|
1
|
Furuhashi M: New insights into purine
metabolism in metabolic diseases: Role of xanthine oxidoreductase
activity. Am J Physiol Endocrinol Metab. 319:E827–E834. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
El Ridi R and Tallima H: Physiological
functions and pathogenic potential of uric acid: A review. J Adv
Res. 8:487–493. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lima WG, Martins-Santos MES and Chaves VE:
Uric acid as a modulator of glucose and lipid metabolism.
Biochimie. 116:17–23. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yanai H, Adachi H, Hakoshima M and
Katsuyama H: Molecular biological and clinical understanding of the
pathophysiology and treatments of hyperuricemia and its association
with metabolic syndrome, cardiovascular diseases and chronic kidney
disease. Int J Mol Sci. 22:92212021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Spatola L, Ferraro PM, Gambaro G,
Badalamenti S and Dauriz M: Metabolic syndrome and uric acid
nephrolithiasis: Insulin resistance in focus. Metabolism.
83:225–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nakanishi K and Morita H: Uric acid. Int
Heart J. 63:423–425. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ejaz AA, Nakagawa T, Kanbay M, Kuwabara M,
Kumar A, Garcia Arroyo FE, Roncal-Jimenez C, Sasai F, Kang DH,
Jensen T, et al: Hyperuricemia in kidney disease: A Major risk
factor for cardiovascular events, vascular calcification, and renal
damage. Semin Nephrol. 40:574–585. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sánchez-Lozada LG: The pathophysiology of
uric acid on renal diseases. Contrib Nephrol. 192:17–24. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maruhashi T, Hisatome I, Kihara Y and
Higashi Y: Hyperuricemia and endothelial function: From molecular
background to clinical perspectives. Atherosclerosis. 278:226–231.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kushiyama A, Okubo H, Sakoda H, Kikuchi T,
Fujishiro M, Sato H, Kushiyama S, Iwashita M, Nishimura F,
Fukushima T, et al: Xanthine oxidoreductase is involved in
macrophage foam cell formation and atherosclerosis development.
Arterioscler Thromb Vasc Biol. 32:291–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ives A, Nomura J, Martinon F, Roger T,
LeRoy D, Miner JN, Simon G, Busso N and So A: Xanthine
oxidoreductase regulates macrophage IL1β secretion upon NLRP3
inflammasome activation. Nat Commun. 6:65552015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zheng L, Zhu Y, Ma Y, Zhang H, Zhao H,
Zhang Y, Yang Z and Liu Y: Relationship between hyperuricemia and
the risk of cardiovascular events and chronic kidney disease in
both the general population and hypertensive patients: A systematic
review and meta-analysis. Int J Cardiol. 399:1317792024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chaudhary K, Malhotra K, Sowers J and
Aroor A: Uric acid-key ingredient in the recipe for cardiorenal
metabolic syndrome. Cardiorenal Med. 3:208–220. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Benn CL, Dua P, Gurrell R, Loudon P, Pike
A, Storer RI and Vangjeli C: Physiology of hyperuricemia and
urate-lowering treatments. Front Med (Lausanne). 5:1602018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Maiuolo J, Oppedisano F, Gratteri S,
Muscoli C and Mollace V: Regulation of uric acid metabolism and
excretion. Int J Cardiol. 213:8–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gherghina ME, Peride I, Tiglis M, Neagu
TP, Niculae A and Checherita IA: Uric acid and oxidative
stress-relationship with cardiovascular, metabolic, and renal
impairment. Int J Mol Sci. 23:31882022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhou Y, Chen M, Zheng J, Shui X, He Y, Luo
H and Lei W: Insights into the relationship between serum uric acid
and pulmonary hypertension (Review). Mol Med Rep. 29:102024.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fang C, Chen L, He M, Luo Y, Zhou M, Zhang
N, Yuan J, Wang H and Xie Y: Molecular mechanistic insight into the
anti-hyperuricemic effect of Eucommia ulmoides in mice and
rats. Pharm Biol. 57:112–119. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sun HL, Bian HG, Liu XM, Zhang H, Ying J,
Yang H, Zu T, Cui GQ, Liao YF, Xu MF, et al: GRP/GRPR signaling
pathway aggravates hyperuricemia-induced renal inflammation and
fibrosis via ABCG2-dependent mechanisms. Biochem Pharmacol.
218:1159012023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhou Z, Dong Y, Zhou H, Liu J and Zhao W:
MiR-143-3p directly targets GLUT9 to reduce uric acid reabsorption
and inflammatory response of renal tubular epithelial cells.
Biochem Biophys Res Commun. 517:413–420. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mandal AK and Mount DB: The molecular
physiology of uric acid homeostasis. Annu Rev Physiol. 77:323–345.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Roughley MJ, Belcher J, Mallen CD and
Roddy E: Gout and risk of chronic kidney disease and
nephrolithiasis: Meta-analysis of observational studies. Arthritis
Res Ther. 17:902015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nagaraju SP, Shenoy SV, Rao I, Prabhu RA,
Rangaswamy D, Bhojaraja MV and Guddattu V: Effect of febuxostat
versus allopurinol on the glomerular filtration rate and
hyperuricemia in patients with chronic kidney disease. Saudi J
Kidney Dis Transpl. 34:279–287. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Agnoletti D, Cicero AFG and Borghi C: The
impact of uric acid and hyperuricemia on cardiovascular and renal
systems. Cardiol Clin. 39:365–376. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Balakumar P, Alqahtani A, Khan NA,
Mahadevan N and Dhanaraj SA: Mechanistic insights into
hyperuricemia-associated renal abnormalities with special emphasis
on epithelial-to-mesenchymal transition: Pathologic implications
and putative pharmacologic targets. Pharmacol Res. 161:1052092020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu N, Wang L, Yang T, Xiong C, Xu L, Shi
Y, Bao W, Chin YE, Cheng SB, Yan H, et al: EGF receptor inhibition
alleviates hyperuricemic nephropathy. J Am Soc Nephrol.
26:2716–2729. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pan J, Shi M, Li L, Liu J, Guo F, Feng Y,
Ma L and Fu P: Pterostilbene, a bioactive component of blueberries,
alleviates renal fibrosis in a severe mouse model of hyperuricemic
nephropathy. Biomed Pharmacother. 109:1802–1808. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hassan W, Shrestha P, Sumida K, Thomas F,
Sweeney PL, Potukuchi PK, Rhee CM, Streja E, Kalantar-Zadeh K and
Kovesdy CP: Association of uric acid-lowering therapy with incident
chronic kidney disease. JAMA Netw Open. 5:e22158782022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kidney Disease: Improving Global Outcomes
(KDIGO) CKD Work Group: KDIGO 2024 clinical practice guideline for
the evaluation and management of chronic kidney disease. Kidney
Int. 105((4S)): S117–S314. 2024.PubMed/NCBI
|
|
30
|
Luo Y, Song Q, Li J, Fu S, Yu W, Shao X,
Li J, Huang Y, Chen J and Tang Y: Effects of uric acid-lowering
therapy (ULT) on renal outcomes in CKD patients with asymptomatic
hyperuricemia: A systematic review and meta-analysis. BMC Nephrol.
25:632024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kanbay M, Huddam B, Azak A, Solak Y,
Kadioglu GK, Kirbas I, Duranay M, Covic A and Johnson RJ: A
randomized study of allopurinol on endothelial function and
estimated glomular filtration rate in asymptomatic hyperuricemic
subjects with normal renal function. Clin J Am Soc Nephrol.
6:1887–1894. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kanbay M, Ozkara A, Selcoki Y, Isik B,
Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R and Covic A: Effect
of treatment of hyperuricemia with allopurinol on blood pressure,
creatinine clearence, and proteinuria in patients with normal renal
functions. Int Urol Nephrol. 39:1227–1233. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Miake J, Hisatome I, Tomita K, Isoyama T,
Sugihara S, Kuwabara M, Ogino K and Ninomiya H: Impact of hyper-
and hypo-uricemia on kidney function. Biomedicines. 11:12582023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tang GY, Li S, Xu Y, Zhang C, Xu XY, Xu L,
Wang N and Feng Y: Renal herb formula protects against
hyperuricemic nephropathy by inhibiting apoptosis and inflammation.
Phytomedicine. 116:1548122023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ren Q, Tao S, Guo F, Wang B, Yang L, Ma L
and Fu P: Natural flavonol fisetin attenuated hyperuricemic
nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3
signaling. Phytomedicine. 87:1535522021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Guo Y, Li H, Liu Z, Li C, Chen Y, Jiang C,
Yu Y and Tian Z: Impaired intestinal barrier function in a mouse
model of hyperuricemia. Mol Med Rep. 20:3292–3300. 2019.PubMed/NCBI
|
|
37
|
Jalal DI, Chonchol M, Chen W and Targher
G: Uric acid as a target of therapy in CKD. Am J Kidney Dis.
61:134–146. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hu Y, Shi Y, Chen H, Tao M, Zhou X, Li J,
Ma X, Wang Y and Liu N: Blockade of autophagy prevents the
progression of hyperuricemic nephropathy through inhibiting NLRP3
inflammasome-mediated pyroptosis. Front Immunol. 13:8584942022.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A,
Zhuang S and Liu N: Delayed treatment with an autophagy inhibitor
3-MA alleviates the progression of hyperuricemic nephropathy. Cell
Death Dis. 11:4672020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hu H, Li W, Hao Y, Peng Z, Zou Z, Wei J,
Zhou Y, Liang W and Cao Y: The SGLT2 inhibitor dapagliflozin
ameliorates renal fibrosis in hyperuricemic nephropathy. Cell Rep
Med. 5:1016902024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pan J, Zhang C, Shi M, Guo F, Liu J, Li L,
Ren Q, Tao S, Tang M, Ye H, et al: Ethanol extract of
Liriodendron chinense (Hemsl.) Sarg barks attenuates
hyperuricemic nephropathy by inhibiting renal fibrosis and
inflammation in mice. J Ethnopharmacol. 264:1132782021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Asma Sakalli A, Küçükerdem HS and Aygün O:
What is the relationship between serum uric acid level and insulin
resistance?: A case-control study. Medicine (Baltimore).
102:e367322023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Eckel RH, Grundy SM and Zimmet PZ: The
metabolic syndrome. Lancet. 365:1415–1428. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lann D and LeRoith D: Insulin resistance
as the underlying cause for the metabolic syndrome. Med Clin North
Am. 911063–1077. (viii)2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Xu
D and Zhou L: The mechanism of sodium-glucose cotransporter-2
inhibitors in reducing uric acid in type 2 diabetes mellitus.
Diabetes Metab Syndr Obes. 16:437–445. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dalbeth N, Gosling AL, Gaffo A and
Abhishek A: Gout. Lancet. 397:1843–1855. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
So A and Thorens B: Uric acid transport
and disease. J Clin Invest. 120:1791–1799. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Toyoki D, Shibata S, Kuribayashi-Okuma E,
Xu N, Ishizawa K, Hosoyamada M and Uchida S: Insulin stimulates
uric acid reabsorption via regulating urate transporter 1 and
ATP-binding cassette subfamily G member 2. Am J Physiol Renal
Physiol. 313:F826–F834. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Stack AG, Dronamraju N, Parkinson J,
Johansson S, Johnsson E, Erlandsson F and Terkeltaub R: Effect of
intensive urate lowering with combined verinurad and febuxostat on
albuminuria in patients with type 2 diabetes: A randomized trial.
Am J Kidney Dis. 77:481–489. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jalal DI, Rivard CJ, Johnson RJ, Maahs DM,
McFann K, Rewers M and Snell-Bergeon JK: Serum uric acid levels
predict the development of albuminuria over 6 years in patients
with type 1 diabetes: Findings from the coronary artery
calcification in type 1 diabetes study. Nephrol Dial Transplant.
25:1865–1869. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pacilli A, Viazzi F, Fioretto P, Giorda C,
Ceriello A, Genovese S, Russo G, Guida P, Pontremoli R and De Cosmo
S; AMD-Annals Study Group, : Epidemiology of diabetic kidney
disease in adult patients with type 1 diabetes in Italy: The
AMD-Annals initiative. Diabetes Metab Res Rev. 33:2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tafese R, Genet S and Addisu S:
Association of serum total bilirubin and uric acid with low
glomerular filtration rate diabetic kidney disease in type 2
diabetic patients. Diabetes Metab Syndr Obes. 15:3993–3999. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Han R, Duan L, Zhang Y and Jiang X: Serum
uric acid is a better indicator of kidney impairment than serum
uric acid-to-creatinine ratio and serum uric acid-to-high-density
lipoprotein ratio: A cross-sectional study of type 2 diabetes
mellitus patients. Diabetes Metab Syndr Obes. 16:2695–2703. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ji P, Zhu J, Feng J, Li H, Yu Q, Qin H,
Wei L and Zhang J: Serum uric acid levels and diabetic kidney
disease in patients with type 2 diabetes mellitus: A dose-response
meta-analysis. Prim Care Diabetes. 16:457–465. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Badve SV, Pascoe EM, Tiku A, Boudville N,
Brown FG, Cass A, Clarke P, Dalbeth N, Day RO, de Zoysa JR, et al:
Effects of allopurinol on the progression of chronic kidney
disease. N Engl J Med. 382:2504–2513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Doria A, Galecki AT, Spino C, Pop-Busui R,
Cherney DZ, Lingvay I, Parsa A, Rossing P, Sigal RJ, Afkarian M, et
al: Serum urate lowering with allopurinol and kidney function in
type 1 diabetes. N Engl J Med. 382:2493–2503. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rhee CM, Ahmadi SF and Kalantar-Zadeh K:
The dual roles of obesity in chronic kidney disease: A review of
the current literature. Curr Opin Nephrol Hypertens. 25:208–216.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Panwar B, Hanks LJ, Tanner RM, Muntner P,
Kramer H, McClellan WM, Warnock DG, Judd SE and Gutiérrez OM:
Obesity, metabolic health, and the risk of end-stage renal disease.
Kidney Int. 87:1216–1222. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Di Sessa A, Passaro AP, Colasante AM,
Cioffi S, Guarino S, Umano GR, Papparella A, Miraglia Del Giudice E
and Marzuillo P: Kidney damage predictors in children with
metabolically healthy and metabolically unhealthy obesity
phenotype. Int J Obes (Lond). 47:1247–1255. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mills DW, Woolley DM, Ammori BJ, Chinoy H
and Syed AA: Changes in serum urate levels after bariatric surgery
in patients with obesity: An observational study. Obes Surg.
34:1737–1741. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ye W, Zhou X, Xu Y, Zheng C and Liu P:
Serum uric acid levels among chinese children: Reference values and
association with overweight/obesity. Clin Pediatr (Phila).
63:1684–1690. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nielsen SM, Bartels EM, Henriksen M,
Wæhrens EE, Gudbergsen H, Bliddal H, Astrup A, Knop FK, Carmona L,
Taylor WJ, et al: Weight loss for overweight and obese individuals
with gout: A systematic review of longitudinal studies. Ann Rheum
Dis. 76:1870–1882. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Choi HK and Zhang YQ: Bariatric surgery as
urate-lowering therapy in severe obesity. Ann Rheum Dis.
73:791–793. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Andres-Hernando A, Cicerchi C, Kuwabara M,
Orlicky DJ, Sanchez-Lozada LG, Nakagawa T, Johnson RJ and Lanaspa
MA: Umami-induced obesity and metabolic syndrome is mediated by
nucleotide degradation and uric acid generation. Nat Metab.
3:1189–1201. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Primo D, Izaola O and de Luis D:
Resistin/uric acid index as a marker of metabolic syndrome in
females with obesity. Int J Obes (Lond). 47:393–398. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu W, Zhang H, Han X, Zhang P and Mao Z:
Uric acid level changes after bariatric surgery in obese subjects
with type 2 diabetes mellitus. Ann Transl Med. 7:3322019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lu J, Bai Z, Chen Y, Li Y, Tang M, Wang N,
Zhu X, Dai H and Zhang W: Effects of bariatric surgery on serum
uric acid in people with obesity with or without hyperuricaemia and
gout: A retrospective analysis. Rheumatology (Oxford).
60:3628–3634. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Qu X, Zheng L, Zu B, Jia B and Lin W:
Prevalence and clinical predictors of hyperuricemia in chinese
bariatric surgery patients. Obes Surg. 32:1508–1515. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yeo C, Kaushal S, Lim B, Syn N, Oo AM, Rao
J, Koura A and Yeo D: Impact of bariatric surgery on serum uric
acid levels and the incidence of gout-A meta-analysis. Obes Rev.
20:1759–1770. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Vafa L, Amini M, Kamran H, Aghakhani L,
Hosseini SV, Mohammadi Z and Haghighat N: The impact of obesity
surgery on serum uric acid in people with severe obesity: A
retrospective study. Clin Nutr Res. 12:21–28. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dos Santos M, Veronese FV and Moresco RN:
Uric acid and kidney damage in systemic lupus erythematosus. Clin
Chim Acta. 508:197–205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hafez EA, Hassan SAEM, Teama MAM and Badr
FM: Serum uric acid as a predictor for nephritis in Egyptian
patients with systemic lupus erythematosus. Lupus. 30:378–384.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Calich AL, Borba EF, Ugolini-Lopes MR, da
Rocha LF, Bonfá E and Fuller R: Serum uric acid levels are
associated with lupus nephritis in patients with normal renal
function. Clin Rheumatol. 37:1223–1228. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Reátegui-Sokolova C, Ugarte-Gil MF,
Gamboa-Cárdenas RV, Zevallos F, Cucho-Venegas JM, Alfaro-Lozano JL,
Medina M, Rodriguez-Bellido Z, Pastor-Asurza CA, Alarcón GS and
Perich-Campos RA: Serum uric acid levels contribute to new renal
damage in systemic lupus erythematosus patients. Clin Rheumatol.
36:845–852. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ugolini-Lopes MR, Gavinier SS, Leon E,
Viana VT, Borba EF and Bonfá E: Is serum uric acid a predictor of
long-term renal outcome in lupus nephritis? Clin Rheumatol.
38:2777–2783. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cheng Y, Yang X, Zhang X and An Z:
Analysis of expression levels of IL-17 and IL-34 and influencing
factors for prognosis in patients with lupus nephritis. Exp Ther
Med. 17:2279–2283. 2019.PubMed/NCBI
|
|
77
|
Han Y, Lu X, Xiao S, Qin J, Zheng L, Feng
Y, Cai Y, Qiu R, Huang Q and Yang M: Association between serum uric
acid level and systemic lupus erythematosus kidney outcome: An
observational study in Southern Chinese population and a
meta-analysis. Lupus. 32:83–93. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu X, Zhai T, Ma R, Luo C, Wang H and Liu
L: Effects of uric acid-lowering therapy on the progression of
chronic kidney disease: A systematic review and meta-analysis. Ren
Fail. 40:289–297. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
GBD 2019 Risk Factors Collaborators, .
Global burden of 87 risk factors in 204 countries and territories,
1990–2019: A systematic analysis for the global burden of disease
study 2019. Lancet. 396:1223–1249. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kimura Y, Yanagida T, Onda A, Tsukui D,
Hosoyamada M and Kono H: Soluble uric acid promotes atherosclerosis
via AMPK (AMP-activated protein kinase)-mediated inflammation.
Arterioscler Thromb Vasc Biol. 40:570–582. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang W, Iso H, Murakami Y, Miura K, Nagai
M, Sugiyama D, Ueshima H and Okamura T; EPOCH-JAPAN GROUP, : Serum
uric acid and mortality form cardiovascular disease: EPOCH-JAPAN
study. J Atheroscler Thromb. 23:692–703. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kuwabara M, Niwa K, Hisatome I, Nakagawa
T, Roncal-Jimenez CA, Andres-Hernando A, Bjornstad P, Jensen T,
Sato Y, Milagres T, et al: Asymptomatic hyperuricemia without
comorbidities predicts cardiometabolic diseases: Five-year japanese
cohort study. Hypertension. 69:1036–1044. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Perticone M, Maio R, Shehaj E, Gigliotti
S, Caroleo B, Suraci E, Sciacqua A, Andreozzi F and Perticone F:
Sex-related differences for uric acid in the prediction of
cardiovascular events in essential hypertension. A population
prospective study. Cardiovasc Diabetol. 22:2982023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
NCD Risk Factor Collaboration (NCD-RisC),
. Worldwide trends in hypertension prevalence and progress in
treatment and control from 1990 to 2019: A pooled analysis of 1201
population-representative studies with 104 million participants.
Lancet. 398:957–980. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gois PHF and Souza ERM: Pharmacotherapy
for hyperuricemia in hypertensive patients. Cochrane Database Syst
Rev. 4:Cd0086522017.PubMed/NCBI
|
|
86
|
Viazzi F, Leoncini G, Ratto E, Falqui V,
Parodi A, Conti N, Derchi LE, Tomolillo C, Deferrari G and
Pontremoli R: Mild hyperuricemia and subclinical renal damage in
untreated primary hypertension. Am J Hypertens. 20:1276–1282. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lanaspa MA, Andres-Hernando A and Kuwabara
M: Uric acid and hypertension. Hypertens Res. 43:832–834. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Soletsky B and Feig DI: Uric acid
reduction rectifies prehypertension in obese adolescents.
Hypertension. 60:1148–1156. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Feig DI, Soletsky B and Johnson RJ: Effect
of allopurinol on blood pressure of adolescents with newly
diagnosed essential hypertension: A randomized trial. JAMA.
300:924–932. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu MA, Sánchez-Lozada LG, Johnson RJ and
Kang DH: Oxidative stress with an activation of the
renin-angiotensin system in human vascular endothelial cells as a
novel mechanism of uric acid-induced endothelial dysfunction. J
Hypertens. 28:1234–1242. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mazzali M, Hughes J, Kim YG, Jefferson JA,
Kang DH, Gordon KL, Lan HY, Kivlighn S and Johnson RJ: Elevated
uric acid increases blood pressure in the rat by a novel
crystal-independent mechanism. Hypertension. 38:1101–1106. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kanbay M, Solak Y, Dogan E, Lanaspa MA and
Covic A: Uric acid in hypertension and renal disease: The chicken
or the egg? Blood Purif. 30:288–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang S, Wang Y, Cheng J, Huangfu N, Zhao
R, Xu Z, Zhang F, Zheng W and Zhang D: Hyperuricemia and
cardiovascular disease. Curr Pharm Des. 25:700–709. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ilatovskaya DV, Behr A, Staruschenko A,
Hall G and Palygin O: Mechanistic insights into redox damage of the
podocyte in hypertension. Hypertension. Nov 13–2024.(Epub ahead of
print). PubMed/NCBI
|
|
95
|
Russo E, Bussalino E, Macciò L, Verzola D,
Saio M, Esposito P, Leoncini G, Pontremoli R and Viazzi F:
Non-haemodynamic mechanisms underlying hypertension-associated
damage in target kidney components. Int J Mol Sci. 24:94222023.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Peng X, Li X, Xie B, Lai Y, Sosnik A,
Boucetta H, Chen Z and He W: Gout therapeutics and drug delivery. J
Control Release. 362:728–754. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sivera F, Andrés M and Quilis N: Gout:
Diagnosis and treatment. Med Clin (Barc). 148:271–276. 2017.(In
English, Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Stamp LK and Barclay ML: How to prevent
allopurinol hypersensitivity reactions? Rheumatology (Oxford). 57
(Suppl 1):i35–i41. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Stamp LK, Chapman PT and Palmer SC:
Allopurinol and kidney function: An update. Joint Bone Spine.
83:19–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Punzi L, Galozzi P, Luisetto R, Scanu A,
Ramonda R and Oliviero F: Gout: One year in review 2023. Clin Exp
Rheumatol. 42:1–9. 2024.PubMed/NCBI
|
|
101
|
Goicoechea M, Garcia de Vinuesa S,
Verdalles U, Verde E, Macias N, Santos A, Pérez de Jose A, Cedeño
S, Linares T and Luño J: Allopurinol and progression of CKD and
cardiovascular events: Long-term follow-up of a randomized clinical
trial. Am J Kidney Dis. 65:543–549. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wu F, Chen L and Du Y: Comparison of the
efficacy and safety of benzbromarone and febuxostat in gout and
hyperuricemia: A systematic review and meta-analysis. Clin
Rheumatol. 43:1745–1754. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
FitzGerald JD, Dalbeth N, Mikuls T,
Brignardello-Petersen R, Guyatt G, Abeles AM, Gelber AC, Harrold
LR, Khanna D, King C, et al: 2020 American college of rheumatology
guideline for the management of gout. Arthritis Rheumatol.
72:879–895. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
McCormick N, Yokose C, Lu N, Wexler DJ,
Aviña-Zubieta JA, De Vera MA, McCoy RG and Choi HK: Sodium-glucose
cotransporter-2 inhibitors vs sulfonylureas for gout prevention
among patients with type 2 diabetes receiving metformin. JAMA
Intern Med. 184:650–660. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yokose C, Challener G, Jiang B, Zhou B,
McCormick N, Tanikella S, Panchot KMQ, Kohler MJ, Yinh J, Zhang Y,
et al: Serum urate change among gout patients treated with
sodium-glucose cotransporter type 2 inhibitors vs sulfonylurea: A
comparative effectiveness analysis. Semin Arthritis Rheum.
66:1524412024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Saad M: Hyperuricemia and gout: The role
of losartan. Sr Care Pharm. 38:359–360. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Costantino VV, Gil Lorenzo AF, Bocanegra V
and Vallés PG: Molecular mechanisms of hypertensive nephropathy:
Renoprotective effect of losartan through Hsp70. Cells.
10:31462021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He YM, Feng L, Huo DM, Yang ZH and Liao
YH: Enalapril versus losartan for adults with chronic kidney
disease: A systematic review and meta-analysis. Nephrology
(Carlton). 18:605–614. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Khazaeli M, Nunes ACF, Zhao Y, Khazaali M,
Prudente J, Vaziri ND, Singh B and Lau WL: Tetrahydrocurcumin
Add-On therapy to losartan in a rat model of diabetic nephropathy
decreases blood pressure and markers of kidney injury. Pharmacol
Res Perspect. 11:e010792023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zou J, Zhou X, Ma Y and Yu R: Losartan
ameliorates renal interstitial fibrosis through metabolic pathway
and Smurfs-TGF-β/Smad. Biomed Pharmacother. 149:1129312022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhou Q, Ke S, Yan Y, Guo Y and Liu Q:
Serum uric acid is associated with chronic kidney disease in
elderly Chinese patients with diabetes. Ren Fail. 45:22388252023.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Aktas G, Yilmaz S, Kantarci DB, Duman TT,
Bilgin S, Balci SB and Atak Tel BM: Is serum uric acid-to-HDL
cholesterol ratio elevation associated with diabetic kidney injury?
Postgrad Med. 135:519–523. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pilemann-Lyberg S, Lindhardt M, Persson F,
Andersen S and Rossing P: Serum uric acid and progression of
diabetic nephropathy in type 1 diabetes. J Diabetes Complications.
32:470–473. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
D'Elia L, Masulli M, Cirillo P, Virdis A,
Casiglia E, Tikhonoff V, Angeli F, Barbagallo CM, Bombelli M,
Cappelli F, et al: Serum uric acid/serum creatinine ratio and
cardiovascular mortality in diabetic individuals-the uric acid
right for heart health (URRAH) project. Metabolites. 14:1642024.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ahola AJ, Sandholm N, Forsblom C,
Harjutsalo V, Dahlström E and Groop PH; FinnDiane Study Group, :
The serum uric acid concentration is not causally linked to
diabetic nephropathy in type 1 diabetes. Kidney Int. 91:1178–1185.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Oh TR, Choi HS, Kim CS, Ryu DR, Park SH,
Ahn SY, Kim SW, Bae EH and Ma SK: Serum uric acid is associated
with renal prognosis of lupus nephritis in women but not in men. J
Clin Med. 9:7732020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Elnady B, Almalki A, Abdel-Fattah MM,
Desouky DES and Attar M: Serum uric acid as a sensitive concordant
marker with lupus nephritis and new onset of renal damage: A
prospective cohort study. Clin Rheumatol. 40:1827–1834. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang H, Qiu F, Liu J, Luo C and Liu X:
Elevated serum uric acid is associated with renal arteriolopathy
and predict poor outcome in patients with lupus nephritis. Clin Exp
Rheumatol. 42:30–38. 2024.PubMed/NCBI
|
|
119
|
Wen Q, Tang X, Zhou Q, Chen W and Yu X:
Clinicopathological patterns and outcomes in patients with lupus
nephritis and hyperuricemia. J Clin Med. 11:30752022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Goicoechea M, de Vinuesa SG, Verdalles U,
Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D and Luño J: Effect of
allopurinol in chronic kidney disease progression and
cardiovascular risk. Clin J Am Soc Nephrol. 5:1388–1393. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kwak CH, Sohn M, Han N, Cho YS, Kim YS and
Oh JM: Effectiveness of febuxostat in patients with
allopurinol-refractory hyperuricemic chronic kidney disease. Int J
Clin Pharmacol Ther. 56:321–327. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kao MP, Ang DS, Gandy SJ, Nadir MA,
Houston JG, Lang CC and Struthers AD: Allopurinol benefits left
ventricular mass and endothelial dysfunction in chronic kidney
disease. J Am Soc Nephrol. 22:1382–1389. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Smink PA, Bakker SJL, Laverman GD, Berl T,
Cooper ME, de Zeeuw D and Lambers Heerspink HJ: An initial
reduction in serum uric acid during angiotensin receptor blocker
treatment is associated with cardiovascular protection: A post-hoc
analysis of the RENAAL and IDNT trials. J Hypertens. 30:1022–1028.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Castilla-Ojo N, Turkson-Ocran RA, Conlin
PR, Appel LJ, Miller ER III and Juraschek SP: Effects of the DASH
diet and losartan on serum urate among adults with hypertension:
Results of a randomized trial. J Clin Hypertens (Greenwich).
25:915–922. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Heerspink HJL, Stack AG, Terkeltaub R,
Jongs N, Inker LA, Bjursell M, Maklad N, Perl S, Eklund O, Rikte T,
et al: Combination treatment with verinurad and allopurinol in CKD:
A randomized placebo and active controlled trial. J Am Soc Nephrol.
35:594–606. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Xin W, Mi S and Lin Z: Allopurinol therapy
improves vascular endothelial function in subjects at risk for
cardiovascular diseases: A meta-analysis of randomized controlled
trials. Cardiovasc Ther. 34:441–449. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Konishi M, Kojima S, Uchiyama K, Yokota N,
Tokutake E, Wakasa Y, Hiramitsu S, Waki M, Jinnouchi H, Kakuda H,
et al: Effect of febuxostat on clinical outcomes in patients with
hyperuricemia and cardiovascular disease. Int J Cardiol.
349:127–133. 2022. View Article : Google Scholar : PubMed/NCBI
|