|
1
|
Lu Y, Tang X, Wang W, Yang J and Wang S:
The role of deacetylase SIRT1 in allergic diseases. Front Immunol.
15:14225412024. View Article : Google Scholar
|
|
2
|
Jothi D and Kulka LAM: Strategies for
modeling aging and age-related diseases. NPJ Aging. 10:322024.
View Article : Google Scholar
|
|
3
|
López-Otín C, Blasco MA, Partridge L,
Serrano M and Kroemer G: Hallmarks of aging: An expanding universe.
Cell. 186:243–278. 2023. View Article : Google Scholar
|
|
4
|
Chen S, Zhou D, Liu O, Chen H, Wang Y and
Zhou Y: Cellular senescence and periodontitis: Mechanisms and
therapeutics. Biology (Basel). 11:14192022.
|
|
5
|
Verma SK, Singh N, Jha AK, Tigga C,
Noorani MK, Ekram S and Gupta V: Prevalence of periodontal disease
among patients reporting to tertiary care hospital in Ranchi. J
Pharm Bioallied Sci. 16 (Suppl 1):S838–S840. 2024. View Article : Google Scholar
|
|
6
|
Yan J, Chen S, Yi Z, Zhao R, Zhu J, Ding S
and Wu J: The role of p21 in cellular senescence and aging-related
diseases. Mol Cells. 18:1001132024. View Article : Google Scholar
|
|
7
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T and
Xu F: Cellular senescence and SASP in tumor progression and
therapeutic opportunities. Mol Cancer. 23:1812024. View Article : Google Scholar
|
|
8
|
Li X, Li C, Zhang W, Wang Y, Qian P and
Huang H: Inflammation and aging: Signaling pathways and
intervention therapies. Signal Transduct Target Ther. 8:2392023.
View Article : Google Scholar
|
|
9
|
Rusciano D and Bagnoli P: Oxygen, the
Paradox of Life and the Eye. Front Biosci (Landmark Ed).
29:3192024. View Article : Google Scholar
|
|
10
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar
|
|
11
|
Terao R, Ahmed T, Suzumura A and Terasaki
H: Oxidative stress-induced cellular senescence in aging retina and
age-related macular degeneration. Antioxidants (Basel).
11:21892022. View Article : Google Scholar
|
|
12
|
Wen J, Pan T, Li H, Fan H, Liu J, Cai Z
and Zhao B: Role of mitophagy in the hallmarks of aging. J Biomed
Res. 37:1–14. 2022. View Article : Google Scholar
|
|
13
|
Sun Y, Xu L, Li Y, Jia S, Wang G, Cen X,
Xu Y, Cao Z, Wang J, Shen N, et al: Mitophagy defect mediates the
aging-associated hallmarks in Hutchinson-Gilford progeria syndrome.
Aging Cell. 23:e141432024. View Article : Google Scholar
|
|
14
|
Ilie OD, Ciobica A, Riga S, Dhunna N,
McKenna J, Mavroudis I, Doroftei B, Ciobanu AM and Riga D:
Mini-Review on lipofuscin and aging: focusing on the molecular
interface, the biological recycling mechanism, oxidative stress,
and the gut-brain axis functionality. Medicina (Kaunas).
56:6262020. View Article : Google Scholar
|
|
15
|
Lee KS, Lin S, Copland DA, Dick AD and Liu
J: Cellular senescence in the aging retina and developments of
chemotherapies for age-related macular degeneration. J
Neuroinflammation. 18:322021. View Article : Google Scholar
|
|
16
|
Blasiak J: Senescence in the pathogenesis
of age-related macular degeneration. Cell Mol Life Sci. 77:789–805.
2020. View Article : Google Scholar
|
|
17
|
Kuang Y, Hu B, Feng G, Xiang M, Deng Y,
Tan M, Li J and Song J: Metformin prevents oxidative stress-induced
senescence in human periodontal ligament cells. Biogerontology.
21:13–27. 2020. View Article : Google Scholar
|
|
18
|
Sun K, Jing X, Guo J, Yao X and Guo F:
Mitophagy in degenerative joint diseases. Autophagy. 17:2082–2092.
2021. View Article : Google Scholar
|
|
19
|
Yu H and Song X: The relationship between
Alzheimer's disease and thyroiditis: A two-sample Mendelian
randomization study. Medicine (Baltimore). 102:e357122023.
View Article : Google Scholar
|
|
20
|
Xu Y, Sun B, Wang H, Cai Y, Chu D, Cao R
and Wang Z: Autophagy regulates age-related delayed jawbone
regeneration and decreased osteoblast osteogenesis by degrading
FABP3. FASEB J. 38:e238242024. View Article : Google Scholar
|
|
21
|
Ebersole JL, Nagarajan R, Kirakodu S and
Gonzalez OA: Oral microbiome and gingival gene expression of
inflammatory biomolecules with aging and periodontitis. Front Oral
Health. 2:7251152021. View Article : Google Scholar
|
|
22
|
Schwartz JL, Peña N, Kawar N, Zhang A,
Callahan N, Robles SJ, Griebel A and Adami GR: Old age and other
factors associated with salivary microbiome variation. BMC Oral
Health. 21:4902021. View Article : Google Scholar
|
|
23
|
Song Y and Chung J: Aging aggravates
periodontal inflammatory responses and alveolar bone resorption by
porphyromonas gingivalis infection. Curr Issues Mol Biol.
45:6593–6604. 2023. View Article : Google Scholar
|
|
24
|
Suzuki K, Susaki EA and Nagaoka I:
Lipopolysaccharides and cellular senescence: Involvement in
Atherosclerosis. Int J Mol Sci. 23:111482022. View Article : Google Scholar
|
|
25
|
Aquino-Martinez R, Rowsey JL, Fraser DG,
Eckhardt BA, Khosla S, Farr JN and Monroe DG: LPS-induced premature
osteocyte senescence: Implications in inflammatory alveolar bone
loss and periodontal disease pathogenesis. Bone. 132:1152202020.
View Article : Google Scholar
|
|
26
|
Jung YS, Park JH, Kim H, Kim SY, Hwang JY,
Hong KW, Bae SS, Choi BT, Lee SW and Shin HK: Probucol inhibits
LPS-induced microglia activation and ameliorates brain ischemic
injury in normal and hyperlipidemic mice. Acta Pharmacol Sin.
37:1031–1044. 2016. View Article : Google Scholar
|
|
27
|
Feng G, Zheng K, Cao T, Zhang J, Lian M,
Huang D, Wei C, Gu Z and Feng X: Repeated stimulation by LPS
promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21
signaling. Cytotechnology. 70:1023–1035. 2018. View Article : Google Scholar
|
|
28
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu
Q, Kuca K and Adam V: Role of hypoxia in cellular senescence.
Pharmacol Res. 194:1068412023. View Article : Google Scholar
|
|
29
|
Nareika A, Im YB, Game BA, Slate EH,
Sanders JJ, London SD, Lopes-Virella MF and Huang Y: High glucose
enhances lipopolysaccharide-stimulated CD14 expression in U937
mononuclear cells by increasing nuclear factor kappaB and AP-1
activities. J Endocrinol. 196:45–55. 2008. View Article : Google Scholar
|
|
30
|
Gölz L, Memmert S, Rath-Deschner B, Jäger
A, Appel T, Baumgarten G, Götz W and rede S: Hypoxia and P.
gingivalis synergistically induce HIF-1 and NF-κB activation in PDL
cells and periodontal diseases. Mediators Inflamm. 2015:4380852015.
View Article : Google Scholar
|
|
31
|
Zusso M, Lunardi V, Franceschini D,
Pagetta A, Lo R, Stifani S, Frigo AC, Giusti P and Moro S:
Ciprofloxacin and levofloxacin attenuate microglia inflammatory
response via TLR4/NF-kB pathway. J Neuroinflammation. 16:1482019.
View Article : Google Scholar
|
|
32
|
Yin K, Patten D, Gough S, de Barros
Gonçalves S, Chan A, Olan I, Cassidy L, Poblocka M, Zhu H, Lun A,
et al: Senescence-induced endothelial phenotypes underpin
immune-mediated senescence surveillance. Genes Dev. 36:533–549.
2022. View Article : Google Scholar
|
|
33
|
Li Y, Yin H, Yuan H, Wang E, Wang C, Li H,
Geng X, Zhang Y and Bai J: IL-10 deficiency aggravates cell
senescence and accelerates BLM-induced pulmonary fibrosis in aged
mice via PTEN/AKT/ERK pathway. BMC Pulm Med. 24:4432024. View Article : Google Scholar
|
|
34
|
Tang H, Du Y, Tan Z, Li D and Xie J:
METTL14-mediated HOXA5 m6A modification alleviates osteoporosis via
promoting WNK1 transcription to suppress NLRP3-dependent macrophage
pyroptosis. J Orthop Translat. 48:190–203. 2024. View Article : Google Scholar
|
|
35
|
Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S and
Sun C: Melatonin alleviates inflammasome-induced pyroptosis through
inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res.
63:2017. View Article : Google Scholar
|
|
36
|
Zhang Z, Li X, Wang Y, Wei Y and Wei X:
Involvement of inflammasomes in tumor microenvironment and tumor
therapies. J Hematol Oncol. 16:242023. View Article : Google Scholar
|
|
37
|
Martínez-Zamudio RI, Robinson L, Roux PF
and Bischof O: SnapShot: Cellular senescence pathways. Cell.
170:816–816.e1. 2017. View Article : Google Scholar
|
|
38
|
Zhao P, Yue Z, Nie L, Zhao Z and Wang Q,
Chen J and Wang Q: Hyperglycemia-associated macrophage pyroptosis
accelerates periodontal inflame-aging. J Clin Periodontol.
48:1379–1392. 2021. View Article : Google Scholar
|
|
39
|
Tsirpanlis G: Cellular senescence and
inflammation: A noteworthy link. Blood Purif. 28:12–14. 2009.
View Article : Google Scholar
|
|
40
|
Lavandoski P, Pierdoná V, Maurmann RM,
Grun LK, Guma F, Guma FTCR and Barbé-Tuana FM: Eotaxin-1/CCL11
promotes cellular senescence in human-derived fibroblasts through
pro-oxidant and proinflammatory pathways. Front Immunol.
14:12435372023. View Article : Google Scholar
|
|
41
|
Yue Z, Nie L, Zhao P, Ji N, Liao G and
Wang Q: Senescence-associated secretory phenotype and its impact on
oral immune homeostasis. Front Immunol. 13:10193132022. View Article : Google Scholar
|
|
42
|
Ma Y, Mouton AJ and Lindsey ML: Cardiac
macrophage biology in the steady-state heart, the aging heart, and
following myocardial infarction. Transl Res. 191:15–28. 2008.
View Article : Google Scholar
|
|
43
|
Gasek NS, Kuchel GA, Kirkland JL and Xu M:
Strategies for targeting senescent cells in human disease. Nat
Aging. 1:870–879. 2021. View Article : Google Scholar
|
|
44
|
Zhang J, An Y, Gao LN, Zhang YJ, Jin Y and
Chen FM: The effect of aging on the pluripotential capacity and
regenerative potential of human periodontal ligament stem cells.
Biomaterials. 33:6974–6986. 2012. View Article : Google Scholar
|
|
45
|
Li X, Zhang B, Wang H, Zhao X, Zhang Z,
Ding G and Wei F: The effect of aging on the biological and
immunological characteristics of periodontal ligament stem cells.
Stem Cell Res Ther. 11:3262020. View Article : Google Scholar
|
|
46
|
Tang L, Li T, Chang Y, Wang Z, Li Y, Wang
F and Sui L: Diabetic oxidative stress-induced telomere damage
aggravates periodontal bone loss in periodontitis. Biochem Biophys
Res Commun. 614:22–28. 2022. View Article : Google Scholar
|
|
47
|
Du TT, Liu N, Zhang W, Shi HG and Zhang T:
Effect of aging on proliferative and differentiation capacity of
human periodontal ligament stem cells. Nan Fang Yi Ke Da Xue Xue
Bao. 37:360–366. 2017.(In Chinese).
|
|
48
|
Föger-Samwald U, Kerschan-Schindl K,
Butylina M and Pietschmann P: Age Related osteoporosis: Targeting
cellular senescence. Int J Mol Sci. 23:27012022. View Article : Google Scholar
|
|
49
|
Cui Z and Zhao X, Amevor FK, Du X, Wang Y,
Li D, Shu G, Tian Y and Zhao X: Therapeutic application of
quercetin in aging-related diseases: SIRT1 as a potential
mechanism. Front Immunol. 13:9433212022. View Article : Google Scholar
|
|
50
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Wang M,
Li N and Jun Z: Advances in the study of mitophagy in
osteoarthritis. J Zhejiang Univ Sci B. 25:197–211. 2024.(In
English, Chinese). View Article : Google Scholar
|
|
51
|
Liu T, Yang Q, Zhang X, Qin R, Shan W,
Zhang H and Chen X: Quercetin alleviates kidney fibrosis by
reducing renal tubular epithelial cell senescence through the
SIRT1/PINK1/mitophagy axis. Life Sci. 257:1181162020. View Article : Google Scholar
|
|
52
|
Yang X, Jiang T, Wang Y and Guo L: The
Role and Mechanism of SIRT1 in resveratrol-regulated osteoblast
autophagy in osteoporosis rats. Sci Rep. 9:184242019. View Article : Google Scholar
|
|
53
|
Wu BW, Guo JD, Wu MS, Liu Y, Lu M, Zhou YH
and Han HW: Osteoblast-derived lipocalin-2 regulated by
miRNA-96-5p/Foxo1 advances the progression of Alzheimer's disease.
Epigenomics. 12:1501–1513. 2020. View Article : Google Scholar
|
|
54
|
Yu H, Ji X and Ouyang Y: Unfolded protein
response pathways in stroke patients: A comprehensive landscape
assessed through machine learning algorithms and experimental
verification. J Transl Med. 21:7592023. View Article : Google Scholar
|
|
55
|
Aquino-Martinez R: The emerging role of
accelerated cellular senescence in periodontitis. J Dent Res.
102:854–862. 2023. View Article : Google Scholar
|
|
56
|
Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li
J, Wang H and Zhang J: Inflammation produced by senescent
osteocytes mediates age-related bone loss. Front Immunol.
14:11140062023. View Article : Google Scholar
|
|
57
|
Hu S and Wang S: The Role of SIRT3 in the
Osteoporosis. Front Endocrinol (Lausanne). 13:8936782022.
View Article : Google Scholar
|
|
58
|
Feng Y and Tang X: FoxO1 as the critical
target of puerarin to inhibit osteoclastogenesis and bone
resorption. J Pharm Pharmacol. 76:813–823. 2024. View Article : Google Scholar
|
|
59
|
Ben-Eltriki M, Ahmadi AR, Nakao Y, Golla
K, Lakschevitz F, Häkkinen L, Granville DJ and Kim H: Granzyme B
promotes matrix metalloproteinase-1 (MMP-1) release from gingival
fibroblasts in a PAR1- and Erk1/2-dependent manner: A novel role in
periodontal inflammation. J Periodontal Res. 59:94–103. 2024.
View Article : Google Scholar
|
|
60
|
Ko YK, Hong S, Kim HM, Liu M, Moon E, Kim
P and Choi Y: Characterization of junctional structures in the
gingival epithelium as barriers against bacterial invasion. J
Periodontal Res. 57:799–810. 2022. View Article : Google Scholar
|
|
61
|
Jotwani R, Palucka AK, Al-Quotub M,
Nouri-Shirazi M, Kim J, Bell D, Banchereau J and Cutler CW: Mature
dendritic cells infiltrate the T cell-rich region of oral mucosa in
chronic periodontitis: In situ, in vivo, and in vitro studies. J
Immunol. 167:4693–4700. 2021. View Article : Google Scholar
|
|
62
|
Hajishengallis G, Moutsopoulos NM,
Hajishengallis E and Chavakis T: Immune and regulatory functions of
neutrophils in inflammatory bone loss. Semin Immunol. 28:146–158.
2016. View Article : Google Scholar
|
|
63
|
Kim TS and Moutsopoulos NM: Neutrophils
and neutrophil extracellular traps in oral health and disease. Exp
Mol Med. 56:1055–1065. 2024. View Article : Google Scholar
|
|
64
|
Eskan MA, Jotwani R, Abe T, Chmelar J, Lim
JH, Liang S, Ciero PA, Krauss JL, Li F, Rauner M, et al: The
leukocyte integrin antagonist Del-1 inhibits IL-17-mediated
inflammatory bone loss. Nat Immunol. 13:465–473. 2012. View Article : Google Scholar
|
|
65
|
Sapey E, Greenwood H, Walton G, Mann E,
Love A, Aaronson N, Insall RH, Stockley RA and Lord JM:
Phosphoinositide 3-kinase inhibition restores neutrophil accuracy
in the elderly: Toward targeted treatments for immunosenescence.
Blood. 123:239–248. 2014. View Article : Google Scholar
|
|
66
|
Bülow S, Ederer KU, Holzinger JM, Zeller
L, Werner M, Toelge M, Pfab C, Hirsch S, Göpferich F, Hiergeist A,
et al: Bactericidal/permeability-increasing protein instructs
dendritic cells to elicit Th22 cell response. Cell Rep.
43:1139292024. View Article : Google Scholar
|
|
67
|
Xu F, Zhang C, Zou Z, Fan EKY, Chen L, Li
Y, Billiar TR, Wilson MA, Shi X and Fan J: Aging-related Atg5
defect impairs neutrophil extracellular traps formation.
Immunology. 151:417–432. 2017. View Article : Google Scholar
|
|
68
|
Kim TS, Silva LM, Theofilou VI,
Greenwell-Wild T, Li L, Williams DW, Ikeuchi T, Brenchley L;
NIDCD/NIDCR Genomics and Computational Biology Core, ; Bugge TH, et
al: Neutrophil extracellular traps and extracellular histones
potentiate IL-17 inflammation in periodontitis. J Exp Med.
220:e202217512023. View Article : Google Scholar
|
|
69
|
Yu H, Si G and Si F: Mendelian
Randomization validates the immune landscape mediated by aggrephagy
in esophageal squamous cell carcinoma patients from the
perspectives of Multi-omics. J Cancer. 15:1940–1953. 2024.
View Article : Google Scholar
|
|
70
|
Sloniak MC, Lepique AP, Nakao LYS and
Villar CC: Alterations in macrophage polarization play a key role
in control and development of periodontal diseases. J Indian Soc
Periodontol. 27:578–582. 2023. View Article : Google Scholar
|
|
71
|
Bai L, Liu Y, Zhang X, Chen P, Hang R,
Xiao Y, Wang J and Liu C: Osteoporosis remission via an
anti-inflammaging effect by icariin activated autophagy.
Biomaterials. 297:1221252023. View Article : Google Scholar
|
|
72
|
Gong J, Ye C, Ran J, Xiong X, Fang X, Zhou
X, Yi Y, Lu X, Wang J, Xie C and Liu J: Polydopamine-Mediated
immunomodulatory patch for diabetic periodontal tissue regeneration
assisted by Metformin-ZIF System. ACS Nano. 17:16573–16586. 2023.
View Article : Google Scholar
|
|
73
|
Liu J, Chen B, Bao J, Zhang Y, Lei L and
Yan F: Macrophage polarization in periodontal ligament stem cells
enhanced periodontal regeneration. Stem Cell Res Ther. 10:3202019.
View Article : Google Scholar
|
|
74
|
Corradetti B, Taraballi F, Corbo C,
Cabrera F, Pandolfi L, Minardi S, Wang X, Van Eps J, Bauza G,
Weiner B and Tasciotti E: Immune tuning scaffold for the local
induction of a pro-regenerative environment. Sci Rep. 7:170302017.
View Article : Google Scholar
|
|
75
|
Reitsema RD, Kumawat AK, Hesselink BC, van
Baarle D and van Sleen Y: Effects of ageing and frailty on
circulating monocyte and dendritic cell subsets. NPJ Aging.
10:172024. View Article : Google Scholar
|
|
76
|
Elsayed R, Elashiry M, Liu Y, Morandini
AC, El-Awady A, Elashiry MM, Hamrick M and Cutler CW:
Microbially-Induced exosomes from dendritic cells promote paracrine
immune senescence: Novel mechanism of bone degenerative disease in
mice. Aging Dis. 14:136–151. 2023. View Article : Google Scholar
|
|
77
|
Sharawi H, Heyman O, Mizraji G, Horev Y,
Laviv A, Shapira L, Yona S, Hovav AH and Wilensky A: The prevalence
of gingival dendritic cell subsets in periodontal patients. J Dent
Res. 100:1330–1336. 2021. View Article : Google Scholar
|
|
78
|
de Vasconcelos Gurgel BC, Peixe PG,
Queiroz SIML, de Almeida Freitas R, de Aquino Martins ARL and
Duarte PM: Comparison of immunoexpression of dendritic cells, mast
cells and blood vessels in periodontal disease between adults and
elderly. Clin Oral Investig. 27:6823–6833. 2023. View Article : Google Scholar
|
|
79
|
Bodineau A, Coulomb B, Folliguet M,
Igondjo-Tchen S, Godeau G, Brousse N and Séguier S: Do Langerhans
cells behave similarly in elderly and younger patients with chronic
periodontitis? Arch Oral Biol. 52:189–194. 2007. View Article : Google Scholar
|
|
80
|
Lee HJ, Kim TG, Kim SH, Park JY, Lee M,
Lee JW, Lee SH and Lee MG: Epidermal barrier function is impaired
in langerhans cell-depleted mice. J Invest Dermatol. 139:1182–1185.
2019. View Article : Google Scholar
|
|
81
|
Oulee A, Ma F, Teles RMB, de Andrade Silva
BJ, Pellegrini M, Klechevsky E, Harman AN, Rhodes JW and Modlin RL:
Identification of genes encoding antimicrobial proteins in
langerhans cells. Front Immunol. 12:6953732021. View Article : Google Scholar
|