang J and Chen Q: ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep. 43:147–158. 2020.PubMed/NCBI

59 

Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI

60 

Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Doll S and Conrad M: Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 69:423–434. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Rath MEA, Smits-Wintjens VEHJ, Oepkes D, Walther FJ and Lopriore E: Iron status in infants with alloimmune haemolytic disease in the first three months of life. Vox Sang. 105:328–333. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Mleczko-Sanecka K and Silvestri L: Cell-type-specific insights into iron regulatory processes. Am J Hematol. 96:110–127. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Ganz T: New regulators of systemic iron homeostasis. Signal Transduct Target Ther. 6:2802021. View Article : Google Scholar : PubMed/NCBI

66 

Gao G, Li J, Zhang Y and Chang YZ: Cellular iron metabolism and regulation. Adv Exp Med Biol. 1173:21–32. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Sfera A, Bullock K, Price A, Inderias L and Osorio C: Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev. 174:63–75. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Lu Y, Yang Q, Su Y, Ji Y, Li G, Yang X, Xu L, Lu Z, Dong J, Wu Y, et al: MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 12:5112021. View Article : Google Scholar : PubMed/NCBI

69 

Xiong Q, Li X, Li W, Chen G, Xiao H, Li P and Wu C: WDR45 Mutation impairs the autophagic degradation of transferrin receptor and promotes ferroptosis. Front Mol Biosci. 8:6458312021. View Article : Google Scholar : PubMed/NCBI

70 

Zhang J, Chen X, Hong J, Tang A, Liu Y, Xie N, Nie G, Yan X and Liang M: Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci China Life Sci. 64:352–362. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P, Gao G, Shi H, Chang S and Chang YZ: Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 12:4472021. View Article : Google Scholar : PubMed/NCBI

72 

Liu Y, Bell BA, Song Y, Kim HJ, Sterling JK, Kim BJ, Poli M, Guo M, Zhang K, Rao A, et al: Intraocular iron injection induces oxidative stress followed by elements of geographic atrophy and sympathetic ophthalmia. Aging Cell. 20:e134902021. View Article : Google Scholar : PubMed/NCBI

73 

Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI

74 

Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F and v Liu S: Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:826–838. 2019.PubMed/NCBI

75 

Chen Y, Fang Z-M, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI

76 

Dou J, Liu X, Yang L, Huang D and Tan X: Ferroptosis interaction with inflammatory microenvironments: Mechanism, biology, and treatment. Biomed Pharmacother. 155:1137112022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou J, Lin X, Liao S, Li G, Tang J, Luo J, Zhang C, Wu S, Xu L, Li H, Li H, et al: Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro. Mol Med Rep 28: 236, 2023.
APA
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J. ... Li, H. (2023). Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro. Molecular Medicine Reports, 28, 236. https://doi.org/10.3892/mmr.2023.13123
MLA
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J., Zhang, C., Wu, S., Xu, L., Li, H."Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro". Molecular Medicine Reports 28.6 (2023): 236.
Chicago
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J., Zhang, C., Wu, S., Xu, L., Li, H."Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro". Molecular Medicine Reports 28, no. 6 (2023): 236. https://doi.org/10.3892/mmr.2023.13123
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou J, Lin X, Liao S, Li G, Tang J, Luo J, Zhang C, Wu S, Xu L, Li H, Li H, et al: Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro. Mol Med Rep 28: 236, 2023.
APA
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J. ... Li, H. (2023). Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro. Molecular Medicine Reports, 28, 236. https://doi.org/10.3892/mmr.2023.13123
MLA
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J., Zhang, C., Wu, S., Xu, L., Li, H."Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro". Molecular Medicine Reports 28.6 (2023): 236.
Chicago
Zhou, J., Lin, X., Liao, S., Li, G., Tang, J., Luo, J., Zhang, C., Wu, S., Xu, L., Li, H."Ferroptosis contributes to hemolytic hyperbilirubinemia‑induced brain damage in vivo and in vitro". Molecular Medicine Reports 28, no. 6 (2023): 236. https://doi.org/10.3892/mmr.2023.13123
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team