|
1
|
Gulati A, Agrawal N, Vibha D, Misra UK,
Paul B, Jain D, Pandian J and Borgohain R: Safety and efficacy of
sovateltide (IRL-1620) in a multicenter randomized controlled
clinical trial in patients with acute cerebral ischemic stroke. CNS
Drugs. 35:85–104. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lindsay MP, Norrving B, Sacco RL, Brainin
M, Hacke W, Martins S, Pandian J and Feigin V: World stroke
organization (WSO): Global stroke fact sheet 2019. Int J Stroke.
14:806–817. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Feigin VL, Brainin M, Norrving B, Martins
S, Sacco RL, Hacke W, Fisher M, Pandian J and Lindsay P: World
stroke organization (WSO): Global stroke fact sheet 2022. Int J
Stroke. 17:18–29. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
GBD 2019 Stroke Collaborators: Global,
regional, and national burden of stroke and its risk factors,
1990–2019: A systematic analysis for the global burden of disease
study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Campbell BCV, De Silva DA, Macleod MR,
Coutts SB, Schwamm LH, Davis SM and Donnan GA: Ischaemic stroke.
Nat Rev Dis Primers. 5:702019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jiang X, Andjelkovic AV, Zhu L, Yang T,
Bennett MVL, Chen J, Keep RF and Shi Y: Blood-brain barrier
dysfunction and recovery after ischemic stroke. Prog Neurobiol.
163–164. 144–171. 2018.
|
|
7
|
Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X,
Chen J and Qiu S: Interleukins and ischemic stroke. Front Immunol.
13:8284472022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kang L, Jia H, Huang B, Lu S, Chen Z, Shen
J, Zou Y, Wang C and Sun Y: Identification of differently expressed
mrnas in atherosclerosis reveals CDK6 is regulated by
circHIPK3/miR-637 axis and promotes cell growth in human vascular
smooth muscle cells. Front Genet. 12:5961692021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Candelario-Jalil E, Dijkhuizen RM and
Magnus T: Neuroinflammation, stroke, blood-brain barrier
dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Spurr L, Nadkarni S, Pederzoli-Ribeil M,
Goulding NJ, Perretti M and D'Acquisto F: Comparative analysis of
annexin A1-formyl peptide receptor 2/ALX expression in human
leukocyte subsets. Int Immunopharmacol. 11:55–66. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kelly L, McGrath S, Rodgers L, McCall K,
Tulunay Virlan A, Dempsey F, Crichton S and Goodyear CS:
Annexin-A1: The culprit or the solution? Immunology. 166:2–16.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Vital SA, Becker F, Holloway PM, Russell
J, Perretti M, Granger DN and Gavins FNE: FormylFormyl-peptide
receptor 2/3/Lipoxin A4 receptor regulates neutrophil-platelet
aggregation and attenuates cerebral inflammation: Impact for
therapy in cardiovascular disease. Circulation. 133:2169–2179.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gerke V and Moss SE: Annexins: From
structure to function. Physiol Rev. 82:331–371. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Benz J and Hofmann A: Annexins: From
structure to function. Biol Chem. 378:177–183. 1997.PubMed/NCBI
|
|
15
|
Camors E, Monceau V and Charlemagne D:
Annexins and Ca2+ handling in the heart. Cardiovasc Res.
65:793–802. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
de Souza Ferreira LP, da Silva RA, Gil CD
and Geisow MJ: Annexin A1, A2, A5, and A6 involvement in human
pathologies. Proteins. 91:1191–1204. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xi Y, Ju R and Wang Y: Roles of annexin A
protein family in autophagy regulation and therapy. Biomed
Pharmacother. 130:1105912020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wei B, Guo C, Liu S and Sun MZ: Annexin A4
and cancer. Clin Chim Acta. 447:72–78. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Grewal T, Hoque M, Conway JRW, Reverter M,
Wahba M, Beevi SS, Timpson P, Enrich C and Rentero C: Annexin A6-A
multifunctional scaffold in cell motility. Cell Adh Migr.
11:288–304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hu J, Chen L, Ruan J and Chen X: The role
of the annexin A protein family at the maternal-fetal interface.
Front Endocrinol (Lausanne). 15:13142142024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hayes MJ and Moss SE: Annexins and
disease. Biochem Biophys Res Commun. 322:1166–1170. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gavins FNE and Hickey MJ: Annexin A1 and
the regulation of innate and adaptive immunity. Front Immunol.
3:3542012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Caso VM, Manzo V, Pecchillo Cimmino T,
Conti V, Caso P, Esposito G, Russo V, Filippelli A, Ammendola R and
Cattaneo F: Regulation of inflammation and oxidative stress by
formyl peptide receptors in cardiovascular disease progression.
Life (Basel). 11:2432021.PubMed/NCBI
|
|
24
|
Wang A, Zhang H, Li X and Zhao Y: Annexin
A1 in the nervous and ocular systems. Neural Regen Res. 19:591–597.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saigusa R, Winkels H and Ley K: T cell
subsets and functions in atherosclerosis. Nat Rev Cardiol.
17:387–401. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Silvestre-Roig C, de Winther MP, Weber C,
Daemen MJ, Lutgens E and Soehnlein O: Atherosclerotic plaque
destabilization: Mechanisms, models, and therapeutic strategies.
Circ Res. 114:214–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shen X, Zhang S, Guo Z, Xing D and Chen W:
The crosstalk of ABCA1 and ANXA1: A potential mechanism for
protection against atherosclerosis. Mol Med. 26:842020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cheuk BLY and Cheng SWK: Annexin A1
expression in atherosclerotic carotid plaques and its relationship
with plaque characteristics. Eur J Vasc Endovasc Surg. 41:364–371.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kusters DHM, Chatrou ML, Willems BAG, De
Saint-Hubert M, Bauwens M, van der Vorst E, Bena S, Biessen EA,
Perretti M, Schurgers LJ and Reutelingsperger CPM: Pharmacological
treatment with annexin A1 reduces atherosclerotic plaque burden in
LDLR-/- mice on western type diet. PLoS One. 10:e01304842015.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu X, Pang S, Jiang Y, Wang L and Liu Y:
The role of macrophages in atherosclerosis: Participants and
therapists. Cardiovasc Drugs Ther. October 21–2023.(Epub ahead of
print). View Article : Google Scholar
|
|
31
|
Akasheh RT, Pini M, Pang J and Fantuzzi G:
Increased adiposity in annexin A1-deficient mice. PLoS One.
8:e826082013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Alfadda AA, Benabdelkamel H, Masood A,
Moustafa A, Sallam R, Bassas A and Duncan M: Proteomic analysis of
mature adipocytes from obese patients in relation to aging. Exp
Gerontol. 48:1196–1203. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Aguilera CM, Gomez-Llorente C, Tofe I,
Gil-Campos M, Cañete R and Gil Á: Genome-wide expression in
visceral adipose tissue from obese prepubertal children. Int J Mol
Sci. 16:7723–7737. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Poznyak A, Grechko AV, Poggio P,
Myasoedova VA, Alfieri V and Orekhov AN: The diabetes
mellitus-atherosclerosis connection: The role of lipid and glucose
metabolism and chronic inflammation. Int J Mol Sci. 21:18352020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Purvis GSD, Collino M, Loiola RA,
Baragetti A, Chiazza F, Brovelli M, Sheikh MH, Collotta D, Cento A,
Mastrocola R, et al: Identification of annexinA1 as an endogenous
regulator of RhoA, and its role in the pathophysiology and
experimental therapy of type-2 diabetes. Front Immunol. 10:5712019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kanda T, Wakino S, Homma K, Yoshioka K,
Tatematsu S, Hasegawa K, Takamatsu I, Sugano N, Hayashi K and
Saruta T: Rho-kinase as a molecular target for insulin resistance
and hypertension. FASEB J. 20:169–171. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kikuchi Y, Yamada M, Imakiire T, Kushiyama
T, Higashi K, Hyodo N, Yamamoto K, Oda T, Suzuki S and Miura S: A
Rho-kinase inhibitor, fasudil, prevents development of diabetes and
nephropathy in insulin-resistant diabetic rats. J Endocrinol.
192:595–603. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Agard C, Rolli-Derkinderen M,
Dumas-de-La-Roque E, Rio M, Sagan C, Savineau JP, Loirand G and
Pacaud P: Protective role of the antidiabetic drug metformin
against chronic experimental pulmonary hypertension. Br J
Pharmacol. 158:1285–1294. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH
and Zhang C: Annexin A protein family in atherosclerosis. Clin Chim
Acta. 531:406–417. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Koushki K, Shahbaz SK, Mashayekhi K,
Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP
and Sahebkar A: Anti-inflammatory action of statins in
cardiovascular disease: The role of inflammasome and toll-like
receptor pathways. Clin Rev Allergy Immunol. 60:175–199. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kurilenko N, Fatkhullina AR, Mazitova A
and Koltsova EK: Act locally, Act globally-microbiota, barriers,
and cytokines in atherosclerosis. Cells. 10:3482021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Al-Kuraishy HM, Al-Gareeb AI and Samy OM:
Statin therapy improves serum annexin A1 levels in patients with
acute coronary syndrome: A case-controlled study. Int J Crit Illn
Inj Sci. 11:4–8. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
de Jong RJ, Paulin N, Lemnitzer P, Viola
JR, Winter C, Ferraro B, Grommes J, Weber C, Reutelingsperger C,
Drechsler M and Soehnlein O: Protective aptitude of annexin A1 in
arterial neointima formation in atherosclerosis-prone mice-brief
report. Arterioscler Thromb Vasc Biol. 37:312–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
You Q, Ke Y, Chen X, Yan W, Li D, Chen L,
Wang R, Yu J and Hong H: Loss of endothelial annexin A1 aggravates
inflammation-induched vascular aging. Adv Sci (Weinh).
11:e23070402024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
DeLong JH, Ohashi SN, O'Connor KC and
Sansing LH: Inflammatory responses after ischemic stroke. Semin
Immunopathol. 44:625–648. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Vila N, Castillo J, Dávalos A and Chamorro
A: Proinflammatory cytokines and early neurological worsening in
ischemic stroke. Stroke. 31:2325–2329. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu JH, Feng D, Zhang YF, Shang Y, Wu Y,
Li XF and Pei L: Chloral hydrate preconditioning protects against
ischemic stroke via upregulating annexin A1. CNS Neurosci Ther.
21:718–726. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Nie QQ, Zheng ZQ, Liao J, Li YC, Chen YT,
Wang TY, Yuan GQ, Wang Z and Xue Q: SPP1/AnxA1/TIMP1 as essential
genes regulate the inflammatory response in the acute phase of
cerebral ischemia-reperfusion in rats. J Inflamm Res. 15:4873–4890.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lan X, Han X, Li Q, Yang QW and Wang J:
Modulators of microglial activation and polarization after
intracerebral haemorrhage. Nat Rev Neurol. 13:420–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong
MX, Tu WJ and Zhao J: Microglial polarization: Novel therapeutic
strategy against ischemic stroke. Aging Dis. 12:466–479. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang
Y, Zeng Z, Yan L, Zhao Y and Shi J: Annexin-A1 SUMOylation
regulates microglial polarization after cerebral ischemia by
modulating IKKα stability via selective autophagy. Sci Adv.
7:eabc55392021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
D'Acunto CW, Gbelcova H, Festa M and Ruml
T: The complex understanding of annexin A1 phosphorylation. Cell
Signal. 26:173–178. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu S, Gao Y, Yu X, Zhao B, Liu L, Zhao Y,
Luo Z and Shi J: Annexin-1 mediates microglial activation and
migration via the CK2 pathway during oxygen-glucose
deprivation/reperfusion. Int J Mol Sci. 17:17702016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou H, Yan L, Huang H, Li X, Xia Q, Zheng
L, Shao B, Gao Q, Sun N and Shi J: Tat-NTS peptide protects neurons
against cerebral ischemia-reperfusion injury via ANXA1 SUMOylation
in microglia. Theranostics. 13:5561–5583. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Luo ZZ, Gao Y, Sun N, Zhao Y, Wang J, Tian
B and Shi J: Enhancing the interaction between annexin-1 and formyl
peptide receptors regulates microglial activation to protect
neurons from ischemia-like injury. J Neuroimmunol. 276:24–36. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shijo M, Hamasaki H, Honda H, Suzuki SO,
Tachibana M, Ago T, Kitazono T, Iihara K and Iwaki T: Upregulation
of annexin A1 in reactive astrocytes and its subtle induction in
microglia at the boundaries of human brain infarcts. J Neuropathol
Exp Neurol. 78:961–970. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jickling GC, Liu D, Ander BP, Stamova B,
Zhan X and Sharp FR: Targeting neutrophils in ischemic stroke:
Translational insights from experimental studies. J Cereb Blood
Flow Metab. 35:888–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Martynov MY and Gusev EI: Current
knowledge on the neuroprotective and neuroregenerative properties
of citicoline in acute ischemic stroke. J Exp Pharmacol. 7:17–28.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sugimoto MA, Vago JP, Teixeira MM and
Sousa LP: Annexin A1 and the resolution of inflammation: Modulation
of neutrophil recruitment, apoptosis, and clearance. J Immunol Res.
2016:82392582016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gavins FNE, Dalli J, Flower RJ, Granger DN
and Perretti M: Activation of the annexin 1 counter-regulatory
circuit affords protection in the mouse brain microcirculation.
FASEB J. 21:1751–1758. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Iadecola C and Anrather J: The immunology
of stroke: From mechanisms to translation. Nat Med. 17:796–808.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Senchenkova EY, Ansari J, Becker F, Vital
SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll
JL, Dragoi AM, et al: Novel role for the AnxA1-Fpr2/ALX signaling
axis as a key regulator of platelet function to promote resolution
of inflammation. Circulation. 140:319–335. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ronaldson PT and Davis TP: Regulation of
blood-brain barrier integrity by microglia in health and disease: A
therapeutic opportunity. J Cereb Blood Flow Metab. 40 (1
Suppl):S6–S24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Abbott NJ, Patabendige AA, Dolman DE,
Yusof SR and Begley DJ: Structure and function of the blood-brain
barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Engelhardt B and Sorokin L: The
blood-brain and the blood-cerebrospinal fluid barriers: Function
and dysfunction. Semin Immunopathol. 31:497–511. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fan W, Chen H, Li M, Fan X, Jiang F, Xu C,
Wang Y, Wei W, Song J, Zhong D and Li G: NRF2 activation
ameliorates blood-brain barrier injury after cerebral ischemic
stroke by regulating ferroptosis and inflammation. Sci Rep.
14:53002024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fang W, Sha L, Kodithuwakku ND, Wei J,
Zhang R, Han D, Mao L and Li Y: Attenuated blood-brain barrier
dysfunction by XQ-1H following ischemic stroke in hyperlipidemic
rats. Mol Neurobiol. 52:162–175. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Purvis GSD, Solito E and Thiemermann C:
Annexin-A1: Therapeutic potential in microvascular disease. Front
Immunol. 10:9382019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Go KG, Zuiderveen F, De Ley L, Ter Haar
JG, Parente L, Solito E and Molenaar WM: Effect of steroids on
brain lipocortin immunoreactivity. Acta Neurochir Suppl (Wien).
60:101–103. 1994.PubMed/NCBI
|
|
70
|
de Boer AG and Gaillard PJ: Blood-brain
barrier dysfunction and recovery. J Neural Transm (Vienna).
113:455–462. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cristante E, McArthur S, Mauro C, Maggioli
E, Romero IA, Wylezinska-Arridge M, Couraud PO, Lopez-Tremoleda J,
Christian HC, Weksler BB, et al: Identification of an essential
endogenous regulator of blood-brain barrier integrity, and its
pathological and therapeutic implications. Proc Natl Acad Sci USA.
110:832–841. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Maggioli E, McArthur S, Mauro C, Kieswich
J, Kusters DHM, Reutelingsperger CPM, Yaqoob M and Solito E:
Estrogen protects the blood-brain barrier from inflammation-induced
disruption and increased lymphocyte trafficking. Brain Behav Immun.
51:212–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu H, He J, Wu Y, Du Y, Jiang Y, Chen C,
Yu Z, Zhong J, Wang Z, Cheng C, et al: Endothelial regulation by
exogenous annexin A1 in inflammatory response and BBB integrity
following traumatic brain injury. Front Neurosci. 15:6271102021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sheikh MH, Errede M, d'Amati A, Khan NQ,
Fanti S, Loiola RA, McArthur S, Purvis GSD, O'Riordan CE, Ferorelli
D, et al: Impact of metabolic disorders on the structural,
functional, and immunological integrity of the blood-brain barrier:
Therapeutic avenues. FASEB J. 36:e221072022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gillies GE and McArthur S: Estrogen
actions in the brain and the basis for differential action in men
and women: A case for sex-specific medicines. Pharmacol Rev.
62:155–198. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Suzuki S, Brown CM and Wise PM:
Neuroprotective effects of estrogens following ischemic stroke.
Front Neuroendocrinol. 30:201–211. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
McArthur S, Loiola RA, Maggioli E, Errede
M, Virgintino D and Solito E: The restorative role of annexin A1 at
the blood-brain barrier. Fluids Barriers CNS. 13:172016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zharkova O, Salamah MF, Babak MV, Rajan E,
Lim LHK, Andrade F, Gil CD, Oliani SM, Moraes LA and Vaiyapuri S:
Deletion of annexin A1 in mice upregulates the expression of its
receptor, Fpr2/3, and reactivity to the AnxA1 mimetic peptide in
platelets. Int J Mol Sci. 24:34242023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vital SA, Senchenkova EY, Ansari J and
Gavins FNE: Targeting AnxA1/Formyl peptide receptor 2 pathway
affords protection against pathological thrombo-inflammation.
Cells. 9:24732020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sanches JM, Branco LM, Duarte GHB, Oliani
SM, Bortoluci KR, Moreira V and Gil CD: Annexin A1 regulates NLRP3
inflammasome activation and modifies lipid release profile in
isolated peritoneal macrophages. Cells. 9:9262020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Broughton BRS, Reutens DC and Sobey CG:
Apoptotic mechanisms after cerebral ischemia. Stroke. 40:e331–e339.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhao Y, Wang J, Jiang H, Yu Z, Li X and
Shi J: Following OGD/R, annexin 1 nuclear translocation and
subsequent induction of apoptosis in neurons are assisted by myosin
IIA in a TRPM7 kinase-dependent manner. Mol Neurobiol. 51:729–742.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Zhao Y, Xia Q, Zheng L, Liu L, Zhao
B and Shi J: Nuclear translocation of annexin 1 following
oxygen-glucose deprivation-reperfusion induces apoptosis by
regulating Bid expression via p53 binding. Cell Death Dis.
7:e23562016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xia Q, Li X, Zhou H, Zheng L and Shi J:
S100A11 protects against neuronal cell apoptosis induced by
cerebral ischemia via inhibiting the nuclear translocation of
annexin A1. Cell Death Dis. 9:6572018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xia Q, Mao M, Zeng Z, Luo Z, Zhao Y, Shi J
and Li X: Inhibition of SENP6 restrains cerebral
ischemia-reperfusion injury by regulating annexin-A1 nuclear
translocation-associated neuronal apoptosis. Theranostics.
11:7450–7470. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li X, Zheng L, Xia Q, Liu L, Mao M, Zhou
H, Zhao Y and Shi J: A novel cell-penetrating peptide protects
against neuron apoptosis after cerebral ischemia by inhibiting the
nuclear translocation of annexin A1. Cell Death Differ. 26:260–275.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Smith HK, Gil CD, Oliani SM and Gavins
FNE: Targeting formyl peptide receptor 2 reduces
leukocyte-endothelial interactions in a murine model of stroke.
FASEB J. 29:2161–2171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ansari J, Senchenkova EY, Vital SA,
Al-Yafeai Z, Kaur G, Sparkenbaugh EM, Orr AW, Pawlinski R, Hebbel
RP, Granger DN, et al: Targeting the AnxA1/Fpr2/ALX pathway
regulates neutrophil function, promoting thromboinflammation
resolution in sickle cell disease. Blood. 137:1538–1549. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xu X, Gao W, Li L, Hao J, Yang B, Wang T,
Li L, Bai X, Li F, Ren H, et al: Annexin A1 protects against
cerebral ischemia-reperfusion injury by modulating
microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR
pathway. J Neuroinflammation. 18:1192021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pantaleão L, Rocha GHO, Reutelingsperger
C, Tiago M, Maria-Engler SS, Solito E and Farsky SP: Connections of
annexin A1 and translocator protein-18 kDa on toll like receptor
stimulated BV-2 cells. Exp Cell Res. 367:282–290. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ramiro L, García-Berrocoso T, Briansó F,
Goicoechea L, Simats A, Llombart V, Gonzalo R, Hainard A,
Martínez-Saez E, Canals F, et al: Integrative multi-omics analysis
to characterize human brain ischemia. Mol Neurobiol. 58:4107–4121.
2021. View Article : Google Scholar : PubMed/NCBI
|