You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Zondervan KT, Becker CM and Missmer SA: Endometriosis. N Engl J Med. 382:1244–1256. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor HS, Kotlyar AM and Flores VA: Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 397:839–582. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Williams EA: Endometriosis in Clinical-practice-surgical aspects. Irish J Med Sci. 152:14–17. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Van Gorp T, Amant F, Neven P, Vergote I and Moerman P: Endometriosis and the development of malignant tumours of the pelvis. A review of literature. Best Pract Res Clin Obstet Gynaecol. 18:349–371. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Indrielle-Kelly T, Fruhauf F, Burgetova A, Fanta M and Fischerova D: Diagnosis of endometriosis 3rd Part-ultrasound diagnosis of deep endometriosis. Ceska Gynekol. 84:269–275. 2019.PubMed/NCBI | |
|
Fukunaga M, Nomura K, Ishikawa E and Ushigome S: Ovarian atypical endometriosis: Its close association with malignant epithelial tumours. Histopathology. 30:249–255. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, Nagle CM, Doherty JA, Cushing-Haugen KL, Wicklund KG, et al: Association between endometriosis and risk of histological subtypes of ovarian cancer: A pooled analysis of case-control studies. Lancet Oncol. 13:385–394. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Cao B and Huang Y: Effect of endometriosis on prognosis of ovarian clear cell carcinoma: A 10-year retrospective study. Front Oncol. 14:14383092024. View Article : Google Scholar : PubMed/NCBI | |
|
Anglesio MS, Bashashati A, Wang YK, Senz J, Ha G, Yang W, Aniba MR, Prentice LM, Farahani H, Li Chang H, et al: Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J Pathol. 236:201–209. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Czernobilsky B and Morris WJ: A histologic study of ovarian endometriosis with emphasis on hyperplastic and atypical changes. Obstet Gynecol. 53:318–323. 1979.PubMed/NCBI | |
|
LaGrenade A and Silverberg SG: Ovarian tumors associated with atypical endometriosis. Hum Pathol. 19:1080–1084. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Nouri B, Hashemi SH, J Ghadimi D, Roshandel S and Akhlaghdoust M: Machine Learning-based detection of endometriosis: A retrospective study in a population of iranian female patients. Int J Fertil Steril. 18:362–366. 2024.PubMed/NCBI | |
|
Moradi Y, Shams-Beyranvand M, Khateri S, Gharahjeh S, Tehrani S, Varse F, Tiyuri A and Najmi Z: A systematic review on the prevalence of endometriosis in women. Indian J Med Res. 154:446–454. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mafra F, Catto M, Bianco B, Barbosa CP and Christofolini D: Association of Wnt4 polymorphisms with endometriosis in infertile patients. J Assist Reprod Genet. 32:1359–1364. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Santulli P, Bourdon M, Presse M, Gayet V, Marcellin L, Prunet C, de Ziegler D and Chapron C: Endometriosis-Related infertility: Assisted reproductive technology has no adverse impact on pain or quality-of-life scores. Fertil Steril. 105:978–987.e4. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrero S, Stabilini C, Barra F, Clarizia R, Roviglione G and Ceccaroni M: Bowel resection for intestinal endometriosis. Best Pract Res Clin Obstet Gynaecol. 71:114–128. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chapron C, Marcellin L, Borghese B and Santulli P: Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol. 15:666–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrero S, Barra F, Scala C and Condous G: Ultrasonography for bowel endometriosis. Best Pract Res Clin Obstet Gynaecol. 71:38–50. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Geng JH and Lee YC: Bladder endometriosis. N Engl J Med. 381:e432019. View Article : Google Scholar : PubMed/NCBI | |
|
Santulli P, Marcellin L, Tosti C, Chouzenoux S, Cerles O, Borghese B, Batteux F and Chapron C: MAP kinases and the inflammatory signaling cascade as targets for the treatment of endometriosis? Expert Opin Ther Targets. 19:1465–1483. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown J, Crawford TJ, Allen C, Hopewell S and Prentice A: Nonsteroidal anti-inflammatory drugs for pain in women with endometriosis. Cochrane Database Syst Rev. 1:CD0047532017.PubMed/NCBI | |
|
Streuli I, de Ziegler D, Santulli P, Marcellin L, Borghese B, Batteux F and Chapron C: An update on the pharmacological management of endometriosis. Expert Opin Pharmacother. 14:291–305. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Liu Y, Jia H, Luo C and Chen H: Treatment of endometriosis with dienogest in combination with traditional Chinese medicine: A systematic review and meta-analysis. Front Surg. 9:9924902022. View Article : Google Scholar : PubMed/NCBI | |
|
Chinese Medical Association Obstetrics, Gynecology Branch, Endometriosis Professional Committee and Chinese Medical Association Obstetrics and Gynecology Branch Endometriosis Collaborative Group, . Long-term management of endometriosis: Chinese expert consensus. Chin J Obstet Gynecol. 53:836–841. 2018.(In Chinese). | |
|
Endometriosis Collaborative Group of the Obstetrics and Gynecology Branch of the Chinese Medical Association, . Guidelines for the diagnosis and treatment of endometriosis. Chin J Obstet Gynecol. 3:161–169. 2015. | |
|
Vercellini P, Viganò P, Somigliana E and Fedele L: Endometriosis: Pathogenesis and treatment. Nat Rev Endocrinol. 10:261–275. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Barbieri RL: Stenosis of the external cervical os: An association with endometriosis in women with chronic pelvic pain. Fertil Steril. 70:571–573. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Sanfilippo JS, Wakim NG, Schikler KN and Yussman MA: Endometriosis in Association with Uterine Anomaly. Am J Obstet Gynecol. 154:39–43. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Halme J, Hammond MG, Hulka JF, Raj SG and Talbert LM: Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 64:151–154. 1984.PubMed/NCBI | |
|
Herington JL, Bruner-Tran KL, Lucas JA and Osteen KG: Immune interactions in endometriosis. Expert Rev Clin Immunol. 7:611–626. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kyama CM, Debrock S, Mwenda JM and D'Hooghe TM: Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol. 1:1232003. View Article : Google Scholar : PubMed/NCBI | |
|
Christodoulakos G, Augoulea A, Lambrinoudaki I, Sioulas V and Creatsas G: Pathogenesis of endometriosis: The role of defective ‘immunosurveillance’. Eur J Contracept Reprod Health Care. 12:194–202. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V and Martin DC: Pathogenesis of endometriosis: The Genetic/Epigenetic theory. Fertil Steril. 111:327–340. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Foster WG: Hypoxia-induced autophagy, epithelial to mesenchymal transition, and invasion in the pathophysiology of endometriosis: A perspective. Biol Reprod. 99:905–906. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tanbo T and Fedorcsak P: Endometriosis-associated infertility: Aspects of pathophysiological mechanisms and treatment options. Acta Obstet Gynecol Scand. 96:659–667. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gibson DA, Simitsidellis I, Collins F and Saunders PTK: Androgens, oestrogens and endometrium: A fine balance between perfection and pathology. J Endocrinol. 246:R75–R93. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammed Rasheed HA and Hamid P: Inflammation to infertility: Panoramic view on endometriosis. Cureus. 12:e115162020.PubMed/NCBI | |
|
Halis G and Arici A: Endometriosis and Inflammation in Infertility. Ann N Y Acad Sci. 1034:300–315. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kang YJ, Jeung IC, Park A, Park YJ, Jung H, Kim TD, Lee HG, Choi I and Yoon SR: An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 29:2176–2189. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bedaiwy MA, Falcone T, Sharma RK, Goldberg JM, Attaran M, Nelson DR and Agarwal A: Prediction of endometriosis with serum and peritoneal fluid markers: A prospective controlled trial. Hum Reprod. 17:426–431. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Vilas Boas L, Bezerra Sobrinho C, Rahal D, Augusto Capellari C, Skare T and Nisihara R: Antinuclear antibodies in patients with endometriosis: A cross-sectional study in 94 patients. Hum Immunol. 83:70–73. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dias JA Jr, de Oliveira RM and Abrao MS: Antinuclear antibodies and endometriosis. Int J Gynaecol Obstet. 93:262–263. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Malinowski A, Szpakowski M, Wilczynski J, Banasik M and Puchala B: Occurrence of antinuclear antibodies in women with endometriosis and unexplained infertility. Ginekol Pol. 66:420–424. 1995.(In Polish). PubMed/NCBI | |
|
Swann JB and Smyth MJ: Immune surveillance of tumors. J Clin Invest. 117:1137–1146. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Vallve-Juanico J, Houshdaran S and Giudice LC: The endometrial immune environment of women with endometriosis. Hum Reprod Update. 25:564–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Podgaec S, Abrao MS, Dias JA Jr, Rizzo LV, de Oliveira RM and Baracat EC: Endometriosis: An inflammatory disease with a Th2 immune response component. Hum Reprod. 22:1373–1379. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Olkowska-Truchanowicz J, Bocian K, Maksym RB, Bialoszewska A, Wlodarczyk D, Baranowski W, Ząbek J, Korczak-Kowalska G and Malejczyk J: CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis. Hum Reprod. 28:119–124. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka E, Sendo F, Kawagoe S and Hiroi M: Decreased natural killer cell activity in women with endometriosis. Gynecol Obstet Invest. 34:27–30. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Thiruchelvam U, Wingfield M and O'Farrelly C: Natural killer cells: Key players in endometriosis. Am J Reprod Immunol. 74:291–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sciezynska A, Komorowski M, Soszynska M and Malejczyk J: Nk cells as potential targets for immunotherapy in endometriosis. J Clin Med. 8:172019. View Article : Google Scholar | |
|
Artemova D, Vishnyakova P, Khashchenko E, Elchaninov A, Sukhikh G and Fatkhudinov T: Endometriosis and cancer: Exploring the role of macrophages. Int J Mol Sci. 22:51962021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MH, Chen KF, Lin SC, Lgu CW and Tsai SJ: Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol. 170:590–598. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: Hif-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 13:167–171. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Becker CM, Rohwer N, Funakoshi T, Cramer T, Bernhardt W, Birsner A, Folkman J and D'Amato RJ: 2-Methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol. 172:534–544. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hsiao KY, Chang N, Lin SC, Li YH and Wu MH: Inhibition of dual specificity Phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis. Hum Reprod. 29:2747–2755. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hsiao KY, Chang N, Tsai JL, Lin SC, Tsai SJ and Wu MH: Hypoxia-inhibited DUSP2 expression promotes IL-6/STAT3 signaling in endometriosis. Am J Reprod Immunol. 78:2017.doi: 10.1111/aji.12690. View Article : Google Scholar : PubMed/NCBI | |
|
Sharkey AM, Day K, McPherson A, Malik S, Licence D, Smith SK and Charnock-Jones DS: Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J Clin Endocrinol Metab. 85:402–409. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kupker W, Schultze-Mosgau A and Diedrich K: Paracrine changes in the peritoneal environment of women with endometriosis. Hum Reprod Update. 4:719–723. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ, Wang MY, Meng Y, Ha SY, Li DJ and Li MQ: The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 154:815–825. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
El Hafny-Rahbi B, Brodaczewska K, Collet G, Majewska A, Klimkiewicz K, Delalande A, Grillon C and Kieda C: Tumour angiogenesis normalized by Myo-inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response. J Cell Mol Med. 25:3284–3299. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Thiruchelvam U, Dransfield I, Saunders PT and Critchley HO: The importance of the macrophage within the human endometrium. J Leukoc Biol. 93:217–225. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mehedintu C, Plotogea MN, Ionescu S and Antonovici M: Endometriosis still a challenge. J Med Life. 7:349–357. 2014.PubMed/NCBI | |
|
Matarese G, De Placido G, Nikas Y and Alviggi C: Pathogenesis of endometriosis: Natural immunity dysfunction or autoimmune disease? Trends Mol Med. 9:223–228. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hogg C, Horne AW and Greaves E: Endometriosis-associated macrophages: Origin, phenotype, and function. Front Endocrinol (Lausanne). 11:72020. View Article : Google Scholar : PubMed/NCBI | |
|
Capobianco A and Rovere-Querini P: Endometriosis, a disease of the macrophage. Front Immunol. 4:92013. View Article : Google Scholar : PubMed/NCBI | |
|
Colette S and Donnez J: Are aromatase inhibitors effective in endometriosis treatment? Expert Opin Investig Drugs. 20:917–931. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Check JH: Chronic pelvic pain syndromes-Traditional and novel therapies: Part I surgical therapy. Clin Exp Obstet Gynecol. 38:10–13. 2011.PubMed/NCBI | |
|
Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L and Moretta A: P46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 186:1129–1136. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Freud AG, Zhao S, Wei S, Gitana GM, Molina-Kirsch HF, Atwater SK and Natkunam Y: Expression of the activating receptor, NKp46 (CD335), in human natural killer and T-cell neoplasia. Am J Clin Pathol. 140:853–866. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper MA, Fehniger TA and Caligiuri MA: The biology of human natural killer-cell subsets. Trends Immunol. 22:633–640. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE and Caligiuri MA: Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood. 97:3146–3151. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hamerman JA, Ogasawara K and Lanier LL: NK cells in innate immunity. Curr Opin Immunol. 17:29–35. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Vivier E, Tomasello E, Baratin M, Walzer T and Ugolini S: Functions of natural killer cells. Nat Immunol. 9:503–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Freud AG, Mundy-Bosse BL, Yu J and Caligiuri MA: The broad spectrum of human natural killer cell diversity. Immunity. 47:820–833. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, Varner V, Manickam C, Eslamizar L, Altfeld M, et al: Antigen-specific NK cell memory in rhesus macaques. Nat Immunol. 16:927–932. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hammer Q, Ruckert T and Romagnani C: Natural killer cell specificity for viral infections. Nat Immunol. 19:800–808. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, et al: Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol. 4:eaat81162019. View Article : Google Scholar : PubMed/NCBI | |
|
Morvan MG and Lanier LL: Nk cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer. 16:7–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chiossone L, Dumas PY, Vienne M and Vivier E: Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 18:671–688. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Raulet DH and Vance RE: Self-tolerance of natural killer cells. Nat Rev Immunol. 6:520–531. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Karre K, Ljunggren HG, Piontek G and Kiessling R: Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 319:675–678. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S and Vivier E: SHP-1-mediated inhibitory signals promote responsiveness and anti-Tumour functions of natural killer cells. Nat Commun. 5:51082014. View Article : Google Scholar : PubMed/NCBI | |
|
van der Touw W, Chen HM, Pan PY and Chen SH: LILRB Receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother. 66:1079–1087. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Stojanovic A, Correia MP and Cerwenka A: The NKG2D/NKG2DL axis in the crosstalk between lymphoid and myeloid cells in health and disease. Front Immunol. 9:8272018. View Article : Google Scholar : PubMed/NCBI | |
|
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C and Santoni A: NKG2D and its ligands: ‘One for all, all for one’. Front Immunol. 9:4762018. View Article : Google Scholar : PubMed/NCBI | |
|
Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A and Münz C: The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol. 172:1455–1462. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bryceson YT, March ME, Ljunggren HG and Long EO: Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 107:159–166. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Masztalerz A, Van Rooijen N, Den Otter W and Everse LA: Mechanisms of Macrophage cytotoxicity in IL-2 and IL-12 mediated tumour regression. Cancer Immunol Immunother. 52:235–242. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee S, Jensen H, Stewart W, Stewart D, Ray WC, Chen SY, Nolan GP, Lanier LL and Das J: In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. Sci Signal. 10:eaai90622017. View Article : Google Scholar : PubMed/NCBI | |
|
Fehniger TA and Caligiuri MA: Interleukin 15: Biology and relevance to human disease. Blood. 97:14–32. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kasaian MT, Whitters MJ, Carter LL, Lowe LD, Jussif JM, Deng B, Johnson KA, Witek JS, Senices M, Konz RF, et al: Il-21 limits NK cell responses and promotes Antigen-specific T cell activation: A mediator of the transition from innate to adaptive immunity. Immunity. 16:559–569. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tarannum M and Romee R: Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther. 12:5922021. View Article : Google Scholar : PubMed/NCBI | |
|
Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE and Raulet DH: Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity. 49:754–763.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lettau M, Paulsen M, Schmidt H and Janssen O: Insights into the molecular regulation of fasl (CD178) biology. Eur J Cell Biol. 90:456–466. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Prager I and Watzl C: Mechanisms of natural killer Cell-mediated cellular cytotoxicity. J Leukoc Biol. 105:1319–1329. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gazvani R and Templeton A: Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction. 123:217–226. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ulukus M and Arici A: Immunology of endometriosis. Minerva Ginecol. 57:237–248. 2005.PubMed/NCBI | |
|
Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M and Tayade C: The immunopathophysiology of endometriosis. Trends Mol Med. 24:748–762. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Oosterlynck DJ, Meuleman C, Waer M, Vandeputte M and Koninckx PR: The natural killer activity of peritoneal fluid lymphocytes is decreased in women with endometriosis. Fertil Steril. 58:290–295. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda N, Izumiya C, Kusum T, Masumoto T, Yamashita C, Yamamoto Y, Oguri H and Fukaya T: Killer inhibitory receptor CD158a overexpression among natural killer cells in women with endometriosis is undiminished by laparoscopic surgery and gonadotropin releasing hormone agonist treatment. Am J Reprod Immunol. 51:364–372. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Vigano P, Vercellini P, Di Blasio AM, Colombo A, Candiani GB and Vignali M: Deficient antiendometrium Lymphocyte-mediated cytotoxicity in patients with endometriosis. Fertil Steril. 56:894–899. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Lotze MT and Rosenberg SA: Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology. 172:420–437. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Sikora J, Smycz-Kubanska M, Mielczarek-Palacz A, Bednarek I and Kondera-Anasz Z: The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol Lett. 201:31–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dias JA Jr, Podgaec S, de Oliveira RM, Carnevale Marin ML, Baracat EC and Abrao MS: Patients with endometriosis of the rectosigmoid have a higher percentage of natural killer cells in peripheral blood. J Minim Invasive Gynecol. 19:317–324. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Oosterlynck DJ, Meuleman C, Lacquet FA, Waer M and Koninckx PR: Flow cytometry analysis of lymphocyte subpopulations in peritoneal fluid of women with endometriosis. Am J Reprod Immunol. 31:25–31. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Vernet-Tomas Mdel M, Perez-Ares CT, Verdu N, Molinero JL, Fernandez-Figueras MT and Carreras R: The endometria of patients with endometriosis show higher expression of Class I human leukocyte antigen than the endometria of healthy women. Fertil Steril. 85:78–83. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MY, Yang JH, Chao KH, Hwang JL, Yang YS and Ho HN: Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril. 74:1187–1191. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuoka S, Maeda N, Izumiya C, Yamashita C, Nishimori Y and Fukaya T: Expression of inhibitory-motif killer immunoglobulin-like receptor, KIR2DL1, is increased in natural killer cells from women with pelvic endometriosis. Am J Reprod Immunol. 53:249–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda N, Izumiya C, Oguri H, Kusume T, Yamamoto Y and Fukaya T: Aberrant expression of intercellular adhesion Molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril. 77:679–683. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Galandrini R, Porpora MG, Stoppacciaro A, Micucci F, Capuano C, Tassi I, Di Felice A, Benedetti-Panici P and Santoni A: Increased frequency of human leukocyte Antigen-E inhibitory receptor Cd94/Nkg2a-Expressing peritoneal natural killer cells in patients with endometriosis. Fertil Steril. 89 (5 Suppl):S1490–S1496. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nowak I, Ploski R, Barcz E, Dziunycz P, Kaminski P, Kostrzewa G, Milewski Ł, Roszkowski PI, Senitzer D, Malejczyk J and Kuśnierczyk P: KIR2DS5 in the presence of HLA-C C2 protects against endometriosis. Immunogenetics. 67:203–209. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Guo SW, Du Y and Liu X: Platelet-derived Tgf-Beta1 mediates the Down-modulation of Nkg2d expression and may be responsible for impaired natural Killer (Nk) cytotoxicity in women with endometriosis. Hum Reprod. 31:1462–1474. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bellelis P, Frediani Barbeiro D, Gueuvoghlanian-Silva BY, Kalil J, Abrao MS and Podgaec S: Interleukin-15 and Interleukin-7 Are the major cytokines to maintain endometriosis. Gynecol Obstet Invest. 84:435–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu JJ, Sun HT, Zhang ZF, Shi RX, Liu LB, Shang WQ, Wei CY, Chang KK, Shao J, Wang MY and Li MQ: Il15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 152:151–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez-Foruria I, Santulli P, Chouzenoux S, Carmona F, Batteux F and Chapron C: Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease Severity. PLoS One. 10:e01199612015. View Article : Google Scholar : PubMed/NCBI | |
|
Salih HR, Rammensee HG and Steinle A: Cutting edge: Down-regulation of mica on human tumors by proteolytic shedding. J Immunol. 169:4098–4102. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Salih HR, Goehlsdorf D and Steinle A: Release of micb molecules by tumor cells: Mechanism and soluble micb in sera of cancer patients. Hum Immunol. 67:188–195. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mazzeo D, Vigano P, Di Blasio AM, Sinigaglia F, Vignali M and Panina-Bordignon P: Interleukin-12 and Its Free P40 subunit regulate immune recognition of endometrial cells: Potential role in endometriosis. J Clin Endocrinol Metab. 83:911–916. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Mei J, Zhou WJ, Zhu XY, Lu H, Wu K, Yang HL, Fu Q, Wei CY, Chang KK, Jin LP, et al: Suppression of Autophagy and HCK Signaling Promotes PTGS2high FCGR3− NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy. 14:1376–1397. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Hu Z, Barney KA and Degen JL: Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood. 110:133–141. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nieswandt B, Hafner M, Echtenacher B and Mannel DN: Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 59:1295–1300. 1999.PubMed/NCBI | |
|
Kopp HG, Placke T and Salih HR: Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 69:7775–7783. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Ding D, Liu X and Guo SW: Activated platelets induce estrogen receptor beta expression in endometriotic stromal cells. Gynecol Obstet Invest. 80:187–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS and Weiner LM: Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. J Immunol. 180:6392–6401. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Andre P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Bléry M, Bonnafous C, Gauthier L, Morel A, et al: Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 175:1731–1743.e13. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chan EY, Yap DY, Colucci M, Ma AL, Parekh RS and Tullus K: Use of rituximab in childhood idiopathic nephrotic syndrome. Clin J Am Soc Nephrol. 18:533–548. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sivori S, Della Chiesa M, Carlomagno S, Quatrini L, Munari E, Vacca P, Tumino N, Mariotti FR, Mingari MC, Pende D and Moretta L: Inhibitory receptors and checkpoints in human NK cells, implications for the immunotherapy of cancer. Front Immunol. 11:21562020. View Article : Google Scholar : PubMed/NCBI | |
|
Velasco I, Quereda F, Bermejo R, Campos A and Acien P: Intraperitoneal recombinant Interleukin-2 activates leukocytes in rat endometriosis. J Reprod Immunol. 74:124–132. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Quereda F, Bermejo R, Velasco I, Campos A and Acien P: The effect of intraperitoneal Interleukin-2 on surgically induced endometriosis in rats. Eur J Obstet Gynecol Reprod Biol. 136:243–248. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dicitore A, Castiglioni S, Saronni D, Gentilini D, Borghi MO, Stabile S, Vignali M, Di Blasio AM, Persani L and Vitale G: Effects of human recombinant type I IFNs (IFN-α2b and IFN-β1a) on growth and migration of primary endometrial stromal cells from women with deeply infiltrating endometriosis: A preliminary study. Eur J Obstet Gynecol Reprod Biol. 230:192–198. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MY, Chao KH, Chen SU, Chen HF, Yang YS, Huang SC and Ho HN: The suppression of peritoneal cellular immunity in women with endometriosis could be restored after gonadotropin releasing hormone agonist treatment. Am J Reprod Immunol. 35:510–516. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Regis S, Dondero A, Caliendo F, Bottino C and Castriconi R: NK cell function regulation by TGF-β-induced epigenetic mechanisms. Front Immunol. 11:3112020. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura A, Wakabayashi Y and Mori T: Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 147:781–792. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Young VJ, Brown JK, Saunders PT, Duncan WC and Horne AW: The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One. 9:e1067732014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L and Liu K: Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother. 164:1149092023. View Article : Google Scholar : PubMed/NCBI | |
|
Hawinkels LJ and Ten Dijke P: Exploring Anti-TGF-β therapies in cancer and fibrosis. Growth Factors. 29:140–152. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B, Greene T, Blumenthal SS, Rychlik I, Yagil Y, et al: Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 28:953–962. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Clayton RD, Duffy SR, Wilkinson N, Garry R and Jackson AM: Increase in peripheral blood mononuclear cell (PBMC)- and CD56+ cell-mediated killing of endometrial stromal cells by mycobacteria; a possible role in endometriosis immunotherapy? Hum Reprod. 19:1886–1893. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Oksasoglu B, Hepokur C, Misir S, Yildiz C, Sonmez G and Yanik A: Determination of PD-1 expression in peripheral blood cells in patients with endometriosis. Gynecol Endocrinol. 37:157–161. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Lv C, Su Y, Li C, Zhang H, Zhao X and Li M: Expression of programmed death-1 (PD-1) and Its Ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol. Gynecol Endocrinol. 35:251–256. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Yang Y, Liu LL and Lundqvist A: Strategies to augment natural killer (NK) cell activity against solid tumors. Cancers (Basel). 11:10402019. View Article : Google Scholar : PubMed/NCBI | |
|
Memon H and Patel BM: Immune checkpoint inhibitors in non-small cell lung cancer: A Bird's eye view. Life Sci. 233:1167132019. View Article : Google Scholar : PubMed/NCBI | |
|
Giannopoulos K: Targeting immune signaling checkpoints in acute myeloid leukemia. J Clin Med. 8:2362019. View Article : Google Scholar : PubMed/NCBI | |
|
Hofmann L, Forschner A, Loquai C, Goldinger SM, Zimmer L, Ugurel S, Schmidgen MI, Gutzmer R, Utikal JS, Göppner D, et al: Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of Anti-PD-1 therapy. Eur J Cancer. 60:190–209. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sosa A, Lopez Cadena E, Simon Olive C, Karachaliou N and Rosell R: Clinical assessment of immune-related adverse events. Ther Adv Med Oncol. 10:17588359187646282018. View Article : Google Scholar : PubMed/NCBI | |
|
Afolabi LO, Adeshakin AO, Sani MM, Bi J and Wan X: Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology. 158:63–69. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Dou M, Ma Q, Yao R and Liu J: Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 74:1056952019. View Article : Google Scholar : PubMed/NCBI | |
|
Kloess S, Kretschmer A, Stahl L, Fricke S and Koehl U: CAR-expressing natural killer cells for cancer retargeting. Transfus Med Hemother. 46:4–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Seshadri S and Sunkara SK: Natural killer cells in female infertility and recurrent miscarriage: A systematic review and meta-analysis. Hum Reprod Update. 20:429–438. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hadinedoushan H, Mirahmadian M and Aflatounian A: Increased natural killer cell cytotoxicity and Il-2 production in recurrent spontaneous abortion. Am J Reprod Immunol. 58:409–414. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 38:792–804. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F and Rodewald HR: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518:547–551. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R and Ottenhoff TH: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 101:4560–4565. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bonatz G, Hansmann ML, Buchholz F, Mettler L, Radzun HJ and Semm K: Macrophage- and lymphocyte-subtypes in the endometrium during different phases of the ovarian cycle. Int J Gynaecol Obstet. 37:29–36. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Vallve-Juanico J, Santamaria X, Vo KC, Houshdaran S and Giudice LC: Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil Steril. 112:1118–1128. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maybin JA and Critchley HO: Menstrual physiology: Implications for endometrial pathology and beyond. Hum Reprod Update. 21:748–761. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bain CC and Jenkins SJ: The biology of serous cavity macrophages. Cell Immunol. 330:126–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hudson QJ, Ashjaei K, Perricos A, Kuessel L, Husslein H, Wenzl R and Yotova I: Endometriosis patients show an increased M2 response in the peritoneal CD14+low/CD68+low macrophage subpopulation coupled with an increase in the T-helper 2 and T-regulatory cells. Reprod Sci. 27:1920–1931. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Roszer T: Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015:8164602015. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The Chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Simpson JL, Elias S, Malinak LR and Buttram VC Jr: Heritable aspects of Endometriosis. I. Genetic studies. Am J Obstet Gynecol. 137:327–331. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Dmowski WP, Gebel H and Braun DP: Decreased apoptosis and sensitivity to macrophage mediated cytolysis of endometrial cells in endometriosis. Hum Reprod Update. 4:696–701. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MH, Shoji Y, Wu MC, Chuang PC, Lin CC, Huang MF and Tsai SJ: Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am J Pathol. 167:1061–1069. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gou Y, Li X, Li P, Zhang H, Xu T, Wang H, Wang B, Ma X, Jiang X and Zhang Z: Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum Reprod. 34:646–658. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon MJ, Shin HY, Cui Y, Kim H, Thi AH, Choi JY, Kim EY, Hwang DH and Kim BG: CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 35:15934–15947. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Johan MZ, Ingman WV, Robertson SA and Hull ML: Macrophages infiltrating endometriosis-like lesions exhibit progressive phenotype Changes in a heterologous mouse model. J Reprod Immunol. 132:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, Ponzoni M, Ferrari S, et al: Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 175:547–556. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YJ, Yang CK, Wei PL, Huynh TT, Whang-Peng J, Meng TC, Hsiao M, Tzeng YM, Wu AT and Yen Y: Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 Tumor-associated macrophages through YAP oncogenic pathways. J Hematol Oncol. 10:602017. View Article : Google Scholar : PubMed/NCBI | |
|
Monsivais D, Dyson MT, Yin P, Coon JS, Navarro A, Feng G, Malpani SS, Ono M, Ercan CM, Wei JJ, et al: ERβ- and prostaglandin E2-regulated pathways integrate cell proliferation via Ras-like and estrogen-regulated growth inhibitor in endometriosis. Mol Endocrinol. 28:1304–1315. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Han SJ, Jung SY, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, Lydon JP, Tsai SY, Tsai MJ, et al: Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell. 163:960–974. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stanojevic S, Curuvija I, Blagojevic V, Petrovic R, Prijic I and Vujic V: The involvement of estrogen receptors α and β in the in vitro effects of 17β-estradiol on secretory profile of peritoneal macrophages from naturally menopausal female and middle-aged male rats. Exp Gerontol. 113:86–94. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Gong P, Chen Y, Nwachukwu JC, Srinivasan S, Ko C, Bagchi MK, Taylor RN, Korach KS, Nettles KW, et al: Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 7:271ra92015. View Article : Google Scholar : PubMed/NCBI | |
|
Panchanathan R, Shen H, Zhang X, Ho SM and Choubey D: Mutually positive regulatory feedback loop between interferons and estrogen receptor-alpha in mice: Implications for sex bias in autoimmunity. PLoS One. 5:e108682010. View Article : Google Scholar : PubMed/NCBI | |
|
Smith S, Ni Gabhann J, McCarthy E, Coffey B, Mahony R, Byrne JC, Stacey K, Ball E, Bell A, Cunnane G, et al: Estrogen receptor α regulates tripartite motif-containing protein 21 expression, contributing to dysregulated cytokine production in systemic lupus erythematosus. Arthritis Rheumatol. 66:163–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Feldman I, Feldman GM, Mobarak C, Dunkelberg JC and Leslie KK: Identification of proteins within the nuclear factor-kappa B transcriptional complex including estrogen receptor-alpha. Am J Obstet Gynecol. 196:394.e1–13. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kalaitzidis D and Gilmore TD: Transcription factor cross-talk: The estrogen receptor and NF-kappaB. Trends Endocrinol Metab. 16:46–52. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Greaves E, Temp J, Esnal-Zufiurre A, Mechsner S, Horne AW and Saunders PT: Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol. 185:2286–2297. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudet HM, Cheng SB, Christensen EM and Filardo EJ: The G-protein coupled estrogen receptor, gper: The inside and inside-out story. Mol Cell Endocrinol. 418:207–219. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Revankar CM, Cimino DF, Sklar LA, Arterburn JB and Prossnitz ER: A Transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 307:1625–1630. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Heublein S, Lenhard M, Vrekoussis T, Schoepfer J, Kuhn C, Friese K, Makrigiannakis A, Mayr D and Jeschke U: The G-protein-coupled estrogen receptor (GPER) is expressed in normal human ovaries and is upregulated in ovarian endometriosis and pelvic inflammatory disease involving the ovary. Reprod Sci. 19:1197–1204. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Okamoto M, Suzuki T, Mizukami Y and Ikeda T: The Membrane-type estrogen receptor G-protein-coupled estrogen receptor suppresses lipopolysaccharide-induced interleukin 6 via inhibition of nuclear factor-kappa B pathway in murine macrophage cells. Anim Sci J. 88:1870–1879. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Calippe B, Douin-Echinard V, Delpy L, Laffargue M, Lelu K, Krust A, Pipy B, Bayard F, Arnal JF, Guéry JC and Gourdy P: 17Beta-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. J Immunol. 185:1169–1176. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang YH, He M, Wang Y and Liao AH: Modulators of the balance between M1 and M2 macrophages during pregnancy. Front Immunol. 8:1202017.PubMed/NCBI | |
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y and Zhu X: Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol. 14:11346632023. View Article : Google Scholar : PubMed/NCBI | |
|
Hirata T, Osuga Y, Takamura M, Kodama A, Hirota Y, Koga K, Yoshino O, Harada M, Takemura Y, Yano T and Taketani Y: Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1 beta-, TNF-alpha-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology. 151:5468–5476. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Buerger C, Shirsath N, Lang V, Berard A, Diehl S, Kaufmann R, Boehncke WH and Wolf P: Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to differentiation. PLoS One. 12:e01808532017. View Article : Google Scholar : PubMed/NCBI | |
|
Schenken RS, Johnson JV and Riehl RM: C-myc protooncogene polypeptide expression in endometriosis. Am J Obstet Gynecol. 164:1031–1037. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Selam B, Kayisli UA, Garcia-Velasco JA, Akbas GE and Arici A: Regulation of Fas ligand expression by IL-8 in human endometrium. J Clin Endocrinol Metab. 87:3921–3927. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Gazvani MR, Christmas S, Quenby S, Kirwan J, Johnson PM and Kingsland CR: Peritoneal fluid concentrations of interleukin-8 in women with endometriosis: Relationship to stage of disease. Human Reproduction. 13:1957–1961. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Borrelli GM, Abrao MS and Mechsner S: Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod. 29:253–266. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider J, Jimenez E, Rodriguez F and del Tanago JG: c-myc, c-erb-B2, nm23 and p53 expression in human endometriosis. Oncol Rep. 5:49–52. 1998.PubMed/NCBI | |
|
Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma M, Manfredi AA and Rovere-Querini P: Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol. 179:2651–2659. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kats R, Collette T, Metz CN and Akoum A: Marked elevation of macrophage migration inhibitory factor in the peritoneal fluid of women with endometriosis. Fertil Steril. 78:69–76. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Akoum A, Metz CN, Al-Akoum M and Kats R: Macrophage migration inhibitory factor expression in the intrauterine endometrium of women with endometriosis varies with disease stage, infertility status, and pelvic pain. Fertil Steril. 85:1379–1385. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Morin M, Bellehumeur C, Therriault MJ, Metz C, Maheux R and Akoum A: Elevated levels of macrophage migration inhibitory factor in the peripheral blood of women with endometriosis. Fertil Steril. 83:865–872. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kats R, Metz CN and Akoum A: Macrophage migration inhibitory factor is markedly expressed in active and early-stage endometriotic lesions. J Clin Endocrinol Metab. 87:883–889. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Seeber B, Sammel MD, Fan X, Gerton GL, Shaunik A, Chittams J and Barnhart KT: Panel of markers can accurately predict endometriosis in a subset of patients. Fertil Steril. 89:1073–1081. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zinovkin DA, Pranjol MZI, Bilsky IA and Zmushko VA: Tumor-associated T-lymphocytes and macrophages are decreased in endometrioid endometrial carcinoma with melf-pattern stromal changes. Cancer Microenviron. 11:107–114. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jha P, Farooq A, Agarwal N and Buckshee K: In vitro sperm phagocytosis by human peritoneal macrophages in endometriosis-associated infertility. Am J Reprod Immunol. 36:235–237. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, Saunders PTK and Greaves E: Macrophage-derived insulin-like growth Factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J. 33:11210–11222. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bushnell LF: Endometriosis and estrogen therapy. Am J Obstet Gynecol. 55:9151948. View Article : Google Scholar | |
|
Barbieri RL: Endometriosis and the estrogen threshold theory. Relation to surgical and medical treatment. J Reprod Med. 43 (3 Suppl):S287–S292. 1998. | |
|
Howell R, Dowsett M, King N and Edmonds DK: Endocrine effects of gnrh analogue with low-dose hormone replacement therapy in women with endometriosis. Clin Endocrinol (Oxf). 43:609–615. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Chang CY, Chiang AJ, Yan MJ, Lai MT, Su YY, Huang HY, Chang CY, Li YH, Li PF, Chen CM, et al: Ribosome biogenesis serves as a therapeutic target for treating endometriosis and the associated complications. Biomedicines. 10:1852022. View Article : Google Scholar : PubMed/NCBI | |
|
Khoufache K, Bazin S, Girard K, Guillemette J, Roy MC, Verreault JP, Al-Abed Y, Foster W and Akoum A: Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS One. 7:e372642012. View Article : Google Scholar : PubMed/NCBI | |
|
Daha MR: Role of complement in innate immunity and infections. Crit Rev Immunol. 30:47–52. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Conigliaro P, Triggianese P, Ballanti E, Perricone C, Perricone R and Chimenti MS: Complement, infection, and autoimmunity. Curr Opin Rheumatol. 31:532–541. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Trouw LA, Blom AM and Gasque P: Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol. 45:1199–1207. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hajishengallis G, Reis ES, Mastellos DC, Ricklin D and Lambris JD: Novel mechanisms and functions of complement. Nat Immunol. 18:1288–1298. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lubbers R, van Essen MF, van Kooten C and Trouw LA: Production of complement components by cells of the immune system. Clin Exp Immunol. 188:183–194. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Merle NS, Church SE, Fremeaux-Bacchi V and Roumenina LT: Complement system part I-molecular mechanisms of activation and regulation. Front Immunol. 6:2622015. View Article : Google Scholar : PubMed/NCBI | |
|
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V and Roumenina LT: Complement system part II: Role in immunity. Front Immunol. 6:2572015. View Article : Google Scholar : PubMed/NCBI | |
|
Ricklin D, Reis ES and Lambris JD: Complement in disease: A defence system turning offensive. Nat Rev Nephrol. 12:383–401. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, De Carolis C, Man GCW and Wang CC: The Link between Immunity, autoimmunity and endometriosis: A literature update. Autoimmunity Revi. 17:945–955. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aslan C, Ak H, Askar N, Ozkaya AB, Ergenoglu AM, Yeniel AO, Akdemir A and Aydin HH: Overexpression of complement C5 in endometriosis. Clin Biochem. 47:496–498. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rahal D, Andrade F and Nisihara R: Insights into the role of complement system in the pathophysiology of endometriosis. Immunol Lett. 231:43–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kabut J, Kondera-Anasz Z, Sikora J and Mielczarek-Palacz A: Levels of complement components iC3b, C3c, C4, and SC5b-9 in peritoneal fluid and serum of infertile women with endometriosis. Fertil Steril. 88:1298–1303. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sikora J, Wroblewska-Czech A, Smycz-Kubanska M, Mielczarek-Palacz A, Cygal A, Witek A and Kondera-Anasz Z: The role of complement components C1q, MBL and C1 inhibitor in pathogenesis of endometriosis. Arch Gynecol Obstet. 297:1495–1501. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn SH, Khalaj K, Young SL, Lessey BA, Koti M and Tayade C: Immune-inflammation gene signatures in endometriosis patients. Fertil Steril. 106:1420–1431.e7. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Weed JC and Arquembourg PC: Endometriosis: Can it produce an autoimmune response resulting in infertility? Clin Obstet Gynecol. 23:885–893. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Isaacson KB, Coutifaris C, Garcia CR and Lyttle CR: Production and secretion of complement component-3 by endometriotic tissue. J Clin Endocrinol Metab. 69:1003–1009. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Badawy SZA, Cuenca V, Stitzel A, Jacobs RDB and Tomar RH: Autoimmune phenomena in infertile patients with endometriosis. Obstet Gynecol. 63:271–275. 1984.PubMed/NCBI | |
|
Badawy SZA, Cuenca V, Marshall L, Munchback R, Rinas AC and Coble DA: Cellular-components in peritoneal-fluid in infertile patients with and without endometriosis. Fertil Steril. 42:704–708. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Tao XJ, Sayegh RA and Isaacson KB: Increased expression of complement component 3 in human ectopic endometrium compared with the matched eutopic endometrium. Fertil Steril. 68:460–467. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Sayegh RA, Tao XJ, Awwad JT and Isaacson KB: Localization of the expression of complement component 3 in the human endometrium by in situ hybridization. J Clin Endocrinol Metab. 81:1641–1649. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Steele RW, Dmowski WP and Marmer DJ: Immunological aspects of human endometriosis. Am J Reprod Immunol (1980). 6:33–36. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Meek SC, Hodge DD and Musich JR: Autoimmunity in infertile patients with endometriosis. Am J Obstet Gynecol. 158:1365–1373. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Isaacson KB, Galman M, Coutifaris C and Lyttle CR: Endometrial synthesis and secretion of complement component-3 by patients with and without endometriosis. Fertil Steril. 53:836–841. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Hasan A, Rahim A, Afzal M, Naveed AK, Ayub S and Jahan S: Serum albumin and C3 complement levels in endometriosis. J Coll Physicians Surg Pak. 29:702–705. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bischof P, Planasbasset D, Campana A and Meisser A: Investigations on the cell type responsible for the endometrial secretion of complement component-3 (C3). Human Reprod. 9:1652–1659. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Liu CF, Min XY, Wang N, Wang JX, Ma N, Dong X, Zhang B, Wu W, Li ZF, Zhou W and Li K: Complement receptor 3 Has negative impact on tumor surveillance through suppression of natural killer cell function. Front Immunol. 8:16022017. View Article : Google Scholar : PubMed/NCBI | |
|
Suryawanshi S, Huang X, Elishaev E, Budiu RA, Zhang L, Kim S, Donnellan N, Mantia-Smaldone G, Ma T, Tseng G, et al: Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 20:6163–6174. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Woelfler MM, Meinhold-Heerlein IM, Soehngen L, Rath W, Knuechel R, Neulen J, Maass N and Henkel C: Two-dimensional gel electrophoresis in peritoneal fluid samples identifies differential protein regulation in patients suffering from peritoneal or ovarian endometriosis. Fertil Steril. 95:2764–2768. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Riley CF, Moen MH and Videm V: Inflammatory markers in endometriosis: Reduced peritoneal neutrophil response in minimal endometriosis. Acta Obstet Gynecol Scand. 86:877–881. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kruse C, Steffensen R, Nielsen HJ and Jensenius JC: Mannan-binding lectin polymorphisms and serum levels in patients with endometriosis. Eur J Obstet Gynecol Reprod Biol. 181:256–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kruse C, Steffensen R, Nielsen HJ and Jensenius JC: Mannan-binding lectin polymorphisms and serum levels in patients with endometriosis. Eur J Obstet Gynecol Reprod Biol. 181:256–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kavoussi SK, Mueller MD and Lebovic DI: Expression of mannose-binding lectin in the peritoneal fluid of women with and without endometriosis. Fertil Steril. 85:1526–1528. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ozerkan K, Oral B and Uncu G: Mannose-binding lectin levels in endometriosis. Fertil Steril. 94:775–776. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Karadadas E, Hortu I, Ak H, Ergenoglu AM, Karadadas N and Aydin HH: Evaluation of complement system proteins C3a, C5a and C6 in patients of endometriosis. Clin Biochem. 81:15–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stefkovich ML, Arao Y, Hamilton KJ and Korach KS: Experimental models for evaluating non-genomic estrogen signaling. Steroids. 133:34–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Sabbagh M, Lam EW and Brosens JJ: Mechanisms of endometrial progesterone resistance. Mol Cell Endocrinol. 358:208–215. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Han SJ and O'Malley BW: The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update. 20:467–484. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Patel BG, Rudnicki M, Yu J, Shu Y and Taylor RN: Progesterone resistance in endometriosis: Origins, consequences and interventions. Acta Obstet Gynecol Scand. 96:623–632. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H and Chambon P: Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9:1603–1614. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M and Mesiano S: Role of Nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 21:155–173. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vasquez YM and DeMayo FJ: Role of nuclear receptors in blastocyst implantation. Semin Cell Dev Biol. 24:724–735. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chantalat E, Valera MC, Vaysse C, Noirrit E, Rusidze M, Weyl A, Vergriete K, Buscail E, Lluel P, Fontaine C, et al: Estrogen receptors and endometriosis. Int J Mol Sci. 21:28152020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhu L, Kuokkanen S and Pollard JW: Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci USA. 112:E1382–E1391. 2015.PubMed/NCBI | |
|
Reis FM, Petraglia F and Taylor RN: Endometriosis: Hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update. 19:406–418. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yilmaz BD and Bulun SE: Endometriosis and nuclear receptors. Hum Reprod Update. 25:473–485. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, Milad MP, Confino E, Reierstad S, Innes J and Bulun SE: Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 77:681–687. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Trukhacheva E, Lin Z, Reierstad S, Cheng YH, Milad M and Bulun SE: Estrogen receptor (ER) beta regulates eralpha expression in stromal cells derived from ovarian endometriosis. J Clin Endocrinol Metab. 94:615–622. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M and Wei J: Endometriosis. Endocr Rev. 40:1048–1079. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA and Giudice LC: Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 148:3814–3826. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Flores VA, Vanhie A, Dang T and Taylor HS: Progesterone receptor status predicts response to progestin therapy in endometriosis. J Clin Endocrinol Metab. 103:4561–4568. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Broi MGD, Rocha CVJ, Meola J, Martins WP, Carvalho FM, Ferriani RA and Navarro PA: Expression of PGR, HBEGF, ITGAV, ITGB3 and SPP1 genes in eutopic endometrium of infertile women with endometriosis during the implantation window: A pilot study. JBRA Assist Reprod. 21:196–202. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Strowitzki T, Marr J, Gerlinger C, Faustmann T and Seitz C: Dienogest is as effective as leuprolide acetate in treating the painful symptoms of endometriosis: A 24-Week, randomized, multicentre, open-label trial. Hum Reprod. 25:633–641. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Saunders PTK and Horne AW: Endometriosis: Etiology, pathobiology, and therapeutic prospects. Cell. 184:2807–2824. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrero S, Evangelisti G and Barra F: Current and emerging treatment options for endometriosis. Expert Opin Pharmacother. 19:1109–1125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Capezzuoli T, Rossi M, La Torre F, Vannuccini S and Petraglia F: Hormonal drugs for the treatment of endometriosis. Curr Opin Pharmacol. 67:1023112022. View Article : Google Scholar : PubMed/NCBI | |
|
Dunselman GA, Vermeulen N, Becker C, Calhaz-Jorge C, D'Hooghe T, De Bie B, Heikinheimo O, Horne AW, Kiesel L, Nap A, et al: ESHRE guideline: Management of women with endometriosis. Hum Reprod. 29:400–412. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Crosignani PG, Luciano A, Ray A and Bergqvist A: Subcutaneous depot medroxyprogesterone acetate versus leuprolide acetate in the treatment of endometriosis-associated pain. Hum Reprod. 21:248–256. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Selak V, Farquhar C, Prentice A and Singla A: Danazol for pelvic pain associated with endometriosis. Cochrane Database Syst Rev. CD0000682007.PubMed/NCBI | |
|
Strowitzki T, Faustmann T, Gerlinger C and Seitz C: Dienogest in the treatment of endometriosis-associated pelvic pain: A 12-week, randomized, double-blind, placebo-controlled study. Eur J Obstet Gynecol Reprod Biol. 151:193–198. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Petaja J: Inflammation and coagulation. An overview. Thromb Res. 127 (Suppl 2):S34–S37. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Demetz G and Ott I: The interface between inflammation and coagulation in cardiovascular disease. Int J Inflam. 2012:8603012012.PubMed/NCBI | |
|
Lessey BA, Castelbaum AJ, Sawin SW, Buck CA, Schinnar R, Bilker W and Strom BL: Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab. 79:643–649. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Regidor PA, Vogel C, Regidor M, Schindler AE and Winterhager E: Expression pattern of integrin adhesion molecules in endometriosis and human endometrium. Hum Reprod Update. 4:710–718. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Libersan D and Merhi Y: Platelet P-selectin expression: Requirement for protein kinase C, but not protein tyrosine kinase or phosphoinositide 3-kinase. Thromb Haemost. 89:1016–1023. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Guo SW, Ding D, Geng JG, Wang L and Liu X: P-selectin as a potential therapeutic target for endometriosis. Fertil Steril. 103:990–1000.e8. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lorant DE, Patel KD, McIntyre TM, McEver RP, Prescott SM and Zimmerman GA: Coexpression of Gmp-140 and paf by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils. J Cell Biol. 115:223–234. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Lefer DJ: Pharmacology of selectin inhibitors in ischemia/reperfusion states. Annu Rev Pharmacol Toxicol. 40:283–294. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kling D, Stucki C, Kronenberg S, Tuerck D, Rheaume E, Tardif JC, Gaudreault J and Schmitt C: Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab-preclinical and clinical studies. Thromb Res. 131:401–410. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Harada T and Taniguchi F: Dienogest: A new therapeutic agent for the treatment of endometriosis. Womens Health (Lond). 6:27–35. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kaminski K, Fiegler P, Marr J and Moore C: Treatment of endometriosis with dienogest: Preliminary report. Ginekol Pol. 72:299–304. 2001.(In Polish). PubMed/NCBI | |
|
Harada T, Momoeda M, Taketani Y, Aso T, Fukunaga M, Hagino H and Terakawa N: Dienogest is as effective as intranasal buserelin acetate for the relief of pain symptoms associated with endometriosis-a randomized, double-blind, multicenter, controlled trial. Fertil Steril. 91:675–681. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Rother RP, Rollins SA, Mojcik CF, Brodsky RA and Bell L: Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 25:1256–1264. 2007. View Article : Google Scholar : PubMed/NCBI |