Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review)
- Authors:
- Tangqing Gao
- Jingya Luo
- Juanning Fan
- Gu Gong
- Haihong Yang
-
Affiliations: College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China, Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China, Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China - Published online on: November 13, 2024 https://doi.org/10.3892/mmr.2024.13394
- Article Number: 28
-
Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, et al: A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res. 70:939–957. 2021. View Article : Google Scholar : PubMed/NCBI | |
Abbott CA, Malik RA, van Ross ERE, Kulkarni J and Boulton AJM: Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 34:2220–2224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feldman EL, Nave KA, Jensen TS and Bennett DLH: New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron. 93:1296–1313. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sloan G, Selvarajah D and Tesfaye S: Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 17:400–420. 2021. View Article : Google Scholar : PubMed/NCBI | |
Frank T, Nawroth P and Kuner R: Structure-function relationships in peripheral nerve contributions to diabetic peripheral neuropathy. Pain. 160 (Suppl 1):S29–S36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tesfaye S, Sloan G, Petrie J, White D, Bradburn M, Julious S, Rajbhandari S, Sharma S, Rayman G, Gouni R, et al: Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): A multicentre, double-blind, randomised crossover trial. Lancet. 400:680–690. 2022. View Article : Google Scholar : PubMed/NCBI | |
Berger SL, Kouzarides T, Shiekhattar R and Shilatifard A: An operational definition of epigenetics. Genes Dev. 23:781–783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shen X, Xu Y, Xu S, Xia F, Zhu B, Liu Y, Wang W, Wu H and Wang F: The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain. 14:17448069187984082018. View Article : Google Scholar : PubMed/NCBI | |
Khangura RK, Bali A, Jaggi AS and Singh N: Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol. 795:36–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lutz BM, Bekker A and Tao YX: Noncoding RNAs: New players in chronic pain. Anesthesiology. 121:409–417. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Lutz BM, Bekker A and Tao YX: Epigenetic regulation of chronic pain. Epigenomics. 7:235–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo D, Li X, Tang S, Song F, Li W, Xie G, Liang J and Zhou J: Epigenetic modifications in neuropathic pain. Mol Pain. 17:174480692110567672021. View Article : Google Scholar : PubMed/NCBI | |
O'Brien PD, Sakowski SA and Feldman EL: Mouse models of diabetic neuropathy. ILAR J. 54:259–272. 2014. View Article : Google Scholar : PubMed/NCBI | |
Devendra D, Liu E and Eisenbarth GS: Type 1 diabetes: Recent developments. BMJ. 328:750–754. 2004. View Article : Google Scholar : PubMed/NCBI | |
Eleazu CO, Eleazu KC, Chukwuma S and Essien UN: Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 12:602013. View Article : Google Scholar : PubMed/NCBI | |
Agarwal N, Helmstädter J, Rojas DR, Bali KK, Gangadharan V and Kuner R: Evoked hypoalgesia is accompanied by tonic pain and immune cell infiltration in the dorsal root ganglia at late stages of diabetic neuropathy in mice. Mol Pain. 14:17448069188179752018. View Article : Google Scholar : PubMed/NCBI | |
Obrosova IG, Ilnytska O, Lyzogubov VV, Pavlov IA, Mashtalir N, Nadler JL and Drel VR: High-fat diet induced neuropathy of pre-diabetes and obesity: Effects of ‘healthy’ diet and aldose reductase inhibition. Diabetes. 56:2598–2608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Gu X, Pan Z, Guo X, Liu J, Atianjoh FE, Wu S, Mo K, Xu B, Liang L, et al: Contribution of DNMT1 to neuropathic pain genesis partially through epigenetically repressing Kcna2 in primary afferent neurons. J Neurosci. 39:6595–6607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhao X, Wang J, Jin Y, Gong M, Ye Y and Li P: METTL3 suppresses neuropathic pain via modulating N6-methyladenosine-dependent primary miR-150 processing. Cell Death Discov. 8:802022. View Article : Google Scholar : PubMed/NCBI | |
Jang JH, Song EM, Do YH, Ahn S, Oh JY, Hwang TY, Ryu Y, Jeon S, Song MY and Park HJ: Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: The involvement of DNA methylation in the prefrontal cortex. Pain. 162:514–530. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Tao W, Hou YY, Wang W, Kenny PJ and Pan ZZ: MeCP2 repression of G9a in regulation of pain and morphine reward. J Neurosci. 34:9076–9087. 2014. View Article : Google Scholar : PubMed/NCBI | |
Weng YL, An R, Cassin J, Joseph J, Mi R, Wang C, Zhong C, Jin SG, Pfeifer GP, Bellacosa A, et al: An intrinsic epigenetic barrier for functional axon regeneration. Neuron. 94:337–346.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Lan T, Sun Q, Zhang Y, Shen D, Hu T, Liu J, Chong Y, Wang P, Li Q, et al: Whole genomic DNA methylation profiling of CpG sites in promoter regions of dorsal root ganglion in diabetic neuropathic pain mice. J Mol Neurosci. 71:2558–2565. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH, Hu J, Zhou YL, Qin X, Song ZY, Yang PP, Hu S, Jiang X and Xu GY: Promoted interaction of nuclear factor-κB with demethylated purinergic P2X3 receptor gene contributes to neuropathic pain in rats with diabetes. Diabetes. 64:4272–4284. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Wang X, Sun Q, Zhang Y, Liu J, Hu T, Wu W, Wei C, Liu M, Ding Y, et al: The upregulation of NLRP3 inflammasome in dorsal root ganglion by ten-eleven translocation methylcytosine dioxygenase 2 (TET2) contributed to diabetic neuropathic pain in mice. J Neuroinflammation. 19:3022022. View Article : Google Scholar : PubMed/NCBI | |
Penas C and Navarro X: Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci. 12:1582018. View Article : Google Scholar : PubMed/NCBI | |
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B and Zhang X: Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther. 30:e147452024. View Article : Google Scholar : PubMed/NCBI | |
Morales S, Monzo M and Navarro A: Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts. 8:203–212. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qi R, Cao J, Sun Y, Li Y, Huang Z, Jiang D, Jiang XH, Snutch TP, Zhang Y and Tao J: Histone methylation-mediated microRNA-32-5p down-regulation in sensory neurons regulates pain behaviors via targeting Cav3.2 channels. Proc Natl Acad Sci USA. 119:e21172091192022. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA and Cheung CW: Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia. 71:1099–1119. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Zhang Y, Jiao X, Wang G, Wang R and Wu Y: SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats. Reg Anesth Pain Med. 46:49–56. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding H, Wang F, Shi X, Ma H, Du Y, Hou L and Xing N: LncRNA MALAT1 induces the dysfunction of β cells via reducing the histone acetylation of the PDX-1 promoter in type 1 diabetes. Exp Mol Pathol. 114:1044322020. View Article : Google Scholar : PubMed/NCBI | |
Thakur V, Gonzalez MA, Parada M, Martinez RD and Chattopadhyay M: Role of histone deacetylase inhibitor in diabetic painful neuropathy. Mol Neurobiol. 61:2283–2296. 2024. View Article : Google Scholar : PubMed/NCBI | |
Elsherbiny NM, Ahmed E, Kader GA, Abdel-Mottaleb Y, ElSayed MH, Youssef AM and Zaitone SA: Inhibitory effect of valproate sodium on pain behavior in diabetic mice involves suppression of spinal histone deacetylase 1 and inflammatory mediators. Int Immunopharmacol. 70:16–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Michelson D, Chin WW, Dworkin RH, Freeman R, Herrmann DN, Mazitschek R, Pop-Busui R, Shaibani A, Vornov J, Jones M, et al: A randomized, double-blind, placebo-controlled study of histone deacetylase type 6 inhibition for the treatment of painful diabetic peripheral neuropa. Pain Rep. 8:e11142023. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smith PR and Campbell ZT: RNA-binding proteins in pain. Wiley Interdiscip Rev RNA. 15:e18432024. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Wang J, Wu Y, Wu JY, Lu WC, Liu M, Zhang SB, Xie D, Xin WJ and Xie JD: Ac4C enhances the translation efficiency of vegfa mRNA and mediates central sensitization in spinal dorsal horn in neuropathic pain. Adv Sci (Weinh). 10:e23031132023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Weng W, Gu X, Xiang J, Yang Y, Zhu MX, Gu W, He Z and Li Y: hnRNPA1 SUMOylation promotes cold hypersensitivity in chronic inflammatory pain by stabilizing TRPA1 mRNA. Cell Rep. 42:1134012023. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Zhang Y, Wang S, Qi R, Tao Y, Sun Y, Jiang D, Jiang X and Tao J: FOXD3-mediated transactivation of ALKBH5 promotes neuropathic pain via m6A-dependent stabilization of 5-HT3A mRNA in sensory neurons. Proc Natl Acad Sci USA. 121:e23128611212024. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Yang X, Zhong W, Chen G, Guo X, Ye Q, Xu Y, Qi Z, Ye Y, Zhang J, et al: METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J Clin Invest. 134:e1748472024. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Li P, Jia Y, Liu M and Jiang J: Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Front Mol Neurosci. 15:10020182022. View Article : Google Scholar : PubMed/NCBI | |
Wang XL, Wei X, Yuan JJ, Mao YY, Wang ZY, Xing N, Gu HW, Lin CH, Wang WT, Zhang W and Xing F: Downregulation of fat mass and obesity-related protein in the anterior cingulate cortex participates in anxiety- and depression-like behaviors induced by neuropathic pain. Front Cell Neurosci. 16:8842962022. View Article : Google Scholar : PubMed/NCBI | |
Zeng F, Cao J, Hong Z, Lu Y, Qin Z and Tao T: Epigenetic combined with transcriptomic analysis of the m6A methylome after spared nerve injury-induced neuropathic pain in mice. Neural Regen Res. 18:2545–2552. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Qiao SC, Wu XB, Sun B, Yang JG, Li X, Zhang X, Qian SJ, Gu YX and Lai HC: Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death Dis. 12:6282021. View Article : Google Scholar : PubMed/NCBI | |
Hulse RP, Beazley-Long N, Ved N, Bestall SM, Riaz H, Singhal P, Ballmer Hofer K, Harper SJ, Bates DO and Donaldson LF: Vascular endothelial growth factor-A165b prevents diabetic neuropathic pain and sensory neuronal degeneration. Clin Sci (Lond). 129:741–756. 2015. View Article : Google Scholar : PubMed/NCBI | |
Quattrini C, Jeziorska M, Boulton AJM and Malik RA: Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 31:140–145. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hulse RP, Beazley-Long N, Hua J, Kennedy H, Prager J, Bevan H, Qiu Y, Fernandes ES, Gammons MV, Ballmer-Hofer K, et al: Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiol Dis. 71:245–259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bestall SM, Hulse RP, Blackley Z, Swift M, Ved N, Paton K, Beazley-Long N, Bates DO and Donaldson LF: Sensory neuronal sensitisation occurs through HMGB-1-RAGE and TRPV1 in high-glucose conditions. J Cell Sci. 131:jcs2159392018. View Article : Google Scholar : PubMed/NCBI | |
Diederichs S: Non-coding RNA and disease. RNA Biol. 9:701–702. 2012. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
Good DJ: Non-coding RNAs in human health and diseases. Genes (Basel). 14:14292023. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S and Liu YS: Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 6:3832021. View Article : Google Scholar : PubMed/NCBI | |
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar : PubMed/NCBI | |
Roganović J and Petrović N: Clinical perspectives of non-coding RNA in oral inflammatory diseases and neuropathic pain: A narrative review. Int J Mol Sci. 23:82782022. View Article : Google Scholar : PubMed/NCBI | |
Jiang BC, Cao DL, Zhang X, Zhang ZJ, He LN, Li CH, Zhang WW, Wu XB, Berta T, Ji RR and Gao YJ: CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest. 126:745–761. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Ma L, Guo X, Du S, Feng X, Liang Y, Govindarajalu G, Wu S, Liu T, Li H, et al: A sensory neuron-specific long non-coding RNA reduces neuropathic pain by rescuing KCNN1 expression. Brain. 146:3866–3884. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Feng Y and Shi X: Advances with long non-coding RNAs in diabetic peripheral neuropathy. Diabetes Metab Syndr Obes. 13:1429–1434. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du H, Liu Z, Tan X, Ma Y and Gong Q: Identification of the genome-wide expression patterns of long non-coding RNAs and mRNAs in mice with streptozotocin-induced diabetic neuropathic pain. Neuroscience. 402:90–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Xu H, Zou L, Xie J, Wu H, Wu B, Yi Z, Lv Q, Zhang X, Ying M, et al: LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia. Purinergic Signal. 12:139–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Zou L, Xie J, Wu H, Wu B, Zhu G, Lv Q, Zhang X, Liu S, Li G, et al: lncRNA NONRATT021972 siRNA decreases diabetic neuropathic pain mediated by the P2X3 receptor in dorsal root ganglia. Mol Neurobiol. 54:511–523. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Zhou C, Xiao Z, Tang G, Guo H, Hu Z, Hu Q, Peng H, Pi L, Zhang Z, et al: LncRNA-UC.25 + shRNA alleviates P2Y14 receptor-mediated diabetic neuropathic pain via STAT1. Mol Neurobiol. 59:5504–5515. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Zhang M, Yin H, Tu H, Wen Y, Wei X, Shen W, Huang R, Xiong W, Li G and Gao Y: Long non-coding RNA MSTRG.81401 short hairpin RNA relieves diabetic neuropathic pain and behaviors of depression by inhibiting P2X4 receptor expression in type 2 diabetic rats. Purinergic Signal. 19:123–133. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Tang S, Du J, Liu J, Yu B, Yang Y, Xie Y, Qiu Y, Li G and Gao Y: Implication of lncRNA MSTRG.81401 in hippocampal pyroptosis induced by P2X7 receptor in type 2 diabetic rats with neuropathic pain combined with depression. Int J Mol Sci. 25:11862024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q, Gao Y, Li G, Zhang C, Xu C, et al: LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol Brain. 9:442016. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Shi X, Yu R, Qiao B, Yang R and Xu C: The P2X7 receptor is involved in diabetic neuropathic pain hypersensitivity mediated by TRPV1 in the rat dorsal root ganglion. Front Mol Neurosci. 14:6636492021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li C, Deng Z, Du E and Xu C: Long non-coding RNA BC168687 is involved in TRPV1-mediated diabetic neuropathic pain in rats. Neuroscience. 374:214–222. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wen CH, Berkman T, Li X, Du S, Govindarajalu G, Zhang H, Bekker A, Davidson S and Tao YX: Effect of intrathecal NIS-lncRNA antisense oligonucleotides on neuropathic pain caused by nerve trauma, chemotherapy, or diabetes mellitus. Br J Anaesth. 130:202–216. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Zhao GQ, Cao RJ, Zhu ZH and Li K: LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav Neurol. 2017:29412972017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T and Chen C: The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci. 15:10379292022. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kaur P, Kotru S, Singh S and Munshi A: Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Mol Neurobiol. 59:1836–1849. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meydan C, Üçeyler N and Soreq H: Non-coding RNA regulators of diabetic polyneuropathy. Neurosci Lett. 731:1350582020. View Article : Google Scholar : PubMed/NCBI | |
Bali KK, Gandla J, Rangel DR, Castaldi L, Mouritzen P, Agarwal N, Schmelz M, Heppenstall P and Kuner R: A genome-wide screen reveals microRNAs in peripheral sensory neurons driving painful diabetic neuropathy. Pain. 162:1334–1351. 2021. View Article : Google Scholar : PubMed/NCBI | |
He J, Wang HB, Huang JJ, Zhang L, Li DL, He WY, Xiong QM and Qin ZS: Diabetic neuropathic pain induced by streptozotocin alters the expression profile of non-coding RNAs in the spinal cord of mice as determined by sequencing analysis. Exp Ther Med. 22:7752021. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Wang C, Yoder WE, Westlund KN, Carlson CR, Miller CS and Danaher RJ: Efficacy of herpes simplex virus vector encoding the human preproenkephalin gene for treatment of facial pain in mice. J Oral Facial Pain Headache. 30:42–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Guo Y, Chen Q, Xiong Q and Min S: MicroRNA-193a downregulates HMGB1 to alleviate diabetic neuropathic pain in a mouse model. Neuroimmunomodulation. 26:250–257. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Zhong S, Du H, Han S, Wei X and Gong Q: MiR-184-5p represses neuropathic pain by regulating CCL1/CCR8 signaling interplay in the spinal cord in diabetic mice. Neurol Res. 46:54–64. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xia L, Xie A, Liao O, Ju F and Zhou Y: Low concentration of bupivacaine ameliorates painful diabetic neuropathy by mediating miR-23a/PDE4B axis in microglia. Eur J Pharmacol. 891:1737192021. View Article : Google Scholar : PubMed/NCBI | |
Aghdam AM, Shahabi P, Karimi-Sales E, Ghiasi R, Sadigh-Eteghad S, Mahmoudi J and Alipour MR: Swimming exercise induced reversed expression of miR-96 and its target gene NaV1.3 in diabetic peripheral neuropathy in rats. Chin J Physiol. 61:124–129. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Yu H, Shen J, Han C, Li C, Shen X and Li B: Early over-expressing of microRNA-145 effectively precludes the development of neuropathic mechanical hyperalgesia via suppressing Nav1.8 in diabetic rats. Pain Physician. 23:E673–E686. 2020.PubMed/NCBI | |
Wu Y, Gu Y and Shi B: miR-590-3p Alleviates diabetic peripheral neuropathic pain by targeting RAP1A and suppressing infiltration by the T cells. Acta Biochim Pol. 67:587–593. 2020.PubMed/NCBI | |
Zhang T, Wang L and Chen L: Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15. Cell Biol Toxicol. 39:1–16. 2023. View Article : Google Scholar | |
Guo Y, Zeng J, Zhuang Y, Jiang C and Xie W: MiR-503-5p alleviates peripheral neuropathy-induced neuropathic pain in T2DM mice by regulating SEPT9 to inhibit astrocyte activation. Sci Rep. 14:143612024. View Article : Google Scholar : PubMed/NCBI | |
Kasimu A, Apizi X, Talifujiang D, Ma X, Fang L and Zhou X: miR-125a-5p in astrocytes attenuates peripheral neuropathy in type 2 diabetic mice through targeting TRAF6. Endocrinol Diabetes Nutr (Engl Ed). 69:43–51. 2022.PubMed/NCBI | |
Ashjari D, Karamali N, Rajabinejad M, Hassani SS, Afshar Hezarkhani L, Afshari D, Gorgin Karaji A, Salari F and Rezaiemanesh A: The axis of long non-coding RNA MALAT1/miR-1-3p/CXCR4 is dysregulated in patients with diabetic neuropathy. Heliyon. 8:e091782022. View Article : Google Scholar : PubMed/NCBI | |
Li YB, Wu Q, Liu J, Fan YZ, Yu KF and Cai Y: miR-199a-3p is involved in the pathogenesis and progression of diabetic neuropathy through downregulation of SerpinE2. Mol Med Rep. 16:2417–2424. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang X, Yin Y, Zhu L, Zhang F and Yang J: Investigation of the role of miR-221 in diabetic peripheral neuropathy and related molecular mechanisms. Adv Clin Exp Med. 30:623–632. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chang LL, Wang HC, Tseng KY, Su MP, Wang JY, Chuang YT, Wang YH and Cheng KI: Upregulation of miR-133a-3p in the sciatic nerve contributes to neuropathic pain development. Mol Neurobiol. 57:3931–3942. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li C, Liu W, Yan B, Hu X and Yang F: miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol. 63:227–238. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chattopadhyay M, Zhou Z, Hao S, Mata M and Fink DJ: Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. Mol Pain. 8:172012. View Article : Google Scholar : PubMed/NCBI | |
Haque S and Harries LW: Circular RNAs (circRNAs) in health and disease. Genes (Basel). 8:3532017. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH, Zhang Y, Wang X, Yang P, Zhang BY, Hu S, Xu GY and Hu J: Circular RNA profile in diabetic peripheral neuropathy: Analysis of coexpression networks of circular RNAs and mRNAs. Epigenomics. 12:843–857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang SB, Lin SY, Liu M, Liu CC, Ding HH, Sun Y, Ma C, Guo RX, Lv YY, Wu SL, et al: CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun. 10:41192019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Luo T, Bao Z, Li Y and Bu W: Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats. Biochem Biophys Res Commun. 505:644–650. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma H, Bai Y, Hou X, Yang Y, Wang G and Li Y: Chronic neuropathic pain and comorbid depression syndrome: From neural circuit mechanisms to treatment. ACS Chem Neurosci. 15:2432–2444. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Wei A, Xu H, Gu Y, Jiang Y, Dong N, Zheng C, Wang Q, Gao M, Sun S, et al: An ACC-VTA-ACC positive-feedback loop mediates the persistence of neuropathic pain and emotional consequences. Nat Neurosci. 27:272–285. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, Ramakrishnan C, Deisseroth K, Zhang Z and Zamponi GW: A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci. 22:1659–1668. 2019. View Article : Google Scholar : PubMed/NCBI |