Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2024 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2024 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Insights into the relationship between serum uric acid and pulmonary hypertension (Review)

  • Authors:
    • Yu Zhou
    • Meihong Chen
    • Jing Zheng
    • Xiaorong Shui
    • Yuan He
    • Hui Luo
    • Wei Lei
  • View Affiliations / Copyright

    Affiliations: Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao on Molecular Targets and Intervention of Cardiovascular Diseases, Zhanjiang, Guangdong 524001, P.R. China, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA, Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Southern Marine Science and Engineering Guangdong Laboratory, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 10
    |
    Published online on: November 21, 2023
       https://doi.org/10.3892/mmr.2023.13133
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pulmonary hypertension (PH) is a progressive lethal disease, which is characterized by abnormal vascular remodeling and persistently elevated pulmonary artery pressure, eventually leading to right heart failure and even death. Although great progress has been made in treating PH, the mortality rate remains high. Metabolic disorders are one of the important hallmarks of PH. Obesity, lipids, glucose tolerance and insulin resistance are risk factors for numerous cardiovascular diseases and are often accompanied by a considerable increase in serum uric acid (SUA) concentrations. Uric acid (UA) is the end product of purine nucleotide metabolism and is closely related to cardiovascular diseases including PH. Hyperuricemia promotes the development and progression of PH through endothelial dysfunction, oxidative stress, inflammatory responses and activation of the renin‑angiotensin system. In the present review, the advancements in knowledge about UA metabolism and PH, and the current understanding of the potential interactions and mechanisms of SUA in PH were systematically summarized, which may provide new insights into the pathogenesis of PH.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa-Hahnle K, Jing ZC and Gibbs JS: A global view of pulmonary hypertension. Lancet Respir Med. 4:306–322. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Beshay S, Sahay S and Humbert M: Evaluation and management of pulmonary arterial hypertension. Respir Med. 171:1060992020. View Article : Google Scholar : PubMed/NCBI

3 

Morrell NW, Aldred MA, Chung WK, Elliott CG, Nichols WC, Soubrier F, Trembath RC and Loyd JE: Genetics and genomics of pulmonary arterial hypertension. Eur Respir J. 53:18018992019. View Article : Google Scholar : PubMed/NCBI

4 

Levine DJ: Pulmonary arterial hypertension: Updates in epidemiology and evaluation of patients. Am J Manag Care. 27 (3 Suppl):S35–S41. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK, et al: Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 107:216–223. 1987. View Article : Google Scholar : PubMed/NCBI

6 

Girerd B, Montani D, Eyries M, Yaici A, Sztrymf B, Coulet F, Sitbon O, Simonneau G, Soubrier F and Humbert M: Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension. Respir Res. 11:732010. View Article : Google Scholar : PubMed/NCBI

7 

Ventetuolo CE, Praestgaard A, Palevsky HI, Klinger JR, Halpern SD and Kawut SM: Sex and haemodynamics in pulmonary arterial hypertension. Eur Respir J. 43:523–530. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Jing ZC, Xu XQ, Han ZY, Wu Y, Deng KW, Wang H, Wang ZW, Cheng XS, Xu B, Hu SS, et al: Registry and survival study in chinese patients with idiopathic and familial pulmonary arterial hypertension. Chest. 132:373–379. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Xu X, Sun M, Jiang X, Zhang R, Zhao Q, Wang Y, Sun K, Wang X, Peng F, Zheng L, et al: Comparison of clinical characteristics and survival on patients with idiopathic pulmonary arterial hypertension and familial pulmonary arterial hypertension during conventional therapy era and targeted therapy era. Zhonghua Xin Xue Guan Bing Za Zhi. 42:465–468. 2014.(In Chinese). PubMed/NCBI

10 

Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ and Rabinovitch M: Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 115:1275–1284. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M and Doyle RL: Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 33:318–324. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Fessel JP, Hamid R, Wittmann BM, Robinson LJ, Blackwell T, Tada Y, Tanabe N, Tatsumi K, Hemnes AR and West JD: Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm Circ. 2:201–213. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Zare E, Kafshbani P, Chenaghlou M, Noori M, Ghaemmaghami Z, Amin A, Taghavi S and Naderi N: Prognostic significance of insulin resistance in pulmonary hypertension. ESC Heart Fail. 9:318–326. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Feig DI, Kang DH and Johnson RJ: Uric acid and cardiovascular risk. N Engl J Med. 359:1811–1821. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Gagliardi AC, Miname MH and Santos RD: Uric acid: A marker of increased cardiovascular risk. Atherosclerosis. 202:11–17. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Borghi C and Cicero AFG: Serum uric acid and acute coronary syndrome: Is there a role for functional markers of residual cardiovascular risk. Int J Cardiol. 250:62–63. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Ndrepepa G: Uric acid and cardiovascular disease. Clin Chim Acta. 484:150–163. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Krishnan E, Kwoh CK, Schumacher HR and Kuller L: Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension. 49:298–303. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Brodov Y, Behar S, Boyko V and Chouraqui P: Effect of the metabolic syndrome and hyperuricemia on outcome in patients with coronary artery disease (from the Bezafibrate Infarction Prevention Study). Am J Cardiol. 106:1717–1720. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Galassi FM and Borghi C: A brief history of uric acid: From gout to cardiovascular risk factor. Eur J Intern Med. 26:3732015. View Article : Google Scholar : PubMed/NCBI

21 

Li M, Hu X, Fan Y, Li K, Zhang X, Hou W and Tang Z: Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep. 6:195202016. View Article : Google Scholar : PubMed/NCBI

22 

Kuwabara M, Niwa K, Nishihara S, Nishi Y, Takahashi O, Kario K, Yamamoto K, Yamashita T and Hisatome I: Hyperuricemia is an independent competing risk factor for atrial fibrillation. Int J Cardiol. 231:137–142. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, Borghi C, Piani F, Cara-Fuentes G, Bjornstad P, et al: Uric acid and hypertension: An update with recommendations. Am J Hypertens. 33:583–594. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Si K, Wei C, Xu L, Zhou Y, Lv W, Dong B, Wang Z, Huang Y, Wang Y and Chen Y: Hyperuricemia and the Risk of Heart Failure: Pathophysiology and Therapeutic Implications. Front Endocrinol (Lausanne). 12:7708152021. View Article : Google Scholar : PubMed/NCBI

25 

Wang X, Hou Y, Wang X, Li Z, Wang X, Li H, Shang L, Zhou J and Zhang Y, Ren M and Zhang Y: Relationship between serum uric acid levels and different types of atrial fibrillation: An updated meta-analysis. Nutr Metab Cardiovasc Dis. 31:2756–2765. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD and Machado RF: Signal transduction during metabolic and inflammatory reprogramming in pulmonary vascular remodeling. Int J Mol Sci. 23:24102022. View Article : Google Scholar : PubMed/NCBI

27 

Perera FP, Rauh V, Whyatt RM, Tang D, Tsai WY, Bernert JT, Tu YH, Andrews H, Barr DB, Camann DE, et al: A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology. 26:573–587. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, et al: 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 43:3618–3731. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, et al: 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 61:22008792023. View Article : Google Scholar : PubMed/NCBI

30 

Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 46:903–975. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 37:67–119. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, et al: Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 54 (1 Suppl):S43–S54. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Gelzinis TA: Pulmonary Hypertension in 2021: Part I-Definition, Classification, Pathophysiology, and Presentation. J Cardiothorac Vasc Anesth. 36:1552–1564. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Badesch DB, Champion HC, Gomez Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ and Torbicki A: Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 54 (1 Suppl):S55–S66. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Assad TR and Hemnes AR: Metabolic dysfunction in pulmonary arterial hypertension. Curr Hypertens Rep. 17:202015. View Article : Google Scholar : PubMed/NCBI

36 

Satoh T, Wang L, Espinosa-Diez C, Wang B, Hahn SA, Noda K, Rochon ER, Dent MR, Levine AR, Baust JJ, et al: Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation. 144:615–637. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Nicolls MR and Voelkel NF: Hypoxia and the lung: Beyond hypoxic vasoconstriction. Antioxid Redox Signal. 9:741–743. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Langleben D, Orfanos SE, Giovinazzo M, Hirsch A, Baron M, Senécal JL, Armaganidis A and Catravas JD: Pulmonary capillary endothelial metabolic dysfunction: Severity in pulmonary arterial hypertension related to connective tissue disease versus idiopathic pulmonary arterial hypertension. Arthritis Rheum. 58:1156–1164. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Jones PL, Cowan KN and Rabinovitch M: Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol. 150:1349–1360. 1997.PubMed/NCBI

40 

Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD and Tuder RM: Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 186:261–272. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Watanabe T, Ishikawa M, Abe K, Ishikawa T, Imakiire S, Masaki K, Hosokawa K, Fukuuchi T, Kaneko K, Ohtsubo T, et al: Increased Lung Uric Acid Deteriorates Pulmonary Arterial Hypertension. J Am Heart Assoc. 10:e0227122021. View Article : Google Scholar : PubMed/NCBI

42 

Lippi G, Montagnana M, Franchini M, Favaloro EJ and Targher G: The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta. 392:1–7. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Yamaoka T and Itakura M: Metabolism of purine nucleotides and the production of uric acid. Nihon Rinsho. 54:3188–3194. 1996.(In Japanese). PubMed/NCBI

44 

El Ridi R and Tallima H: Physiological functions and pathogenic potential of uric acid: A review. J Adv Res. 8:487–493. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI and Vangjeli C: Physiology of hyperuricemia and urate-lowering treatments. Front Med (Lausanne). 5:1602018. View Article : Google Scholar : PubMed/NCBI

46 

Maiuolo J, Oppedisano F, Gratteri S, Muscoli C and Mollace V: Regulation of uric acid metabolism and excretion. Int J Cardiol. 213:8–14. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Chaudhary K, Malhotra K, Sowers J and Aroor A: Uric Acid-key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 3:208–220. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Gherghina ME, Peride I, Tiglis M, Neagu TP, Niculae A and Checherita IA: Uric acid and oxidative stress-relationship with cardiovascular, metabolic, and renal impairment. Int J Mol Sci. 23:31882022. View Article : Google Scholar : PubMed/NCBI

49 

Sánchez-Lozada LG, Nakagawa T, Kang DH, Feig DI, Franco M, Johnson RJ and Herrera-Acosta J: Hormonal and cytokine effects of uric acid. Curr Opin Nephrol Hypertens. 15:30–33. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Chen C, Lü JM and Yao Q: Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview. Med Sci Monit. 22:2501–2512. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Furuhashi M: New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 319:E827–E834. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Shima Y, Teruya K and Ohta H: Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 79:2234–2237. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, et al: SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 5:e1972008. View Article : Google Scholar : PubMed/NCBI

54 

Wright AF, Rudan I, Hastie ND and Campbell H: A ‘complexity’ of urate transporters. Kidney Int. 78:446–452. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Ma Q, Fang L, Su R, Ma L, Xie G and Cheng Y: Uric acid stones, clinical manifestations and therapeutic considerations. Postgrad Med J. 94:458–462. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Lipkowitz MS: Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep. 14:179–188. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, Yamanashi Y, Kasuga H, Nakashima H, Nakamura T, et al: Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 3:7642012. View Article : Google Scholar : PubMed/NCBI

58 

Eckenstaler R and Benndorf RA: The Role of ABCG2 in the pathogenesis of primary hyperuricemia and Gout-An Update. Int J Mol Sci. 22:66782021. View Article : Google Scholar : PubMed/NCBI

59 

Homolya L: Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci. 22:27862021. View Article : Google Scholar : PubMed/NCBI

60 

Ohashi Y, Toyoda M, Saito N, Koizumi M, Kanai G, Komaba H, Kimura M, Wada T, Takahashi H, Takahashi Y, et al: Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients. Sci Rep. 13:932023. View Article : Google Scholar : PubMed/NCBI

61 

Su J, Wei Y, Liu M, Liu T, Li J, Ji Y and Liang J: Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharm Res. 37:1336–1344. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Wu XH, Zhang J, Wang SQ, Yang VC, Anderson S and Zhang YW: Riparoside B and timosaponin J, two steroidal glycosides from Smilax riparia, resist to hyperuricemia based on URAT1 in hyperuricemic mice. Phytomedicine. 21:1196–1201. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Nath SD, Voruganti VS, Arar NH, Thameem F, Lopez-Alvarenga JC, Bauer R, Blangero J, MacCluer JW, Comuzzie AG and Abboud HE: Genome scan for determinants of serum uric acid variability. J Am Soc Nephrol. 18:3156–3163. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Anzai N, Jutabha P, Amonpatumrat-Takahashi S and Sakurai H: Recent advances in renal urate transport: Characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 16:89–95. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Dehghan A, van Hoek M, Sijbrands EJ, Hofman A and Witteman JC: High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 31:361–362. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, Takahashi A, Maeda S, Tsunoda T, Chen P, et al: Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 44:904–909. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Major TJ, Dalbeth N, Stahl EA and Merriman TR: An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 14:341–353. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Sautin YY and Johnson RJ: Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 27:608–619. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Jakše B, Jakše B, Pajek M and Pajek J: Uric acid and plant-based nutrition. Nutrients. 11:17362019. View Article : Google Scholar : PubMed/NCBI

70 

Shi Y, Chen W, Jalal D, Li Z, Chen W, Mao H, Yang Q, Johnson RJ and Yu X: Clinical outcome of hyperuricemia in IgA nephropathy: A retrospective cohort study and randomized controlled trial. Kidney Blood Press Res. 35:153–160. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Joosten LAB, Crişan TO, Bjornstad P and Johnson RJ: Asymptomatic hyperuricaemia: A silent activator of the innate immune system. Nat Rev Rheumatol. 16:75–86. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Miao Y, Ottenbros SA, Laverman GD, Brenner BM, Cooper ME, Parving HH, Grobbee DE, Shahinfar S, de Zeeuw D and Lambers Heerspink HJ: Effect of a reduction in uric acid on renal outcomes during losartan treatment: A post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension. 58:2–7. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Ames BN, Cathcart R, Schwiers E and Hochstein P: Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA. 78:6858–6862. 1981. View Article : Google Scholar : PubMed/NCBI

74 

Zou H, Wang H, Liu T, Li X, Zhu X and Wang Z: Protective role of α-lipoic acid in hyperuricemia-induced endothelial dysfunction. Exp Ther Med. 13:3047–3054. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Shi Y, Evans JE and Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 425:516–521. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Netea MG, Kullberg BJ, Blok WL, Netea RT and van der Meer JW: The role of hyperuricemia in the increased cytokine production after lipopolysaccharide challenge in neutropenic mice. Blood. 89:577–582. 1997. View Article : Google Scholar : PubMed/NCBI

77 

Bagnati M, Perugini C, Cau C, Bordone R, Albano E and Bellomo G: When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: A study using uric acid. Biochem J. 340((Pt 1)): 143–152. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Kang DH, Park SK, Lee IK and Johnson RJ: Uric acid-induced C-reactive protein expression: Implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 16:3553–3562. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Patterson RA, Horsley ET and Leake DS: Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: Important role of uric acid. J Lipid Res. 44:512–521. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Samocha-Bonet D, Lichtenberg D and Pinchuk I: Kinetic studies of copper-induced oxidation of urate, ascorbate and their mixtures. J Inorg Biochem. 99:1963–1972. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Sautin YY, Nakagawa T, Zharikov S and Johnson RJ: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 293:C584–C596. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Zhang JX, Zhang YP, Wu QN and Chen B: Uric acid induces oxidative stress via an activation of the renin-angiotensin system in 3T3-L1 adipocytes. Endocrine. 48:135–142. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Wang JG, Staessen JA, Fagard RH, Birkenhäger WH, Gong L and Liu L: Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension. Hypertension. 37:1069–1074. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Kuzkaya N, Weissmann N, Harrison DG and Dikalov S: Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: Implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol. 70:343–354. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Nagahama K, Inoue T, Iseki K, Touma T, Kinjo K, Ohya Y and Takishita S: Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan. Hypertens Res. 27:835–841. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Morris CR, Kuypers FA, Kato GJ, Lavrisha L, Larkin S, Singer T and Vichinsky EP: Hemolysis-associated pulmonary hypertension in thalassemia. Ann N Y Acad Sci. 1054:481–485. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Castro O, Hoque M and Brown BD: Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood. 101:1257–1261. 2003. View Article : Google Scholar : PubMed/NCBI

88 

Verresen D, De Backer W, Van Meerbeeck J, Neetens I, Van Marck E and Vermeire P: Spherocytosis and pulmonary hypertension coincidental occurrence or causal relationship. Eur Respir J. 4:629–631. 1991. View Article : Google Scholar : PubMed/NCBI

89 

Heller PG, Grinberg AR, Lencioni M, Molina MM and Roncoroni AJ: Pulmonary hypertension in paroxysmal nocturnal hemoglobinuria. Chest. 102:642–643. 1992. View Article : Google Scholar : PubMed/NCBI

90 

Devalet B, Mullier F, Chatelain B, Dogné JM and Chatelain C: Pathophysiology, diagnosis, and treatment of paroxysmal nocturnal hemoglobinuria: A review. Eur J Haematol. 95:190–198. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Tofovic SP, Jackson EK and Rafikova O: Adenosine deaminase-adenosine pathway in hemolysis-associated pulmonary hypertension. Med Hypotheses. 72:713–719. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Cerqueira BA, Boas WV, Zanette AD, Reis MG and Goncalves MS: Increased concentrations of IL-18 and uric acid in sickle cell anemia: Contribution of hemolysis, endothelial activation and the inflammasome. Cytokine. 56:471–476. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Robbins IM, Newman JH, Johnson RF, Hemnes AR, Fremont RD, Piana RN, Zhao DX and Byrne DW: Association of the metabolic syndrome with pulmonary venous hypertension. Chest. 136:31–36. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Quiñones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D and Ferrannini E: Effect of insulin on uric acid excretion in humans. Am J Physiol. 268((1 Pt 1)): E1–E5. 1995.PubMed/NCBI

95 

Gashouta MA, Humbert M and Hassoun PM: Update in systemic sclerosis-associated pulmonary arterial hypertension. Presse Med. 43((10 Pt 2)): e293–e304. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Kherbeck N, Tamby MC, Bussone G, Dib H, Perros F, Humbert M and Mouthon L: The role of inflammation and autoimmunity in the pathophysiology of pulmonary arterial hypertension. Clin Rev Allergy Immunol. 44:31–38. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Ferreira NS, Tostes RC, Paradis P and Schiffrin EL: Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens. 34:15–27. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Nagaya N, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, Yamagishi M, Kunieda T and Miyatake K: Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med. 160:487–492. 1999. View Article : Google Scholar : PubMed/NCBI

99 

Editorial. Major changes made by Criteria Committee of the New York Heart Association. Circulation. 49:3901974. View Article : Google Scholar : PubMed/NCBI

100 

Voelkel MA, Wynne KM, Badesch DB, Groves BM and Voelkel NF: Hyperuricemia in severe pulmonary hypertension. Chest. 117:19–24. 2000. View Article : Google Scholar : PubMed/NCBI

101 

Li ZN, He JG, Liu ZH, Gu Q, Ni XH, Cheng XS and Xiong CM: Relationship between serum uric acid levels and patient conditions and prognosis in idiopathic pulmonary arterial hypertension. Zhonghua Yi Xue Za Zhi. 92:3261–3264. 2012.(In Chinese). PubMed/NCBI

102 

Zhang CY, Ma LL and &Wang LX: Relationship between serum uric acid levels and ventricular function in patients with idiopathic pulmonary hypertension. Exp Clin Cardiol. 18:e37–3e9. 2013.PubMed/NCBI

103 

Seyyedi SR, Malekmohammad M, Chitsazan M, Behzadnia N, Sadr M, Hashemian SM and Sharif-Kashani B: Relationship between Serum Uric Acid Levels and the Severity of Pulmonary Hypertension. Tanaffos. 16:283–288. 2017.PubMed/NCBI

104 

Yan L, Huang Z, Zhao Z, Zhao Q, Tang Y, Zhang Y, Li X, Duan A, Luo Q and Liu Z: The Prognostic Impact of Serum Uric Acid on Disease Severity and 5-Year mortality in patients with idiopathic pulmonary artery hypertension. Front Med (Lausanne). 9:8054152022. View Article : Google Scholar : PubMed/NCBI

105 

Dhaun N, Vachiery JL, Benza RL, Naeije R, Hwang LJ, Liu X, Teal S and Webb DJ: Endothelin antagonism and uric acid levels in pulmonary arterial hypertension: Clinical associations. J Heart Lung Transplant. 33:521–527. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Dimitroulas T, Giannakoulas G, Dimitroula H, Sfetsios T, Parcharidou D, Karvounis H and Settas L: Significance of serum uric acid in pulmonary hypertension due to systemic sclerosis: A pilot study. Rheumatol Int. 31:263–267. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Denton CP: Systemic sclerosis: From pathogenesis to targeted therapy. Clin Exp Rheumatol. 33 (4 Suppl 92):S3–S7. 2015.PubMed/NCBI

108 

Gigante A, Barbano B, Barilaro G, Quarta S, Gasperini ML, Di Mario F, Romaniello A, Amoroso A, Cianci R and Rosato E: Serum uric acid as a marker of microvascular damage in systemic sclerosis patients. Microvasc Res. 106:39–43. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Pagkopoulou E, Soulaidopoulos S, Triantafyllidou E, Malliari A, Kitas GD, Garyfallos A and Dimitroulas T: Association Between Uric Acid and Worsening Peripheral Microangiopathy in Systemic Sclerosis. Front Med (Lausanne). 8:8069252021. View Article : Google Scholar : PubMed/NCBI

110 

Aghdashi M, Behnemoon M, Mahmoodi Rad J and Rabiepour M: Evaluation of serum uric acid level in systemic lupus erythematosus patients with normal and high pulmonary arterial hypertension. Biomedicine (Taipei). 8:162018. View Article : Google Scholar : PubMed/NCBI

111 

Kim KJ, Baek IW, Park YJ, Yoon CH, Kim WU and Cho CS: High levels of uric acid in systemic lupus erythematosus is associated with pulmonary hypertension. Int J Rheum Dis. 18:524–532. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Castillo-Martínez D, Marroquín-Fabián E, Lozada-Navarro AC, Mora-Ramírez M, Juárez M, Sánchez-Muñoz F, Vargas-Barrón J, Sandoval J and Amezcua-Guerra LM: Levels of uric acid may predict the future development of pulmonary hypertension in systemic lupus erythematosus: A seven-year follow-up study. Lupus. 25:61–66. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Njaman W, Iesaki T, Iwama Y, Takasaki Y and Daida H: Serum uric Acid as a prognostic predictor in pulmonary arterial hypertension with connective tissue disease. Int Heart J. 48:523–532. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Luo DL, Zhang CJ, Huang YG, Huang T and Li HZ: Serum uric acid is associated with disease severity and an important predictor for clinical outcome in patients with pulmonary hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 45:496–500. 2017.(In Chinese). PubMed/NCBI

115 

Simpson CE, Damico RL, Hummers L, Khair RM, Kolb TM, Hassoun PM and Mathai SC: Serum uric acid as a marker of disease risk, severity, and survival in systemic sclerosis-related pulmonary arterial hypertension. Pulm Circ. 9:20458940198594772019. View Article : Google Scholar : PubMed/NCBI

116 

Uk Kang T, Park KY, Kim HJ, Ahn HS, Yim SY and Jun JB: Association of hyperuricemia and pulmonary hypertension: A systematic review and meta-analysis. Mod Rheumatol. 29:1031–1041. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Hong JW, Noh JH and Kim DJ: Association between serum uric acid and spirometric pulmonary function in Korean adults: The 2016 Korea National Health and Nutrition Examination Survey. PLoS One. 15:e02409872020. View Article : Google Scholar : PubMed/NCBI

118 

Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J and Mazzali M: Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease. Hypertension. 41:1183–1190. 2003. View Article : Google Scholar : PubMed/NCBI

119 

Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S and Johnson RJ: Hyperuricemia induces endothelial dysfunction. Kidney Int. 67:1739–1742. 2005. View Article : Google Scholar : PubMed/NCBI

120 

O'Riordan E, Chen J, Brodsky SV, Smirnova I, Li H and Goligorsky MS: Endothelial cell dysfunction: The syndrome in making. Kidney Int. 67:1654–1658. 2005. View Article : Google Scholar : PubMed/NCBI

121 

van Thiel BS, van der Pluijm I, te Riet L, Essers J and Danser AH: The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol. 763((Pt A)): 3–14. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Podkowińska A and Formanowicz D: Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants (Basel). 9:7522020. View Article : Google Scholar : PubMed/NCBI

123 

Rao GN, Corson MA and Berk BC: Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J Biol Chem. 266:8604–8608. 1991. View Article : Google Scholar : PubMed/NCBI

124 

Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B and Johnson RJ: The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 99:759–766. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Potente M, Gerhardt H and Carmeliet P: Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Eelen G, Treps L, Li X and Carmeliet P: Basic and therapeutic aspects of angiogenesis updated. Circ Res. 127:310–329. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Krüger-Genge A, Blocki A, Franke RP and Jung F: Vascular endothelial cell biology: An update. Int J Mol Sci. 20:44112019. View Article : Google Scholar : PubMed/NCBI

128 

Dai Z, Zhu MM, Peng Y, Jin H, Machireddy N, Qian Z, Zhang X and Zhao YY: Endothelial and smooth muscle cell interaction via FoxM1 signaling mediates vascular remodeling and pulmonary hypertension. Am J Respir Crit Care Med. 198:788–802. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Evans CE, Cober ND, Dai Z, Stewart DJ and Zhao YY: Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J. 58:20039572021. View Article : Google Scholar : PubMed/NCBI

130 

Liu B, Peng Y, Yi D, Machireddy N, Dong D, Ramirez K, Dai J, Vanderpool R, Zhu MM, Dai Z and Zhao YY: Endothelial PHD2 deficiency induces nitrative stress via suppression of caveolin-1 in pulmonary hypertension. Eur Respir J. 60:21026432022. View Article : Google Scholar : PubMed/NCBI

131 

Zharikov SI, Swenson ER, Lanaspa M, Block ER, Patel JM and Johnson RJ: Could uric acid be a modifiable risk factor in subjects with pulmonary hypertension? Med Hypotheses. 74:1069–1074. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Komaszyło K, Zalewska R, Mariak Z and Wiśniewska RJ: Biosynthesis of nitric oxide and its function in organism. Klin Oczna. 108:99–102. 2006.(In Polish). PubMed/NCBI

133 

Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ and Henderson GN: Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 27:967–978. 2008. View Article : Google Scholar : PubMed/NCBI

134 

Förstermann U: Janus-faced role of endothelial NO synthase in vascular disease: Uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem. 387:1521–1533. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Mishima M, Hamada T, Maharani N, Ikeda N, Onohara T, Notsu T, Ninomiya H, Miyazaki S, Mizuta E, Sugihara S, et al: Effects of Uric Acid on the NO Production of HUVECs and its Restoration by Urate Lowering Agents. Drug Res (Stuttg). 66:270–274. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Li P, Zhang L, Zhang M, Zhou C and Lin N: Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 37:989–997. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Choi YJ, Yoon Y, Lee KY, Hien TT, Kang KW, Kim KC, Lee J, Lee MY, Lee SM, Kang DH and Lee BH: Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 28:3197–3204. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Bahadoran Z, Mirmiran P, Kashfi K and Ghasemi A: Hyperuricemia-induced endothelial insulin resistance: The nitric oxide connection. Pflugers Arch. 474:83–98. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Roy D, Perreault M and Marette A: Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol. 274:E692–E699. 1998.PubMed/NCBI

140 

Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, et al: A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 290:F625–F631. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Lee TS, Lu TM, Chen CH, Guo BC and Hsu CP: Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethylaminotransferase 2 pathway. Redox Biol. 46:1021082021. View Article : Google Scholar : PubMed/NCBI

142 

Deedwania PC: Mechanisms of endothelial dysfunction in the metabolic syndrome. Curr Diab Rep. 3:289–292. 2003. View Article : Google Scholar : PubMed/NCBI

143 

Yu W and Cheng JD: Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Front Pharmacol. 11:5826802020. View Article : Google Scholar : PubMed/NCBI

144 

Lee KS, Kim J, Kwak SN, Lee KS, Lee DK, Ha KS, Won MH, Jeoung D, Lee H, Kwon YG and Kim YM: Functional role of NF-κB in expression of human endothelial nitric oxide synthase. Biochem Biophys Res Commun. 448:101–107. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Zhen H and Gui F: The role of hyperuricemia on vascular endothelium dysfunction. Biomed Rep. 7:325–330. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Zhang X, Hong Q, Hou K, Wang Y, Wu D and Chen X: High concentration uric acid regulates endothelial function via miR-155. Nan Fang Yi Ke Da Xue Xue Bao. 33:1141–1145. 2013.(In Chinese). PubMed/NCBI

147 

Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER and Patel J: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 295:C1183–C1190. 2008. View Article : Google Scholar : PubMed/NCBI

148 

Hong Q, Qi K, Feng Z, Huang Z, Cui S, Wang L, Fu B, Ding R, Yang J, Chen X and Wu D: Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium. 51:402–410. 2012. View Article : Google Scholar : PubMed/NCBI

149 

Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, Nakagawa T, Yu MA, Kang DH and Johnson RJ: Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 121:e71–e78. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Kang DH, Han L, Ouyang X, Kahn AM, Kanellis J, Li P, Feng L, Nakagawa T, Watanabe S, Hosoyamada M, et al: Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am J Nephrol. 25:425–433. 2005. View Article : Google Scholar : PubMed/NCBI

151 

Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, Endou H and Johnson RJ: Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol. 17:1791–1795. 2006. View Article : Google Scholar : PubMed/NCBI

152 

Oğuz N, Kırça M, Çetin A and Yeşilkaya A: Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells. J Recept Signal Transduct Res. 37:500–505. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Kırça M, Oğuz N, Çetin A, Uzuner F and Yeşilkaya A: Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J Recept Signal Transduct Res. 37:167–173. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Bowen-Pope DF, Ross R and Seifert RA: Locally acting growth factors for vascular smooth muscle cells: Endogenous synthesis and release from platelets. Circulation. 72:735–740. 1985. View Article : Google Scholar : PubMed/NCBI

155 

Berk BC: Vascular smooth muscle growth: Autocrine growth mechanisms. Physiol Rev. 81:999–1030. 2001. View Article : Google Scholar : PubMed/NCBI

156 

Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R and Johnson RJ: A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 13:2888–2897. 2002. View Article : Google Scholar : PubMed/NCBI

157 

Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, et al: Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 282:F991–F997. 2002. View Article : Google Scholar : PubMed/NCBI

158 

Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M and Johnson RJ: Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 40:355–360. 2002. View Article : Google Scholar : PubMed/NCBI

159 

Doğru S, Yaşar E and Yeşilkaya A: Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death. J Recept Signal Transduct Res. 42:293–301. 2022. View Article : Google Scholar : PubMed/NCBI

160 

Messerli FH, Frohlich ED, Dreslinski GR, Suarez DH and Aristimuno GG: Serum uric acid in essential hypertension: An indicator of renal vascular involvement. Ann Intern Med. 93:817–821. 1980. View Article : Google Scholar : PubMed/NCBI

161 

Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L and Johnson RJ: Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 41:1287–1293. 2003. View Article : Google Scholar : PubMed/NCBI

162 

Li H, Qian F, Liu H and Zhang Z: Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Med Sci Monit. 25:8457–8464. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Savale L, Akagi S, Tu L, Cumont A, Thuillet R, Phan C, Le Vely B, Berrebeh N, Huertas A, Jaïs X, et al: Serum and pulmonary uric acid in pulmonary arterial hypertension. Eur Respir J. 58:20003322021. View Article : Google Scholar : PubMed/NCBI

164 

Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R and Eguchi S: Angiotensin II Signal Transduction: An update on mechanisms of physiology and pathophysiology. Physiol Rev. 98:1627–1738. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Satou R, Penrose H and Navar LG: Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep. 20:1002018. View Article : Google Scholar : PubMed/NCBI

166 

Saxena T, Ali AO and Saxena M: Pathophysiology of essential hypertension: An update. Expert Rev Cardiovasc Ther. 16:879–887. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Wang XD, Liu J, Zhang YC, Wang Y, Wang Y and Ma D: Correlation between the elevated uric acid levels and circulating renin-angiotensin-aldosterone system activation in patients with atrial fibrillation. Cardiovasc Diagn Ther. 11:50–55. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR and Gaikwad AB: Endoplasmic reticulum stress and renin-angiotensin system crosstalk in endothelial dysfunction. Curr Mol Pharmacol. 16:139–146. 2023. View Article : Google Scholar : PubMed/NCBI

169 

Saito I, Saruta T, Kondo K, Nakamura R, Oguro T, Yamagami K, Ozawa Y and Kato E: Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc. 26:241–247. 1978. View Article : Google Scholar : PubMed/NCBI

170 

Cappuccio FP, Iacone R and Strazzullo P: Serum uric acid and proximal sodium excretion: An independent association in man (the Olivetti Study). J Hypertens. (Suppl 9):S280–S281. 1991.

171 

Welch WJ, Wilcox CS and Thomson SC: Nitric oxide and tubuloglomerular feedback. Semin Nephrol. 19:251–262. 1999.PubMed/NCBI

172 

Perlstein TS, Gumieniak O, Hopkins PN, Murphey LJ, Brown NJ, Williams GH, Hollenberg NK and Fisher ND: Uric acid and the state of the intrarenal renin-angiotensin system in humans. Kidney Int. 66:1465–1470. 2004. View Article : Google Scholar : PubMed/NCBI

173 

Feig DI, Kang DH, Nakagawa T, Mazzali M and Johnson RJ: Uric acid and hypertension. Curr Hypertens Rep. 8:111–115. 2006. View Article : Google Scholar : PubMed/NCBI

174 

Brewster UC and Perazella MA: The renin-angiotensin-aldosterone system and the kidney: Effects on kidney disease. Am J Med. 116:263–272. 2004. View Article : Google Scholar : PubMed/NCBI

175 

Sparks MA, Crowley SD, Gurley SB, Mirotsou M and Coffman TM: Classical Renin-Angiotensin system in kidney physiology. Compr Physiol. 4:1201–1228. 2014. View Article : Google Scholar : PubMed/NCBI

176 

Nehme A, Zouein FA, Zayeri ZD and Zibara K: An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis. 6:142019.PubMed/NCBI

177 

Laghlam D, Jozwiak M and Nguyen LS: Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells. 10:17672021. View Article : Google Scholar : PubMed/NCBI

178 

Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA and Shen XZ: Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 14:325–336. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H and Tuck ML: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 26:269–275. 2008. View Article : Google Scholar : PubMed/NCBI

180 

Yu MA, Sánchez-Lozada LG, Johnson RJ and Kang DH: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 28:1234–1242. 2010. View Article : Google Scholar : PubMed/NCBI

181 

Basso N and Terragno NA: History about the discovery of the renin-angiotensin system. Hypertension. 38:1246–1249. 2001. View Article : Google Scholar : PubMed/NCBI

182 

Lipworth BJ and Dagg KD: Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest. 105:1360–1364. 1994. View Article : Google Scholar : PubMed/NCBI

183 

Orte C, Polak JM, Haworth SG, Yacoub MH and Morrell NW: Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J Pathol. 192:379–384. 2000. View Article : Google Scholar : PubMed/NCBI

184 

Abraham WT, Raynolds MV, Badesch DB, Wynne KM, Groves BM, Roden RL, Robertson AD, Lowes BD, Zisman LS, Voelkel NF, et al: Angiotensin-converting enzyme DD genotype in patients with primary pulmonary hypertension: Increased frequency and association with preserved haemodynamics. J Renin Angiotensin Aldosterone Syst. 4:27–30. 2003. View Article : Google Scholar : PubMed/NCBI

185 

Chung WK, Deng L, Carroll JS, Mallory N, Diamond B, Rosenzweig EB, Barst RJ and Morse JH: Polymorphism in the angiotensin II type 1 receptor (AGTR1) is associated with age at diagnosis in pulmonary arterial hypertension. J Heart Lung Transplant. 28:373–379. 2009. View Article : Google Scholar : PubMed/NCBI

186 

Berk BC and Rao GN: Angiotensin II-induced vascular smooth muscle cell hypertrophy: PDGF A-chain mediates the increase in cell size. J Cell Physiol. 154:368–380. 1993. View Article : Google Scholar : PubMed/NCBI

187 

Morrell NW, Atochina EN, Morris KG, Danilov SM and Stenmark KR: Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 96:1823–1833. 1995. View Article : Google Scholar : PubMed/NCBI

188 

de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel E, et al: Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 186:780–789. 2012. View Article : Google Scholar : PubMed/NCBI

189 

Pezzuto B, Badagliacca R, Poscia R, Ghio S, D'Alto M, Vitulo P, Mulè M, Albera C, Volterrani M, Fedele F and Vizza CD: Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant. 34:282–305. 2015. View Article : Google Scholar : PubMed/NCBI

190 

Foris V, Kovacs G, Tscherner M, Olschewski A and Olschewski H: Biomarkers in pulmonary hypertension: What do we know? Chest. 144:274–283. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Ozanturk E, Ucar ZZ, Varol Y, Koca H, Demir AU, Kalenci D, Halilcolar H and Ozacar R: Urinary uric acid excretion as an indicator of severe hypoxia and mortality in patients with obstructive sleep apnea and chronic obstructive pulmonary disease. Rev Port Pneumol (2006). 22:18–26. 2016.PubMed/NCBI

192 

Deng S, Zhu T, Wang C, Gu X, Zhang J, Lu Q, Yang Y and Ma X: Analysis of Correlation Between Serum Hypoxia-Inducible Factor-1α, Uric Acid, and Inflammatory Factor Levels and Lung Function in Patients with AECOPD. Altern Ther Health Med. AT8122:Aug 11–2023.(Epub ahead of print). PubMed/NCBI

193 

Leyva F, Anker S, Swan JW, Godsland IF, Wingrove CS, Chua TP, Stevenson JC and Coats AJ: Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J. 18:858–865. 1997. View Article : Google Scholar : PubMed/NCBI

194 

Horodinschi RN, Bratu OG, Dediu GN, Pantea Stoian A, Motofei I and Diaconu CC: Heart failure and chronic obstructive pulmonary disease: A review. Acta Cardiol. 75:97–104. 2020. View Article : Google Scholar : PubMed/NCBI

195 

Nathan SD, Barbera JA, Gaine SP, Harari S, Martinez FJ, Olschewski H, Olsson KM, Peacock AJ, Pepke-Zaba J, Provencher S, et al: Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J. 53:18019142019. View Article : Google Scholar : PubMed/NCBI

196 

Kaufman M and Guglin M: Uric acid in heart failure: A biomarker or therapeutic target? Heart Fail Rev. 18:177–186. 2013. View Article : Google Scholar : PubMed/NCBI

197 

Richette P, Frazier A and Bardin T: Impact of anti-inflammatory therapies, xanthine oxidase inhibitors and other urate-lowering therapies on cardiovascular diseases in gout. Curr Opin Rheumatol. 27:170–174. 2015. View Article : Google Scholar : PubMed/NCBI

198 

Komori H, Yamada K and Tamai I: Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells. Biochim Biophys Acta Biomembr. 1860:973–980. 2018. View Article : Google Scholar : PubMed/NCBI

199 

Yanai H, Adachi H, Hakoshima M and Katsuyama H: Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 22:92212021. View Article : Google Scholar : PubMed/NCBI

200 

Lokmic Z, Musyoka J, Hewitson TD and Darby IA: Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 296:139–185. 2012. View Article : Google Scholar : PubMed/NCBI

201 

Alderman M and Aiyer KJ: Uric acid: Role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 20:369–379. 2004. View Article : Google Scholar : PubMed/NCBI

202 

Cai H and Harrison DG: Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res. 87:840–844. 2000. View Article : Google Scholar : PubMed/NCBI

203 

Țăpoi L, Șalaru DL, Sascău R and Stătescu C: Uric Acid-An emergent risk marker for thrombosis? J Clin Med. 10:20622021. View Article : Google Scholar

204 

Schober A: Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 28:1950–1959. 2008. View Article : Google Scholar : PubMed/NCBI

205 

Voelkel NF, Mizuno S and Bogaard HJ: The role of hypoxia in pulmonary vascular diseases: A perspective. Am J Physiol Lung Cell Mol Physiol. 304:L457–L465. 2013. View Article : Google Scholar : PubMed/NCBI

206 

Borghi C, Verardi FM, Pareo I, Bentivenga C and Cicero AF: Hyperuricemia and cardiovascular disease risk. Expert Rev Cardiovasc Ther. 12:1219–1225. 2014. View Article : Google Scholar : PubMed/NCBI

207 

Das A, Kumar P, Kumari A, Chandra S, Gari M, Singh N and Dey D: Effects of cilnidipine on heart rate and uric acid metabolism in patients with essential hypertension. Cardiol Res. 7:167–172. 2016. View Article : Google Scholar : PubMed/NCBI

208 

Qin X, Li Y, He M, Tang G, Yin D, Liang M, Wang B, Nie J, Huo Y, Xu X and Hou FF: Folic acid therapy reduces serum uric acid in hypertensive patients: A substudy of the China Stroke Primary Prevention Trial (CSPPT). Am J Clin Nutr. 105:882–889. 2017. View Article : Google Scholar : PubMed/NCBI

209 

Chida R, Hisauchi I, Toyoda S, Kikuchi M, Komatsu T, Hori Y, Nakahara S, Sakai Y, Inoue T and Taguchi I: Impact of irbesartan, an angiotensin receptor blocker, on uric acid level and oxidative stress in high-risk hypertension patients. Hypertens Res. 38:765–769. 2015. View Article : Google Scholar : PubMed/NCBI

210 

Kim EJ, Song WH, Lee JU, Shin MS, Lee S, Kim BO, Hong KS, Han SW, Park CG and Seo HS: Efficacy of losartan and carvedilol on central hemodynamics in hypertensives: a prospective, randomized, open, blinded end point, multicenter study. Hypertens Res. 37:50–56. 2014. View Article : Google Scholar : PubMed/NCBI

211 

Newman CB: Safety of statins and nonstatins for treatment of dyslipidemia. Endocrinol Metab Clin North Am. 51:655–679. 2022. View Article : Google Scholar : PubMed/NCBI

212 

Noori S, Mirzababaei A, Amini MR, Clark CCT and Mirzaei K: Effect of orlistat on serum uric acid level in adults: A systematic review and meta-analysis of randomised controlled trials. Int J Clin Pract. 75:e146742021. View Article : Google Scholar : PubMed/NCBI

213 

Zhang G, Ma Y, Xi D, Rao Z, Sun X and Wu X: Effect of high uric acid on the disposition of metformin: in vivo and in vitro studies. Biopharm Drug Dispos. 40:3–11. 2019. View Article : Google Scholar : PubMed/NCBI

214 

Katsiki N, Karagiannis A, Athyros VG and Mikhailidis DP: Hyperuricaemia: More than just a cause of gout. J Cardiovasc Med (Hagerstown). 14:397–402. 2013. View Article : Google Scholar : PubMed/NCBI

215 

Thomas MC: Renal effects of dapagliflozin in patients with type 2 diabetes. Ther Adv Endocrinol Metab. 5:53–61. 2014. View Article : Google Scholar : PubMed/NCBI

216 

George J, Carr E, Davies J, Belch JJ and Struthers A: High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 114:2508–2516. 2006. View Article : Google Scholar : PubMed/NCBI

217 

Tani S, Nagao K and Hirayama A: Effect of febuxostat, a xanthine oxidase inhibitor, on cardiovascular risk in hyperuricemic patients with hypertension: A prospective, open-label, pilot study. Clin Drug Investig. 35:823–831. 2015. View Article : Google Scholar : PubMed/NCBI

218 

Lin HC, Daimon M, Wang CH, Ho Y, Uang YS, Chiang SJ and Wang LH: Allopurinol, benzbromarone and risk of coronary heart disease in gout patients: A population-based study. Int J Cardiol. 233:85–90. 2017. View Article : Google Scholar : PubMed/NCBI

219 

Kim SC, Neogi T, Kang EH, Liu J, Desai RJ, Zhang M and Solomon DH: Cardiovascular risks of probenecid versus allopurinol in older patients with gout. J Am Coll Cardiol. 71:994–1004. 2018. View Article : Google Scholar : PubMed/NCBI

220 

Moss JD, Wu M, Axelrod DM and Kwiatkowski DM: Rasburicase versus intravenous allopurinol for non-malignancy-associated acute hyperuricemia in paediatric cardiology patients. Cardiol Young. 29:1160–1164. 2019. View Article : Google Scholar : PubMed/NCBI

221 

Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL, Vázquez-Mellado J, White WB, Lipsky PE, Horowitz Z, et al: Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: Two randomized controlled trials. JAMA. 306:711–720. 2011. View Article : Google Scholar : PubMed/NCBI

222 

Theilmann AL and Ormiston ML: Repurposing benzbromarone for pulmonary arterial hypertension: Can channelling the past deliver the therapy of the future? Eur Respir J. 53:19005832019. View Article : Google Scholar : PubMed/NCBI

223 

Liu-Shiu-Cheong PSK, Lipworth BJ, Weir-McCall JR, Houston JG and Struthers AD: Allopurinol in patients with pulmonary hypertension associated with chronic lung disease. Int J Chron Obstruct Pulmon Dis. 15:2015–2024. 2020. View Article : Google Scholar : PubMed/NCBI

224 

Gokcen T, Inci K, Inci EE, Sevgen O and Serdar U: Allopurinol treatment reduced vascular remodeling and improved vascular functions in monocrotaline-induced pulmonary hypertensive rats. Pulm Pharmacol Ther. 77:1021662022. View Article : Google Scholar : PubMed/NCBI

225 

De Scheerder IK, van de Kraay AM, Lamers JM, Koster JF, de Jong JW and Serruys PW: Myocardial malondialdehyde and uric acid release after short-lasting coronary occlusions during coronary angioplasty: Potential mechanisms for free radical generation. Am J Cardiol. 68:392–395. 1991. View Article : Google Scholar : PubMed/NCBI

226 

Friedl HP, Till GO, Trentz O and Ward PA: Role of oxygen radicals in tourniquet-related ischemia-reperfusion injury of human patients. Klin Wochenschr. 69:1109–1112. 1991. View Article : Google Scholar : PubMed/NCBI

227 

Many A, Hubel CA and Roberts JM: Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol. 174((1 Pt 1)): 288–291. 1996. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou Y, Chen M, Zheng J, Shui X, He Y, Luo H and Lei W: Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Mol Med Rep 29: 10, 2024.
APA
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., & Lei, W. (2024). Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Molecular Medicine Reports, 29, 10. https://doi.org/10.3892/mmr.2023.13133
MLA
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., Lei, W."Insights into the relationship between serum uric acid and pulmonary hypertension (Review)". Molecular Medicine Reports 29.1 (2024): 10.
Chicago
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., Lei, W."Insights into the relationship between serum uric acid and pulmonary hypertension (Review)". Molecular Medicine Reports 29, no. 1 (2024): 10. https://doi.org/10.3892/mmr.2023.13133
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou Y, Chen M, Zheng J, Shui X, He Y, Luo H and Lei W: Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Mol Med Rep 29: 10, 2024.
APA
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., & Lei, W. (2024). Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Molecular Medicine Reports, 29, 10. https://doi.org/10.3892/mmr.2023.13133
MLA
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., Lei, W."Insights into the relationship between serum uric acid and pulmonary hypertension (Review)". Molecular Medicine Reports 29.1 (2024): 10.
Chicago
Zhou, Y., Chen, M., Zheng, J., Shui, X., He, Y., Luo, H., Lei, W."Insights into the relationship between serum uric acid and pulmonary hypertension (Review)". Molecular Medicine Reports 29, no. 1 (2024): 10. https://doi.org/10.3892/mmr.2023.13133
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team